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The International CAPM and a wavelet-based decomposition of Value at Risk 
 
 
         Viviana Fernandez1 

 
Abstract 

 
 In this article, we formulate a time-scale decomposition of an international version 
of the CAPM that accounts for both market and exchange-rate risk. In addition, we derive 
an analytical formula for time-scale value at risk and marginal value at risk (VaR) of a 
portfolio. We apply our methodology to stock indices of seven emerging economies 
belonging to Latin America and Asia, for the sample period 1990-2004. Our main 
conclusions are the following. First, the estimation results hinge upon the choice of the 
world market portfolio. In particular, the stock markets of the sampled countries appear to 
be more integrated with other emerging countries than with developed ones. Second, value 
at risk depends on the investor’s time horizon. In the short run, potential losses are greater 
than in the long run. Third, additional exposure to some specific stock indices will increase 
value at risk to a greater extent, depending on the investment horizon. Our results go in line 
with recent research in asset pricing that stresses the importance of heterogeneous 
investors.  
 
JEL: C22, G15 Keywords: wavelets, ICAPM, value at risk. 
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1. Introduction 
 

The capital asset pricing model (CAPM), a corner-stone of modern finance, states 
that the risk premium of an individual asset equals its beta times the risk premium on the 
market portfolio. Beta measures the degree of co-movement between the asset’s return and 
the return on the market portfolio. In other words, beta quantifies the systematic risk of an 
asset––i.e., the amount of risk that cannot be diversified away.  

 
In recent years, however, the CAPM has been questioned by several empirical 

studies. In particular, Fama and French (1992) announced the death of beta based on the 
fact that it does a poor job of explaining the cross-section variation of average returns, as 
opposed to the book-to-market ratio and market capitalization. Kothari and Shanken 
(1998), however, conclude that Fama and French’s results hinge on using monthly rather 
than yearly returns. Kothari and Shanken argue that the use of annual returns to estimate 
betas helps to circumvent measurement problems caused by non-synchronous trading, 
seasonality in returns, and trading frictions.  

 
Simultaneously, several authors have worked on theoretical extensions of the 

CAPM: the after-tax CAPM, which accounts for the fact that investors have to pay higher 
taxes on high dividend-yield stocks, and, therefore, they must be compensated with higher 
pre-tax returns; the inter-temporal CAPM, which deals with a multi-period setting; the 
consumption CAPM, which states that security returns are highly correlated with aggregate 
economic output, as investors are concerned with protecting their consumption over 
economic slowdowns; and, the international asset pricing model, which establishes the 
conditions under which fully integrated capital markets are in equilibrium (see Megginson, 
1997, for a thorough discussion and citations).  

 
Another theme that has been covered by the empirical literature on the CAPM, and 

which is related to our article, is the testing of asset pricing models that allow for a time-
varying beta, a time-varying risk premium, or for both. Typically, researchers have resorted 
to GARCH and GARCH-in-mean processes for such testing (e.g., Engle, Lilien and 
Robins, 1987; Bollerslev, Engle, and Wooldridge, 1988). An alternative, but promising, 
approach is wavelet analysis. This is a refinement of the Fourier analysis that, among many 
other applications, allows for a time-scale decomposing of financial data (i.e., high-
frequency or noisy components and low-frequency or trend components). Such 
decomposition makes it possible to compute pair-wise correlations at different time-
horizons.  

 
Early studies that utilize wavelet methods are Ramsey, Usikov, and Zaslavsky 

(1995) and Ramsey and Zhang (1996, 1997), which concentrate on stock markets and 
foreign exchange rate dynamics. More recent contributions have dealt with the permanent 
income hypothesis, the relation between futures and spot prices, the estimation of 
systematic risk of an asset (beta), seasonality filtering of time-series data, time and scale 
dependency of intraday Asian spot exchange rates, and heterogeneous trading in 
commodity markets, among other themes (e.g., Ramsey and Lampart 1998; Li and 
Stevenson 2001; Gençay, Whitcher, and Selcuk 2001, 2003, 2005; Whitcher 2004; 
Karuppiah and Los 2005; Connor and Rossiter 2005). A thorough discussion of the use of 
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wavelets in economics and finance can be found in the survey articles by Ramsey (1999, 
2002). 
 
