Skip to main content

Trinity College Dublin, The University of Dublin

Trinity Menu Trinity Search



Dr. Michael Monaghan
Ussher Assistant Professor, Mechanical & Manuf. Eng

Biography

Dr. Michael Monaghan is an Ussher Assistant Professor in Biomedical Engineering at Trinity College Dublin, the University of Dublin. His group's primary research areas are in biomaterials (in particular electroconductive biomaterials), advanced processing and rational design of biomaterials, cardiac tissue regeneration, and real-time imaging of extracellular matrix components and metabolism in differentiation and disease. He leads a number of interdiciplinary projects between other academic groups and industry ranging from immunometabolism, evaluation of fibrosis, biomaterial synthesis and induced pluripotent stem cell derivitisation of cardiac organoids.

Dr. Monaghan performed his Postdoctoral research in Germany as a recipient of a prestigious Marie Curie Individual Fellowship. His research was coordinated between the Department of Cell and Tissue Engineering in the Fraunhofer Institute for Interfacial Engineering and Biotechnology and the Department of Women's Health in University Clinic Tubingen. During this period he has published a number of key papers in the field of human valvulogenesis, embryonic stem cell research, cardiomyocyte differentiation, biomaterials and non-invasive optical characterisation (Raman microspectroscopy, fluorescent lifetime imaging (FLIM), multiphoton and second harmonic generation (SHG) imaging). Dr. Monaghan received both his B.Eng (Biomedical) and Ph.D. (Biomedical Engineering) from the National University of Ireland Galway (NUIG). During his Ph.D. Dr. Monaghan received a number of research awards such as travel awards from the European Molecular Biology Organisation (EMBO) and the German Academic Exchange Service (DAAD), and the 2015 Julia Polak European Doctorate Award in recognition of the achievements made during his Ph.D.

Dr. Monaghan is actively involved in the tissue engineering and regenerative medicine international society (TERMIS); previously as Chair of the EU Student and Young Investigator Section, and recently promoted full EU Council Member. He is council member of Matrix Biology Ireland and acts as treasurer of this society. More details of his groups resources and research can be found on the groups website.

Lab Website: www.monaghanlab.com

Publications and Further Research Outputs

Peer-Reviewed Publications

Seeing Is Believing: Noninvasive Microscopic Imaging Modalities for Tissue Engineering and Regenerative Medicine in, editor(s)Heinz Redl, Jeff Gimble, Darja Marolt Presen, Richard Oreffo and Susanne Wolbank , Tissue Engineering and Regeneration. Cell Engineering and Regeneration, Switzerland, Springer, 2020, ppAccepted- - In Press, [Neto N, Dmitriev R, Monaghan MG] Book Chapter, 2020

Extrusion-based additive manufacturing techniques for biomedical applications in, editor(s)Dermot Brabazon , Encyclopedia of Materials: Composites, Philadelphia, Elsevier, 2020, ppIn Press - [Tadayyon G, Kelly DJ, Monaghan MG] Book Chapter, 2020

Olvera D, Monaghan MG, Electroactive biomaterial-based biosensors for detection and drug delivery , Advanced Drug Delivery Reviews, 2020 Journal Article, 2020

Ukkelman IA, Neto N, Papkovsky DB, Monaghan MG, Dmitriev RI., A deeper understanding of intestinal organoid metabolism revealed by combining fluorescence lifetime imaging microscopy (FLIM) and extracellular flux analyses., Redox biology, 30, 2020, p101420 Journal Article, 2020 TARA - Full Text DOI

Ozaki, Ema and Gibbons, Luke and Neto, Nuno GB and Kenna, Paul and Carty, Michael and Humphries, Marian and Humphries, Pete and Campbell, Matthew and Monaghan, Michael and Bowie, Andrew and Doyle, Sarah L, SARM1 deficiency promotes rod and cone photoreceptor cell survival in a model of retinal degeneration, Life Science Alliance, 3, (5), 2020 Journal Article, 2020 DOI

Olvera D., Sohrabi Molina M., Hendy G., Monaghan M.G., Electroconductive Melt Electrowritten Patches Matching the Mechanical Anisotropy of Human Myocardium, Advanced Functional Materials, 2020 Journal Article, 2020 DOI TARA - Full Text

