Skip to main content

Trinity College Dublin, The University of Dublin

Trinity Menu Trinity Search

You are here Research > Research Groups > Magnetism & Spin Electronics > Research > New Magnetic Materials


New Magnetic Materials

Technological advances are driven by the mastery of new materials. The current information revolution is based on semiconductors and magnetic materials to process and store > 1021 bytes of data every year. New magnetic materials can further enhance storage densities, perform logic operations or add new functionality.

Heusler Alloys

The family of cubic XYZ or X2YZ intermetallic compounds offers a wide range of interesting properties. Insulating, semiconducting and metallic materials can be readily obtained in bulk and thin film form, and both ferromagnetic and ferrimagnetic alloys, including half-metals such as Co2MnSi can be produced. Tetragonally-distorted manganese-based variants such as Mn3Ga or Mn3Ge show strong c-axis anisotropy, with potential for perpendicular MTJs. The elusive zero-moment fully-compensated ferromagnetic half-metal is especially interesting – We have found the first example: Mn2Ru0.5Ga.

Fig.1 The structure of a cubic X2YZ Heusler compound (a), and its tetragonally-distorted counterpart (b). The magnetic hysteresis loop is of a c-axis oriented thin film of Mn3Ga with Ku = 2.35 MJm3.


Another very versatile family of materials are oxides, such as those with the perovskite structure. Examples include Pauli paramagnets [CaRuO3], metallic [SrRuO3] and half-metalllic ferromagnets [(La0.7Sr0.3)MnO3], weak ferromagnets [LaMnO3] and antiferromagnets [LaNiO3]. Helical magnets [BiFeO3] ferroelectrics [BaTiO3] and insulators [LaAlO3, LaAlO3] also belong to this family. Oxides can often exhibit the spinel structure exemplified by MgAl2O4, of which CoFe2O4 and NiFe2O4 are examples of ferromagnetic materials, the former being a useful magnetostrictive material and both having potential applications as spin filters. These oxides can be grown as thin films and combined in multifunctional stacks on an insulating substrate to generate a great variety of new properties and functionalities. Of particular interest is the combination of ferroelectricity and ferromagnetism via strain or electric field mediated magnetoelectric interactions. The understanding and control of these and related phenomena are the subject of the field of multiferroics.


Fig.1 BaTiO3 in ferroelectric polarisation states corresponding to the Ti4+ ions being displaced relative to the O2- sublattice. At room temperature the positively charged Ti ion can sit either above or below the TiO2 planes, and can be displaced relative to the O ions with an external electric field. This leads to both ferroelectric polarisation and piezoelectricity in this interesting perovskite oxide.


Fig.2 Magnetisation curves of CoFe2O4 thin films, with the applied field both in the plane of the film and out, on (a) La0.26Sr0.76Al0.61Ta0.37O3 and (b) MgAl2O4 substrates. The deviation from the nominally cubic anisotropy of bulk CoFe2O4 under the constraint of epitaxial strain illustrates the scale of the magnetostriction in this spinel ferrite.

Contact Karsten Rode

Further Reading

Magnetic dead layers in La0.7Sr0.3MnO3 revisited, S.B. Porter, M. Venkatesan, P. Dunne, B. Doudin, K. Rode, J.M.D. Coey, IEEE Trans.Magn., (2017) vol. 53 pp. 1-4, (2017)

Site-specific order and magnetism in tetragonal Mn3Ga thin films, F. Eskandari, S.B. Porter, M. Venkatesan, P. Kameli, K. Rode, J.M.D. Coey, Physical Review Materials 1 074413 (2017)