 This article concentrates on a wavelet-based international asset pricing model 
(ICAPM). That is, we estimate ICAPM models for different time horizons. A concrete 
application of our estimation results is the computation of the value at risk for a multi-
country portfolio. Previous studies have stressed the importance of exchange rate risk. 
Indeed, the evidence has shown that there can be considerable departures from the 
purchasing power parity (PPP), so exchange risk should be priced (e.g., Adler and Dumas 
1983). At the same time, several theoretical models have stressed the importance of this 
risk factor (e.g., Solnik 1974; Adler and Dumas 1983; Stulz 1971, 1992). Empirical support 
for the existence of a foreign exchange risk premium has been found by Dumas and Solnik 
(1995) and De Santis and Gerard (1998). Additional evidence in favor of the ICAPM over 
the CAPM is documented by Dumas (1994).  
 
 The contribution of our work is two fold. First, applications of wavelet analysis to 
financial risk have dealt exclusively with the single-country CAPM (e.g., Gençay, 
Whitcher, and Selcuk 2003, 2005), where exchange-rate risk is non-existent. Second, our 
study introduces the concepts of time-scale value at risk and time-scale marginal value at 
risk. Recent research in the area of asset pricing has started to account for agents’ 
heterogeneous time horizons in financial markets. As Connor and Rossiter (2005) point out 
for the specific case of commodity markets, long-horizon traders will essentially focus on 
price fundamentals that drive overall trends, whereas short-term traders will primarily react 
to incoming information within a short-term horizon. Hence, market dynamics in the 
aggregate will be the result of the interaction of agents with heterogeneous time horizons. A 
similar intuition can be applied to our model: market and exchange risk and, hence, 
potential portfolio losses will depend upon the investor’s time horizon. In the aggregate, 
market and exchange-rate risks will be the outcome of the different time-horizon investors.  
 
 This article is organized as follows. Section 2 is divided into three parts. Section 2.1 
presents a brief theoretical background on the version of the ICAPM we will use in our 
empirical analysis. Section 2.2 presents a brief description of the discrete wavelet 
transforms (DWT) and the maximal overlap DWT (MODWT). Section 2.3 presents our 
derivation of the time-scale value at risk and the marginal value at risk of a portfolio 
comprised by an arbitrary number of assets. Section 3 applies our methodology to stock 
indices of seven emerging economies belonging to Latin America and Asia, for the sample 
period 1990-2004. Finally, Section 4 presents our main conclusions. 
 
2. Theoretical issues 
 

For simplicity, we will postulate that an investment in a country portfolio (measured 
in local currency) is subject to two sources of risk, namely, the country index’s sensitivity 
to a global portfolio and the performance of the domestic currency relative to the foreign 
currency. Our viewpoint will be that of an US investor, so we will take the US dollar as the 
foreign currency. This formulation is certainly parsimonious, but it simplifies enormously 
the derivation of a formula for the value at risk of a portfolio invested on several country 
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indices. Despite the simplicity of our model, we will allow for the existence of correlation 
among the exchange rates of different countries.  
 
 Section 2.1 describes the formulation of our two-country CAPM. Section 2.2 
focuses on the statistical technique of wavelets, whereas Section 2.3 obtains an analytic 
formula for the time-scale value at risk (VaR) of k assets and the time-scale marginal VaR 
of an individual asset.  
 
2.1 The international CAPM: the two-country case 
 
 The expected risk premium of a domestic asset is given by (see Sercu and Uppal 
1995, chapter 22) 
 
 )s,rcov()r,rcov()rr(E i2wi1i ψ+ψ=−      (1) 
 
where ri and rw are the returns on the domestic asset and the world market portfolio, 
respectively (both expressed in local currency), s is the percent change in the exchange rate 
between the domestic and the foreign currency, and ψ1 and ψ2 represent the prices of the 
corresponding covariance risks.  
 