Solazzo M, Krukiewicz K, Zhussupbekova A, Fleischer K, Biggs MJ, Monaghan MG., PEDOT:PSS interfaces stabilised using a PEGylated crosslinker yield improved conductivity and biocompatibility., J Mater Chem B, 7, (31), 2019, p4811-4820 Journal Article, 2019 DOI

Dolan E. B., Varela C. E., Mendez K., Whyte W., Levey R. E., Robinson S. T., Maye E., O†Dwyer J., Beatty R., Rothman A., Fan Y., Hochstein J., Rothenbucher S. E., Wylie R., Starr J. R., Monaghan M., Dockery P., Duffy G. P., Roche E. T., An actuatable soft reservoir modulates host foreign body response , Sci. Robotics , 4 , (33 ), 2019, peaax7043 - Journal Article, 2019 URL DOI

Dolan, E.B. and Hofmann, B. and de Vaal, M.H. and Bellavia, G. and Straino, S. and Kovarova, L. and Pravda, M. and Velebny, V. and Daro, D. and Braun, N. and Monahan, D.S. and Levey, R.E. and O'Neill, H. and Hinderer, S. and Greensmith, R. and Monaghan, M.G. and Schenke-Layland, K. and Dockery, P. and Murphy, B.P. and Kelly, H.M. and Wildhirt, S. and Duffy, G.P., A bioresorbable biomaterial carrier and passive stabilization device to improve heart function post-myocardial infarction, Materials Science and Engineering C, 103, (109751), 2019 Journal Article, 2019 DOI

Solazzo M, O'Brien FJ, Nicolosi V, Monaghan MG., The rationale and emergence of electroconductive biomaterial scaffolds in cardiac tissue engineering., APL Bioeng, 3, (4), 2019, p041501 Journal Article, 2019 TARA - Full Text DOI

O'Rourke SA, Dunne A, Monaghan MG., The Role of Macrophages in the Infarcted Myocardium: Orchestrators of ECM Remodeling., Frontiers in cardiovascular medicine, 6, 2019, p101 Journal Article, 2019 TARA - Full Text DOI

Monaghan M.G, Holeiter M, Brauchle E, Layland S.L, Lu Y, Deb A, Pandit A, Nsair A, Schenke-Layland K, Exogenous miR-29B delivery via a hyaluronan-based injectable system yields functional maintenance of the infarcted myocardium, Tissue Engineering Part A, 24, 2018, p57 - 67 Journal Article, 2018 DOI

Shen N, Riedl JA, Carvajal-Berrio DA, Davis Z, Monaghan MG, Layland SL, Hinderer S, Schenke-Layland K. , A flow bioreactor system compatible with real-time two-photon fluorescence lifetime imaging microscopy., Biomedical Materials, 13, 2018, p024101- Journal Article, 2018 DOI

Lotz C, Schmid F.F, Oechsle E, Monaghan M, Walles H, Groeber-Becker F.K, A crosslinked collagen hydrogel matrix resisting contraction to facilitate full-thickness skin equivalents, ACS Appl. Mater. Interfaces, 9, 2017, p20417 - 20425 Journal Article, 2017 DOI

Lakner P.H*, Monaghan M. G*, M, Möller Y, Olayioye M.A, Schenke-Layland K. , Applying a phasor approach analysis of multiphoton fluorescence lifetime imaging microscopy measurements to probe the metabolic activity of three-dimensional in vitro cell culture models., Nature Scientific Reports, 7, 2017, p42730- Journal Article, 2017 DOI TARA - Full Text

Monaghan MG, Kroll S, Brucker SY, Schenke-Layland K, Enabling Multiphoton and Second Harmonic Generation Imaging in Paraffin-Embedded and Histologically Stained Sections., Tissue engineering. Part C, Methods, 22, (6), 2016, p517-23 Journal Article, 2016 DOI

