Trinity College Dublin

Skip to main content.

Top Level TCD Links

Neurovascular Genetics laboratory, Trinity College Dublin

Email: matthew.campbell@tcd.ie

Biographical Information

Having obtained a Fighting Blindness Research scholarship in 2002, Dr Matthew Campbell graduated from University College Dublin (UCD) in 2006 with a PhD in Biochemistry focusing on the role of tight junctions in the development of the degenerative eye conditions diabetic retinopathy (DR) and age-related macular degeneraton (AMD). In the same year, he joined the Genetics department in TCD and focused his interests primarily around the molecular biology and physiology of the vasculature associated with neural tissues. He has published extensively on the use of RNA interference (RNAi) to modulate levels of distinct tight junction proteins at the blood-brain barrier/inner blood retina barrier (BBB/iBRB) in vivo.



Research Interests

My laboratory focuses primarily on the molecular biology and physiology of the vasculature associated with neural tissues. We use genetic and molecular biology based approaches to explore the interplay between neural tissue and the systemic circulation. One major topic of my research is centered on the tight junctions located between microvascular endothelial cells of the blood brain and inner blood retina barriers (BBB/iBRB) and how these barriers function in health and disease.  We aim to develop technologies to address an unmet clinical need for a range of neural conditions that currently have limited forms of therapeutic intervention and these include Alzheimer Disease, Multiple Sclerosis, Glioblastoma multiforme (GBM) and traumatic brain injury (TBI).

In addition to translational interests, our lab is also heavily focused on elucidating the under-lying mechanisms of the diseases we are studying and this has led to novel findings associated with the molecular pathology of age-related macular degeneration (AMD).  Identification of novel therapeutic targets has the potential to rapidly translate to new medicines and this is a strong focus of the lab at present.


Laser induced choroidal neovascularisation (CNV)

Cerebral amyloid angiopathy (CAA) in a human Alzheimer disease (AD) brain



What we work on

RNAi mediated modulation of the BBB and iBRB

We use in vitro and in vivo methods to investigate the role of distinct tight junction proteins in regulating the BBB and iBRB and how these proteins function in health and disease. Given that almost every neurodegenerative condition has BBB dysfunction as a central hallmark or co-morbidity, a greater understanding of the role played by the molecular components of the BBB is essential in identifying novel therapeutic targets for conditions such as Alzheimer Disease (AD), Glioblastoma multiforme (GBM), Multiple sclerosis (MS) and neurotrauma. Modulation of the BBB is also being explored as a strategy to enhance drug delivery to the brain and retina while also being able to alleviate cerebral edema associated with neural malignancies.

Generation of transgenic/knockout mice

In order to better explore the role of distinct components of the BBB/iBRB in mediating the development of a range of neural/ophthalmological conditions, we generate murine models in which we can regulate key components of the tight junctions at the BBB/iBRB. In effect, this allows us to establish disease models to better elucidate the role played by the BBB/iBRB in the development of disease states.

Elucidation of the molecular aetiology of neural diseases

While our lab is heavily focused on translational research and the development of novel therapies for neural conditions, we are actively engaged in research to identify unresolved molecular mechanisms that pre-dispose certain individuals to neural or retinal disease. We are interested in elucidating complex signalling pathways that lead to the development of conditions such as age-related macular degeneration (AMD) a common form of central retinal blindness that can affect almost 1 in 10 individuals over the age of 55. Specifically, we are interested in resolving the role of inflammation in the progression of neural/retinal conditions.

 

Interested in working with us?

We are always interested in recruiting talented people to the lab and in supporting applications for personal PhD and postdoctoral fellowships.

Please contact Matthew (matthew.campbell@tcd.ie) for further details.

TBI

Traumatic Brain Injury (TBI)

BMDM

Inflammasome oligomerisation in bone marrow derived macrophages

Fundus

Fundus photograph of a human retina



Relevant links

www.tcdlife.ie

www.tcdlife.ie/living

www.arvo.org

www.fightingblindness.ie

www.ibbsoc.org



Selected Publications:

Keaney J, Walsh DM, O'Malley T, Hudson N, Crosbie DE, Loftus T, Sheehan F, McDaid J, Humphries MM, Callanan JJ, Brett FM, Farrell MA, Humphries P, Campbell M. Autoregulated paracellular clearance of amyloid-β across the blood-brain barrier. Science Advances. (2015) Sep 4;1(8):e1500472.