 In this model, the expected risk premium consists of two risk premiums for 
covariance risks. The intuition behind the first risk premium is similar to that of the single-
country CAPM. The premium for exchange risk covariance reflects the fact that investors 
are also concerned about the covariance of local-currency returns with the exchange rate.  
 
 In order to determine ψ1 and ψ2, two benchmarks are taken, namely, the world 
market portfolio and the foreign Treasury bond. Therefore, we have the following system 
of two equations in the two unknowns ψ1 and ψ2: 
 
 )s,rcov()r,rcov(r)r(E w2ww1w ψ+ψ=−      (2a) 
  = )s,rcov()rvar( w2w1 ψ+ψ  
 

)s,scov()r,scov(rr)s(E 2w1
* ψ+ψ=−+      (2b) 

  = )svar()r,scov( 2w1 ψ+ψ  
 

The expression E(s)+r* represents the expected return on the Treasury bond in terms 
of the local currency. Under the assumption that cov(rw,s)=0, ψ1 and ψ2 boil down to 

 

)rvar(
r)r(E

w

w
1

−
=ψ  

)svar(
rr)s(E *

2
−+

=ψ      (3) 

 
After substituting (3) into (1), we obtain 
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 )rrs(E
)svar(

)s,rcov()rr(E
)rvar(

)r,rcov()rr(E *i
w

w

wi
i −++−=−  

 
  ≡α1i E(rw–r)+α2i E(s+r*–r)      (4) 
 
where α1i is the sensitivity of asset i to the world market portfolio, and α2i is the asset’s 
relative exchange rate risk. 
 
 If the world market portfolio is denominated in the foreign currency instead2, 
equation (1) can be restated as 
 
 )s,rcov()sr,rcov()rr(E i2

*
wi1i φ++φ=−      (5) 

 
Similarly, by taking as benchmarks the world market portfolio and the foreign 

Treasury bond, we have 
 
 ))svar()s,r(cov()srvar(r)sr(E *

w2
*
w1

*
w +φ++φ=−+    (6a) 

 )svar()()r,scov(rr)s(E 21
*
w1

r φ+φ+φ=−+      (6b) 
 
After solving for φ1 and φ2 rearranging terms, we get that3 
 

 )rrs(E
)svar(

)s,rcov()rr(E
)rvar(

)r,rcov()rr(E *i**
w*

w

*
wi

i −++−=−  

 
  ≡ )rrs(E)rr(E *

i2
**

wi1 −+β+−β      (7) 
 
 In practice, however, the world market portfolio (measured in either local or foreign 
currency) and the exchange rate variation will not be necessarily orthogonal. Then the 
sensitivities to the risk factors, β1 and β2, have to be jointly estimated from a linear 
regression model. For instance, let us consider the regression representation of equation (7) 
 
 ii2

*
wi1i0i srr ε+β+β+β=        (8) 

 
where εi is an error term that satisfies all the assumptions of the linear regression model. 
Estimates of both beta and gamma can be obtained by ordinary least-squares. From 
elementary econometrics (see, for instance, Johnston (1984), chapter 3), we have that 
 

                                                 
2 In the empirical section of the paper, our proxies of the world market portfolio are denominated in US 
dollars, which we take as the foreign currency.  
3 This calculation assumes that 0)s,rcov( *

w
= .  
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srsrrr
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δδ−δ
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wwii

srsr

srrrsr
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where 

wirrδ̂ is the slope of a regression of ri on a constant term and rw,, that is, 

∑
∑

−

−−
=δ

t

2
wwt

t
wwtiit

rr )rr(

)rr)(rr(
ˆ

wi
, etcetera.  