Brauchle E, Knopf A, Bauer H, Shen N, Linder S, Monaghan MG, Ellwanger K, Layland SL, Brucker SY, Nsair A, Schenke-Layland K, Non-invasive Chamber-Specific Identification of Cardiomyocytes in Differentiating Pluripotent Stem Cells., Stem cell reports, 6, (2), 2016, p188-99 Journal Article, 2016 DOI

Monaghan M.G, Holeiter M, Layland S.L, Schenke-Layland K, Cardiomyocyte generation from somatic sources " current status and future directions , Current Opinion in Biotechnology , 40, 2016, p49 - 55 Journal Article, 2016 DOI

Monaghan MG, Linneweh M, Liebscher S, Van Handel B, Layland SL, Schenke-Layland K, Endocardial-to-mesenchymal transformation and mesenchymal cell colonization at the onset of human cardiac valve development., Development (Cambridge, England), 143, (3), 2016, p473-82 Journal Article, 2016 DOI

Lakner P, Möller Y, Olayioye M, Brucker S.Y, Schenke-Layland K, Monaghan M.G., Multiphoton Microscopy in the Biomedical Sciences XVI, Proc SPIE9712, SPIE BioS Multiphoton Microscopy in the Biomedical Sciences XVI, San Francisco, 14th March 2016, edited by Ammasi Periasamy; Peter T. C. So; Karsten König , 2016, pp97120X Conference Paper, 2016 DOI

Optical reprogramming and opticalcharacterization of cells using femtosecond lasers in, editor(s)König K, Ostendorf A , Biomedical Applications in Optically-Induced Nanostructures for Biomedical and Technical Applications, De Gruyter , 2015, pp159 - 178, [1. Uchugonova A, Augspurger C, Monaghan M, Schenke-Layland K, Konig K] Book Chapter, 2015 URL

Browne, S., Monaghan, M.G., Brauchle, E., Berrio, D.C., Chantepie, S., Papy-Garcia, D., Schenke-Layland, K., Pandit, A., Modulation of inflammation and angiogenesis and changes in ECM GAG-activity via dual delivery of nucleic acids, Biomaterials, 69, 2015, p133-147 Journal Article, 2015 DOI

Groeber, F., Engelhardt, L., Egger, S., Werthmann, H., Monaghan, M., Walles, H., Hansmann, J., Impedance Spectroscopy for the Non-Destructive Evaluation of In Vitro Epidermal Models, Pharmaceutical Research, 32, (5), 2015, p1845-1854 Journal Article, 2015 DOI

Dash, B.C., Thomas, D., Monaghan, M., Carroll, O., Chen, X., Woodhouse, K., O'Brien, T., Pandit, A., An injectable elastin-based gene delivery platform for dose-dependent modulation of angiogenesis and inflammation for critical limb ischemia, Biomaterials, 65, 2015, p126-139 Journal Article, 2015 DOI

Schesny, M.K., Monaghan, M., Bindermann, A.H., Freund, D., Seifert, M., Eble, J.A., Vogel, S., Gawaz, M.P., Hinderer, S., Schenke-Layland, K., Preserved bioactivity and tunable release of a SDF1-GPVI bi-specific protein using photo-crosslinked PEGda hydrogels, Biomaterials, 35, (25), 2014, p7180-7187 Journal Article, 2014 DOI

Monaghan, Michael, Browne, Shane, Schenke-Layland, Katja, Pandit, Abhay, A Collagen-based Scaffold Delivering Exogenous MicroRNA-29B to Modulate Extracellular Matrix Remodeling, Molecular Therapy, 22, (4), 2014, p786-796 Journal Article, 2014 DOI

Monaghan, M., Augspurger, C., Brauchle, E., Lakner, P., Breunig, G., Konig, K., Schenke-Layland, K., Fluorescent live time imaging from pluripotency to differentiation in mouse embryonic stem cells reveals endogenous autofluorescence profiles, Journal of Tissue Engineering and Regenerative Medicine, 8, 2014, p300-301 Journal Article, 2014 DOI

Energy Regeneration systems in cell free protein synthesis in vitro in, editor(s)Bethaz C, Li Puma V , New Research on Protein Synthesis, Nova Science Publishers, Inc, 2013, pp67 - 76, [2. Kahlig A, Schwedhelm I, Monaghan M, Thein M, Hansmann J] Book Chapter, 2013 URL

