EXCITON Gaussian orbital code for spectra of materials
Examples of total and atom-projected densities of states bulk materials
Atom-species projected densities of states computed using EXCITON for bulk Si, wurtzite ZnO and the majority and minority spins of magnetite in its low temperature gapped phase.
Examples of dielectric functions of bulk materials and slabs
Valence state dielectric functions computed using EXCITON for bulk Si, anatase TiO2 (with the electric vector parallel or perpendicular to the crystal c axis), a Si(001) slab with a c(4x2) dimer reconstruction with the electric vector perpendicular or parallel to the dimer rows and bulk SrTiO3.O1s core level spectra of wurtzite ZnO for the radiation electric vector parallel to three axes
Since CRYSTAL09 can perform all electron calculations, EXCITON can calculate core level optical absorption spectra including the optical matrix element.
This work was sponsored by the Irish Higher Education Authority under the PRTLI-V grant and by Science Foundation Ireland under grant number RFP/11/PHY/3047.
Optical spectra shown here are obtained from single-particle hybrid density functional theory wave functions. They do not contain electron-hole attraction and scattering which is included in the Bethe-Salpeter equation (BSE) approach to optical excitations and which results in some bound excitations in matter, called excitons. Following our earlier work with BSE calculations in a Gaussian orbital basis, a BSE module is being developed for the latest version of EXCITON.
EXCITON will be released soon via GitHub download.