 
 The R2 of the regression model in (8) can be obtained as 
 

 2
sr

srsrrr
2

sr
2

rr2

w

wiwiiwi

1
2

R
ρ−

ρρρ−ρ+ρ
=       (10) 

 
where 

wirrρ  is the sample correlation coefficient between ri and rw, etcetera.  
 
 We will use these equations later as a benchmark for our wavelet-based 
decomposition.  
 
2.2 The Discrete Wavelet Transform 
 
 A wavelet or short wave is similar to a sine and cosine function in that it also 
oscillates about zero (see, for instance, Percival and Walden, 2000; Gençay, Selçuk, and 
Whitcher, 2002). However, as its name indicates, oscillations of a wavelet fade away about 
zero, and the function is localized in time or space.4 In wavelet analysis, a signal (i.e., a 
sequence of numerical measurements) is represented as a linear combination of wavelet 
functions.  
 
 In particular, a wavelet allows for decomposing a signal into multi-resolution 
components: fine and coarse resolution components. There are father and mother wavelets. 
Father wavelets (φ) are good at representing the smooth and low-frequency parts of a 
signal, whereas mother wavelets (ψ) are good at representing the detailed and high-
frequency parts of a signal. In particular, the orthogonal wavelet series approximation to a 
continuous signal f(t) is given by 
 

)t(d...)t(d)t(d)t(s)t(f k,1
k

k,1k,1J
k

k,1Jk,J
k

k,Jk,J
k

k,J ψ++ψ+ψ+φ≈ ∑∑∑∑ −−  (11) 

 
where J is the number of multi-resolution components or scales, and k ranges from 1 to the 
number of coefficients in the corresponding component. The coefficients sJ,k, dJ,k,..., d1,k are 
the wavelet transform coefficients, whereas the functions φj,k(t) and ψj,k(t) are the 
approximating wavelet functions. These functions are generated from φ and ψ as follows 
                                                 
4 Mathematically, a function ϖ(.) defined over the entire real axis is called a wavelet if ϖ(t)→0 as t→±∞.  
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 ⎟⎟
⎠

⎞
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⎝

⎛ −
φ=φ −

j

j
2/j

k,j 2
k2t2)t(   ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ −
ψ=ψ −

j

j
2/j

k,j 2
k2t2)t( .  (12) 

 
Expression (11) is an orthogonal approximation because the basis functions φj,k(t) 

and ψj,k(t) are orthogonal by construction. The wavelet coefficients can be approximated by 
the following integrals 
 
 ∫ φ≈ dt)t(f)t(s k,Jk,J   ∫ ψ≈ dt)t(f)t(d k,jk,j , j=1, 2,..., J.  (13) 
 
These coefficients are a measure of the contribution of the corresponding wavelet function 
to the total signal. On the other hand, the approximating wavelet functions φj,k(t) and ψj,k(t) 
are scaled and translated versions of φ and ψ. As equation (12) indicates, the scale or 
dilation factor is 2j, whereas the translation or location parameter is 2jk. As j gets larger––
i.e., as we move towards the smoother or low frequency components of the data––so does 
the scale factor 2j, and the functions φj,k(t) and ψj,k(t) get shorter and more spread out.  
 
 In general, there is no close-form solution for father and mother wavelets, and they 
have to be computed by the so-called dilation equations:  
 
 )kx2(l2)x(

k
k −φ=φ ∑  )kx2(h2)x(

k
k −φ=ψ ∑    (14) 

 
 The lk and hk coefficients are called the scaling (low-pass) and wavelet (high-pass) 
filter coefficients, respectively, which are defined by 
 

 ∫ −φφ= dt)kt2()t(
2

1lk   ∫ −φψ= dt)kt2()t(
2

1h k   (15) 

 
and, they are related through lk=(–1)k+1hL–1–k, k=0,.., L–1, where L is the width of the 
wavelet filter.5 
 
 Applications of wavelet analysis commonly utilize a discrete wavelet transform 
(DWT). The DWT calculates the coefficients of the approximation in (1) for a discrete 
signal of final extent, f1, f2,.., fn. That is, it maps the vector f=(f1, f2,…,fn)′ to a vector of n 
wavelet coefficients that contains sJ,k and dj,k, j=1,2,…, J. The sJ,k are called the smooth 
coefficients and the dj,k are called the detail coefficients. Intuitively, the smooth coefficients 
represent the underlying smooth behavior of the data at the coarse scale 2J, whereas the 
detail coefficients provide the coarse scale deviations from it.  
 