Michael Monaghan, An injectable collagen scaffold delivering exogenous microRNA as a therapy to modulate extracellular matrix remodelling , NUI Galway, 2013 Thesis, 2013 URL

Monaghan, M., Greiser, U., Wall, J.G., O'Brien, T., Pandit, A., Interference: An alteRNAtive therapy following acute myocardial infarction, Trends in Pharmacological Sciences, 33, (12), 2012, p635-645 Journal Article, 2012 DOI

Monaghan M, Greiser U, Cao H, Wang W, Pandit A, A ligand enhanced dendritic PEGylated poly (2-(dimethylamino) ethyl diacrylate) as a vehicle of microRNA, Drug Delivery and Translational Research, 2, 2011, p406 - 414 Journal Article, 2011 DOI

Monaghan, M. Browne, S. Wang, W. Pandit, A.(ed.), Scaffold mediated non-viral inhibition of collagen type I and type III in cardiac fibroblasts, 2011 Proceedings of a Conference, 2011 URL

Monaghan, M. Holladay, C. Pandit, A.(ed.), A crosslinked collagen type i biomaterial reservoir for non-viral gene delivery in vivo, 2011 Proceedings of a Conference, 2011

Monaghan, M., Pandit, A., RNA interference therapy via functionalized scaffolds, Advanced Drug Delivery Reviews, 63, (4), 2011, p197-208 Journal Article, 2011 DOI

Dash, B.C., Réthoré, G., Monaghan, M., Fitzgerald, K., Gallagher, W., Pandit, A., The influence of size and charge of chitosan/polyglutamic acid hollow spheres on cellular internalization, viability and blood compatibility, Biomaterials, 31, (32), 2010, p8188-8197 Journal Article, 2010 DOI PURL

Non-Peer-Reviewed Publications

Michael Monaghan, Non-invasive, nonlinear microscopy in the evaluation of extracellular matrix and cell metabolic activity, ORS Musculoskeletal Summer Symposium, Dublin, 6-7th July, 2017, Dvid Hoey Invited Talk, 2017

Research Expertise

Description

Dr. Monaghan's research focus is the generation of cardiac tissue in vitro towards the purpose of disease modelling and therapeutic transplantation. Heart attacks are an increasing healthcare burden and despite many medical advances, once heart muscle dies following a heart attack it does not heal sufficiently, and becomes scarred, leading to reduced function and quality of health. It is possible to generate new heart muscle from stem cells and more recently from adult cells of the body (e.g. skin cells) but such new heart muscle is not fully functional or mature as it is not experiencing the natural environment of the heart. His research is focused on the use of tunable biomaterial scaffolds using both biomechanical and biomolecular stimuli to mimic the cardiac environment and achieve robust cardiomyocyte transdifferentiation. Dr. Monaghan research interests also include non-invasive microscopy. Multiphoton microscopy is a powerful method for the nondestructive evaluation of deep-tissue, cells and extracellular matrix (ECM) structures. By interacting with highly non-centrosymmetric molecular assemblies, the non-linear phenomenon of second harmonic generation (SHG) has also proven to be an important diagnostic tool for the visualization of collagen and myosin. Multiphoton microscopy can be additionally equipped with time correlated single photon counting boards which allow extensive analysis of the photons being emitted from any material due to excitation by a specific wavelength and provides a photon distribution analysis. Notably, this facilitates fluorescence lifetime imaging (FLIM), which produces images based on the differences in the exponential decay rate of the fluorescence from a fluorescent sample, where the lifetime of a fluorophore signal is used to create the image. This method reduces the effect of photon scattering in thick samples and also avoids sample bleaching and photo-induced toxicity. Investigated fluorophores can be naturally present in the cell (e.g. NAD(P)H, which is indicative of cellular metabolism), or fluorophores that we can introduce externally to understand cell pathways and signaling. Link to PubMed: http://www.ncbi.nlm.nih.gov/pubmed/?term=monaghan+AND+(pandit+OR+Walles+OR+schenke-layland) Link to Google Scholar: https://scholar.google.com/citations?user=X1mgIbEAAAAJ&hl=en&oi=sra