Keaney J, Campbell M. The dynamic blood-brain barrier. FEBS J. (2015) Nov;282(21):4067-79.

Doyle SL, López FJ, Celkova L, Brennan K, Mulfaul K, Ozaki E, Kenna PF, Kurali E, Hudson N, Doggett T, Ferguson TA, Humphries P, Adamson P, Campbell M. IL-18 Immunotherapy for Neovascular AMD: Tolerability and Efficacy in Nonhuman Primates. Invest Ophthalmol Vis Sci. 2015 Aug;56(9):5424-30.

Doyle, SL, Ozaki, E, Brennan, K, Humphries, MM, Mulfaul, K, Keaney, J, Kenna, PF, Maminishkis, A, Kiang, AS, Saunders, SP, Hams, E, Lavelle, EC, Gardiner, C, Fallon, PG, Adamson, P, Humphries, P, *Campbell, M. IL-18 attenuates experimental choroidal neovascularization as a potential therapy for wet age-related macular degeneration. Sci Transl Med. (2014), 2 April, Vol 6, Issue 230. (Reprint, Full Text)

Campbell, M, Hanrahan, F, Gobbo, OL, Kelly, ME, Kiang, AS, Humphries, MM, Nguyen, ATH, Ozaki, E, Keaney, J, Blau, CW, Kerskens, CM, Cahalan, SD, Callanan, JJ, Wallace, W, Grant, GA, Doherty, CP and Humphries, P. Targeted suppression of claudin-5 decreases cerebral edema and improves cognitive outcome following traumatic brain injury. Nature Communications, (2012), May 22;3:849.

Campbell*, M, Doyle*, SL, Ozaki, E, Salomon, RG, Mori, A, Kenna, PF, Kiang, AS, Humphries, MM, Lavelle, EC, O’Neill, LAJ, Hollyfield, JG, and Humphries, P. NLRP3 has a protective role during the development of age related macular degeneration through the induction of IL-18 by drusen components. Nature Medicine (2012) May;18(5):791-8.

Campbell M, Humphries MM, Kiang A-S, Nguyen ATH, Gobbo OL, Tam LCS, Suzuki M, Hanrahan F, Ozaki E, Farrar G-J, Kenna PF, Humphries P. Systemic low molecular weight drug delivery to pre-selected neuronal regions. EMBO Mol Med, (2011), 3:235-245

Campbell, M, Nguyen, ATH, Kiang, AS, Tam, LCS, Gobbo, OL, Kerskens, C, Ni Dhubhghaill, S, Humphries, MM, Farrar, GJ, Kenna, PF, Humphries, P. An experimental platform for systemic drug delivery to the retina. Proc Natl Acad Sci U S A. (2009) Oct 20;106(42):17817-22.

Campbell M, Kiang AS, Kenna PF, Kerskens C, Blau C, O'Dwyer L, Tivnan A, Kelly JA, Brankin B, Farrar GJ, Humphries P. RNAi-mediated reversible opening of the blood-brain barrier. J Gene Med. (2008). Aug;10(8):930-47.

Laboratory Members 2016

Dr Natalie Hudson (PostDoc)

Dr John Kealy (PostDoc)

Dr James Keaney (PostDoc)

Mr Chris Greene (PhD student)

Ms Lucia Celkova (PhD student)

Mr Eoin O'Keefe (PhD student)

Ms Buket Uçar (Masters student)

Mr Conor Kearns (Masters student)

Communications

https://www.youtube.com/watch?v=JUjiDiu8-xA

https://www.youtube.com/watch?v=QkjDkH5yDe4

TCD Press Release, Apr 17, 2012

TCD Press Release, May 25, 2012

EnterpriseIrelandTV

Campbell group photo


Contact Details

Dr Matthew Campbell

Smurfit Institute of Genetics,

Lincoln Place Gate,

Dublin 2.

Email: Matthew.Campbell@tcd.ie

Phone: (00353)-1-8961482 (Office)

(00353)-1-8962486 (Lab)


SFI logo

EI logo

GSK logo

ARVO logo

BrightFocusFoundation logo

HRB logo


Last updated 9 February 2016 gensec@tcd.ie (Email).