                                                 
5 In practical applications, we deal with sequences of values (i.e., time series) rather than functions defined 
over the entire real axis. Therefore, instead of using actual wavelets, we work with short sequences of values 
named wavelet filters, denoted by L

0kk}h{ = . The number of values in the sequence is called the width of the 
wavelet filter, and it is denoted by L.  
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 When the length of the data, n, is divisible by 2J, there are n/2j dj,k-coefficients at 
scale j=1,.., J–1. Similarly, at the coarsest scale, there are n/2J dJ,k-coefficients and n/2J sJ,k-
coefficients. Altogether, there are n wavelets coefficients. The number of coefficients at a 
given scale is related to the width of the wavelet function. For instance, at the finest scale 
j=1, it takes n/2 terms––which are contained in the crystal )'d,...,d,d( 2/n,12,11,11 =d ––for the 
functions ψ1,k(t) to cover the interval 1≤t≤n. 6 
 
 Expression (1) can be rewritten as  
 
 f(t) ≈ SJ(t)+DJ(t)+DJ–1(t)+...+D1(t),      (16) 
 
where )t(s)t(S k,J

k
k,JJ φ=∑  and )t(d)t(D k,J

k
k,jJ ψ=∑  are denominated the smooth and 

detail signals, respectively.  
The terms in expression (10) represent a decomposition of the signal into orthogonal 

signal components SJ(t), DJ(t), DJ–1(t), ..., D1(t) at different resolutions. And, hence, the 
approximation in (16) is called a multi-resolution decomposition (MRD).  
 
2.2.1 Wavelet variance and covariance: DWT versus MODWT 
 
 Wavelet-variance analysis consists of partitioning the variance of a time series into 
pieces that are associated to different time scales. It tells us what scales are important 
contributors to the overall variability of a series (see Percival and Walden, 2000). In 
particular, let x1, x2,..., xn be a time series of interest, which is assumed to be a realization of 
a stationary process with variance 2

Xσ . If )( j
2
X τυ  denotes the wavelet variance for scale 

τj≡2j−1, then the following relationship holds:  
 

 )( j
1j

2
x

2
X τυ=σ ∑

∞

=

.        (17) 

where the square root of the wavelet variance is expressed in the same units as the original 
data.  
 
 Let ⎣ ⎦jj 2/nn =′  be the number of discrete-wavelet transform (DWT) coefficients at 

level j, where n is the sample size, and let ⎥⎥
⎤

⎢⎢
⎡ −−≡′ )

2
11)(2L(L jj  be the number of DWT 

                                                 
6 In practice, the DWT is calculated by using a filter cascade, where the wavelet filter {hk} and its associated 
scaling filter {lk} given by (15), are used in a pyramid algorithm to decompose a time series. To generate the 
first level of coefficients, the original data is filtered by convolving it separately with the wavelet and scaling 
filters. Next, every other point from each filter output is thrown out, and the remaining filter outputs are 
defined as the unit level (j=1) wavelet and scaling coefficients. For j=2, the same filtering/decimation scheme 
is utilized, but the unit-level scaling coefficients are the input to the filters. At the jth level, the inputs to the 
wavelet and scaling filters are the scaling coefficients from the previous (j–1) level, and the outputs are the jth 
level wavelet and scaling coefficients.  
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boundary coefficients7 at level j (provided that jj Ln ′>′ ), where L is the width of the 
wavelet filter. An unbiased estimator of the wavelet variance is defined as 
 

 ∑
−′

−′=′−′
≡τυ

1n

1Lt

2
t,jj

jj
j

2
X

j

j

d
2)Ln(

1)(~ .       (18) 

 
 Given that the DWT de-correlates the data, the non-boundary wavelet coefficients at 
a given level (dj) are zero-mean Gaussian white-noise processes.  
 