Projects

  • Title
    • Enabling Melt ElectroWriting of Electroconductive, Geometrically Defined 3D Biomaterials to Promote the Maturation of Cardiomyocytes for Cardiac Regeneration
  • Funding Agency
    • Enterprise Ireland
  • Date From
    • December 2017
  • Date To
    • January 2020
  • Title
    • Cell-Specific Metabolic FLIM Profiling of the Ulcerative Colitis Microenvironment to Establish an Association with Patient Treatment Response
  • Summary
    • Non-invasive FLIM could reliably establish a statistically significant relationship between the FLIM characteristics of UC biopsies and UC patient response. The specific aims of this research project are to employ FLIM to characterise the microenvironment of lesions in UC. This includes measurement of the mean fluorescent decay times, contributing lifetimes and ratios of NADH and FAD within cellular populations dominating the UC microenvironment in a spatio-temporal manner. This will pave the way towards launching a FLIM imaging core facility that can reliably categorise cell specific metabolic profiles within tissue biopsies from patients diagnosed with UC, and provide recommendations for treatment regimens.
  • Funding Agency
    • Trinity College Dublin Provosts PhD Project Award
  • Date From
    • September 2018
  • Date To
    • August 2022
  • Title
    • The role of macrophage polarization in the generation of functional engineered mature myocardium organoids
  • Summary
    • It is the purpose of this PhD project to intertwine the fields of bioengineering, biochemistry and immunology, by combining macrophages; key cells of the innate immune system, with cardiac organoids to achieve a more physiologically relevant model and achieve a diseased 'heart-attack-on-a-dish' organoid model as a patient specific pharmacological testing platform.
  • Funding Agency
    • Trinity College Dublin Faculty of Engineering Maths and Sciences Intrafaculty PhD College Award
  • Date From
    • September 2018
  • Date To
    • August 2022
  • Title
    • Recapitulating electrical, mechanical and extracellular-matrix cues via multifunctional biomaterials to engineer cardiac tissue
  • Funding Agency
    • SFI-HRB-Wellcome Trust
  • Date From
    • January 2017
  • Date To
    • Septebmer 2019
  • Title
    • 3D Electroconductive biomaterial scaffolds as cardioinductive matrices for cardiac tissue engineering
  • Summary
    • Heart attacks lead to the death of functional cells in heart muscle (cardiomyocytes; CMs) which cannot be replaced. Every sixth man and seventh woman will die from a heart attack or related complications, and there is no way to regenerate this heart muscle. CMs in vivo are exposed to a unique environment defined by the local extracellular matrix (ECM), dynamic mechanical forces via the beating of the heart and electrical action potentials being generated by the heart's electrical conduction system. This proposal is a unique engineering approach to recapitulate a cardio-inductive platform based on mechanical, electrical and ECM cues to generate an efficient culture system to culture CMs in vitro and also to increase efficiencies of generating functional CMs from progenitor cells. This research aims to generate the following outcome: a cardio-inductive biomaterial system that has appropriate mechanical electroconductive and biocompatibility properties that can facilitate the generation of cardiac organoids in vitro using primary cells and efficiently facilitate cardiomyogenic differentiation from progenitor cells. These advances will not only improve quality of life for the patient but provide tools to study disease and perform pharmaceutical research.
  • Funding Agency
    • Irish Research Council
  • Date From
    • 01-SEP-19
  • Date To
    • 31-AUG-21
  • Title
    • Conductive materials for regeneration of the infarcted myocardium
  • Summary
    • Every sixth man and seventh woman will die from a heart attack or related complications Heart attacks lead to the death of functional cells in heart muscle (cardiomyocytes; CMs) which cannot be replaced. CMs in vivo are exposed to a unique environment defined by the local extracellular matrix (ECM), dynamic mechanical forces via the beating of the heart and electrical action potentials being generated by the heart's electrical conduction system. Electroconductive biomaterials in heart tissue engineering have the potential to be a building block for advanced therapeutic medical devices and also to achieve functional cardiac tissue in vitro. This project is a unique materials engineering approach to develop a cardio-inductive platform based on mechanical, electrical and ECM cues to generate the next generation of biomaterials. This research aims to generate the following outcome: a cardio-inductive biomaterial system derived from advanced nanomaterials that has appropriate mechanical, electroconductive and biocompatibility properties that can facilitate the generation of cardiac organoids in vitro using primary cells and efficiently facilitate cardiomyogenic differentiation from progenitor cells. These advances will not only improve quality of life for patients, but also provide tools to study disease and perform pharmaceutical research. This PhD program will develop a 3D biomaterial scaffold using synthetic nanomaterials together with naturally derived ECM that is biocompatible, suitably electroconductive and cardio-inductive towards facilitating the culture of cardiac organoids in vitro and enhancing stem cell cardiomyogenesis in vitro. Methods will include materials chemical characterisation techniques, cell culture, biochemical assays, mechanical testing, stem cell culture, immunohistochemistry, instrumentation. Support and training are provided throughout all stages.
  • Funding Agency
    • SFI
  • Date From
    • 01-Oct-19
  • Date To
    • 31-Sep-23
  • Title
    • Tuning macrophage polarization to model myocardial infarction in the generation of functional cardiac organoids'
  • Summary
    • It is the purpose of this PhD project to intertwine the fields of bioengineering, biochemistry and immunology, by combining macrophages; key cells of the innate immune system, with cardiac organoids to achieve a more physiologically relevant model and achieve a diseased 'heart-attack-on-a-dish' organoid model as a patient specific pharmacological testing platform. The generation of cardiac organoids can be achieved by recapitulating, as close as possible, the native microenvironment of the myocardium. Therefore, conductive polymers have gained interest as biomaterials for cardiac tissue engineering due to their suitable conductivity properties4. Very few reports have explored the interaction of macrophages and electroconductive biomaterials, and there are no reports regarding their introduction into cardiac organoids, or recapitulation of disease in a dish models
  • Funding Agency
    • EPSRC-SFI Joint Funding
  • Date From
    • 01-Oct-19
  • Date To
    • 31-Sep-23
  • Title
    • Enhancement of an Olympus FV1000MPE multiphoton microscope in Trinity Biomedical Sciences Institute (TBSI) for the application of Fluorescent Lifetime Imaging Microscopy (FLIM)
  • Summary
    • Enhancement of an Olympus FV1000MPE multiphoton microscope in Trinity Biomedical Sciences Institute (TBSI) for the application of Fluorescent Lifetime Imaging Microscopy (FLIM)
  • Funding Agency
    • SFI Funding internally allocated by TCD
  • Date From
    • 01-Feb-17
  • Date To
    • N/a