 Similarly, the unbiased wavelet covariance between time series X and Y, at scale j, 
can be defined as 

 )Y(
t,j

1n

Lt

)X(
t,jj

jj
j

2
XY dd

2)Ln(
1)(~ j

j

∑
−′

′=′−′
≡τυ  ,     (19) 

 
provided that jj Ln ′>′ . 
 
 However, as pointed out by Percival and Walden (2000), the sample properties of 
the DWT variance and covariance estimators are inferior to those of non-decimated discrete 
wavelet transforms, also known as stationary wavelet transforms. The non-decimated DWT 
is a non-orthogonal variant of the DWT, which is time-invariant. That is, unlike the 
classical DWT, the output is not affected by the date at which we start recording a time 
series. In addition, the number of coefficients at each scale equals the number of 
observations in the original time series. A non-decimated form of the DWT is known as the 
maximal overlap DWT (MODWT).8 The unbiased MODWT estimator of the wavelet 
variance is given by 
 

 ∑
−

−=

≡τυ
1n

1Lt

2
t,j

j
j

2
X

j

d
~

M
1)(ˆ         (20) 

 
where 2

t,jd
~

 is the MODWT-wavelet coefficient at level j and time t, Mj≡n–Lj+1, 

1)1L)(12(L j
j +−−≡  is the width of the MODWT filter for level j, and n is the number of 

observations in the original time series. While there are n MODWT-wavelet coefficients at 
each level j, the first (Lj–1)-boundary coefficients are discarded. (Retaining such boundary 
coefficients leads to a biased estimate).  
 

                                                 
7 The ⎣ ⎦x  and ⎡ ⎤x  terms represent the greatest integer ≤x and the smallest integer ≥x, respectively. 
Boundary coefficients are those that are formed by combining together some values from the beginning and 
the end of the time series.  
8 The scaling )l

~
( k and wavelet )h

~
( k  filter coefficients for the MODWT are rescaled versions of those of the 

DWT. Specifically, where 2/ll
~

kk ≡  and 2/hh
~

kk ≡ .  



 10

 Likewise, the unbiased MODWT estimator of the wavelet covariance can be 
obtained as  

 )Y(
t,j

1n

Lt

)X(
t,j

j
j

2
XY d

~
d
~

M
1)(ˆ

j

∑
−

′=

≡τυ        (21) 

 
 Let us now consider the slope estimates of equation (8). The MODWT-based slopes 
at scale j will be given by 
 

 
)(ˆ)(ˆ1

)(ˆ)(ˆ)(ˆ
)(ˆ

jsrjsr

jsrjsrjrr
ji1

*
w

*
w

*
wi*
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τδτδ−

τδτδ−τδ
=τβ  

)(ˆ)(ˆ1

)(ˆ)(ˆ)(ˆ
)(ˆ

jsrjsr

jsrjrrjsr
ji2

*
w

*
w

*
w

*
wii

τδτδ−

τδτδ−τδ
=τβ  (22) 

 

where 
)(ˆ
)(ˆ

)(ˆ
j

2
r

j
2

rr
jrr

*
w

*
wi

*
wi τυ

τυ
=τδ , )(ˆ j

2
rr *
wi
τυ  is the MODWT-wavelet covariance of asset i and the 

world market portfolio at scale j, and )(ˆ j
2
r*
w
τυ  is the MODWT-wavelet variance of the 

world market portfolio at scale j. The other terms can be obtained in a similar fashion. 
 