Keywords

2ND HARMONIC GENERATION; 3D Imaging Analysis; Bioengineering and radiologic imaging; Biomaterials; COLLAGEN; CONFOCAL IMAGING; Confocal photoluminescence imaging; DRUG TARGETING; DRUG-DELIVERY SYSTEM; EXTRACELLULAR MATRIX (ECM); GENE SILENCING; GENE-THERAPY; Regenerative Medicine; Tissue Engineering

Recognition

Representations

Elected Council Member -Tissue Engineering and Regenerative Medicine International Society (EU Chapter) 01-Jan-2018

Elected Treasurer- Matrix Biology Ireland 2017 Meeting 30 Nov 2016

Awards and Honours

European Doctoral Award, Issued by the European Society of Biomaterials 2015

Deutscher Akademischer Austausch Dienst, Short Term Travel Award to conduct research in University Hospital Tübingen 2012

EMBO Short Term Travel Award to conduct research in Fraunhofer IGB Stuttgart 2011

Roche Best Poster Award, NCBES Research day 2008

NUI Galway College of Engineering and Informatics Research Fellow 2007

University Scholar (Based on end of term results) NUI Galway 2005

Memberships

Royal Academy of Medicine in Ireland (RAMI)- Bioengineering Section 2017 – Present

MBI- Matrix Biology Ireland 2016 – Present

ESB- European Society for Biomaterials 2010 – Present

TERMIS - Tissue Engineering and Regenerative Medicine Society 2009 – Present

DGMB-German Matrix Biology Society 2013 – 2016