 Likewise, the R2 at scale j can be defined as 
 

 
)(1

)()()(2)()(
)(R

j
2

sr

jsrjsrjrrj
2

srj
2

rr
j

2

*
w

*
wi*

wii*
wi

τρ−

τρτρτρ−τρ+τρ
=τ    (23) 

 

where 
)()(

)(
)(

j
2
rj

2
r

j
2

rr
jrr

*
wi

*
wi

*
wi τυτυ

τυ
=τρ  is the wavelet-based correlation coefficient between ri 

and *
wr at scale j, etcetera.  

 
2.3 Wavelet-based Value at Risk (VaR) 
 
 VaR is a popular measure of market risk (see, for example, Jorion 2001, chapter 1), 
whose origin dates back to the late 1980’s at J.P. Morgan. In particular, VaR answers the 
question of how much we can lose, with a given probability, over a certain time horizon. In 
this section, we derive a time-scale decomposition of VaR. 
 

In order to facilitate the presentation of the algebraic expressions, let us consider the 
following alternative representation of equation (8), in terms of two risk factors, for the 
return on a given asset of country i, i=1,..k: 
 
 ri = β0i+β1iF1+β2iF2i+εi       (24) 
 
where F1 represents the return on the world market portfolio ( *

wr ), common to all assets, 
and F2i is the exchange rate variation of the domestic currency against the foreign currency 
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(i.e., US dollar). Under the assumption that the error terms are uncorrelated across 
countries, that is cov(εi, εj)=0 ∀i≠j, we can obtain the following expression for the 
covariance between returns i and j: 
 

),cov(
)F,Fcov()F,Fcov()F,Fcov()Fvar()r,rcov(

ji

j2i2j2i2i21i2j1j21j2i11j1i1ji

εε+

ββ+ββ+ββ+ββ=
 

(25) 
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⎩
⎨
⎧

≠
=σ

=εε ε

ji0
ji

),cov(
2

ji
i .  
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2
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2 =σ , )F,Fcov( j2i2
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2 =σ , )F,Fcov( i21

ii
12 =σ , 

)F,Fcov( j21
jj
12 =σ , and let ωi be the share of country index ‘i’ in the portfolio. The variance 

of the portfolio, measured in foreign currency, is given by 
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For an equally-weighted portfolio of k assets, such that ωi=1/k ∀i, the variance of 

the portfolio can be succinctly expressed, in matrix form, as 
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 Then the value at risk at the (1–α)-percent confidence level, expressed in units of 
the foreign currency, for an equally-weighted portfolio is given by 
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where V0 is the initial investment, expressed in foreign currency, κ(α)≡Φ−1(1−α), where 
Φ(.) is the cumulative distribution function of the standard normal, and σp is the square root 
of the portfolio variance in (27).  
 
 Based on expression (28), we define the (1–α)-confidence level value at risk, at 
scale j, as follows 
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 The above formula allow us to obtain an expression for the marginal VaR, which is 
defined as (see, for instance, Jorion, 2001, chapter 7) 
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where ωi is the share of asset i in the portfolio.  
 
 The marginal VaR quantifies the change in the portfolio value resulting from taking 
an additional dollar exposure to a given asset of country i in the portfolio. From expression 
(26) and for an equally-weighted portfolio, we have: 
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 A scale-by-scale marginal VaR can be obtained as 
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3 Empirical results 

 
3.1 Description of the data 
 
 Data on stock indices of seven emerging countries––Brazil, Chile, Mexico, 
Indonesia, South Korea, Malaysia, and Thailand––in both local and US currency was 
obtained from Morgan Stanley. In addition, two proxies of the world market portfolio were 
considered: the Emerging Markets and the World Indices, both of which are measured in 
US dollars and constructed by Morgan Stanley. The Emerging Markets Index is a free 
float-adjusted market capitalization index that consists of 26 emerging market country 
indices, whereas the World Index is a free float-adjusted market capitalization index that 
consists of 23 developed market country indices. The sample period spans from 1990 to 
2004, and returns are measured at a daily frequency. The exchange rate variation is 
constructed from the daily returns in local currency and US dollar. In particular, given that 
returns are computed in logarithms, the daily exchange rate variation is obtained as the 
difference between the return in local currency and the return in US dollars.  
 

Table 1 shows descriptive statistics of returns in local currency for each country in 
the sample, the exchange-rate variation of each country’s currency—expressed in units of 
local currency per US dollar––, and statistics of daily returns of the two proxies of the 
world market portfolio. As we see, exchange rates stand out for their asymmetry and high 
kurtosis. In particular, the most extreme values occurred around the Asian crisis, 
particularly for Indonesia, Malaysia and South Korea. Very high volatility of Asian stock 
markets was also observed around the same period. The range, a very simple measure of 
dispersion, shows that in the sample period the most volatile stock markets were those of 
Brazil and Malaysia, whereas the most volatile exchange rate markets were those of 
Indonesia and Malaysia. In contrast, Chile stood out as one of the countries with the lowest 
volatility in both the stock and exchange rate markets.  
 
3.2 Estimates of sensitivities to risk factors 
 
 We use two approaches to estimating the parameters of the international CAPM 
(ICAPM). One of them consists of obtaining parameter estimates by linear regression 
analysis applied to the recomposed-DWT crystals of each time scale. This is the procedure 
that has been commonly used in empirical applications of wavelet analysis (e. g, Ramsey 
and Lampart 1998; Norsworthy, Li, and Gorener 2000; Gençay, Selçuk, and Whitcher 
2002, chapter 4). Ramsey (1999) carries out a sampling analysis of distributional properties 
of regression-parameter estimates in the context of time-scale decomposition. He concludes 
that slopes coefficients at the trend and oscillatory components of the data behave like 
Gaussian random variables. In addition, Ramsey finds that the level of correlation between 
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regressions coefficients estimates is very low across time scales. These two results are 
important because we can rely on the statistical machinery of linear-regression models.  
 
 The second approach we use is one based on wavelet-variance analysis, which 
determines estimates for the slopes and the goodness of fit of the model (R2) by the 
MODWT-variance and covariance formulas presented in Section 2.3. In what follows, we 
will refer to the estimates obtained using the first approach as “regression-based”, whereas 
the estimates from the second approach will be labeled as “MODWT-based”.  
 
 In order to obtain the regression-based estimates, we first compute the multi-
resolution decomposition (MRD) of each time series, namely, the return on the country 
index, the return on the proxy of the world market portfolio, and the return on the exchange 
rate of the domestic currency against the US dollar. We then run linear regressions of the 
recomposed crystals––that is, the time-series reconstructed from the crystals––for each time 
scale. The MRD of each time series is computed using the discrete-wavelet transform 
(DWT), so that the recomposed crystals are orthogonal across scales.  
 

Figure 1 depicts MRD for the returns on the Thai index (in local currency) and the 
exchange rate of the Thai baht against the US dollar. As we see, most variation of the 
original return series (which are labeled as “sum”) is captured at the first three scales. That 
is, at a 2-16 day horizon. Specifically, for the exchange rate return the energy contained at 
scales 1-3 is 85.7 percent, whereas for the return on the domestic index, it reaches 83.1 
percent.9 
 
 Panels (a) and (b) of Tables 2 show our regression-based estimates for each proxy of 
the world market portfolio: the Emerging Markets and World MSCI indices. Countries’ 
sensitivities to the world market portfolio and the exchange rate of the domestic currency 
against the US dollar are reported for the raw data and for scales 1 through 6 (i.e., 2-128 
day dynamics). In Panel (a), we observe that the country with the greatest sensitivity to the 
world market portfolio (Emerging Markets Index) in the raw data is Brazil, followed by 
South Korea and Thailand. All countries, except for Brazil, have a positive slope on the 
exchange-risk factor in the raw data (for Chile, the slope is statistically insignificant). In 
other words, the performance of the Brazilian stock market is inversely correlated with a 
depreciation of the real against the US dollar. In other words, Brazilian stocks behave, on 
average, like a hedge for a depreciating real. The same phenomenon is observed at scales 1-
3 and 5-6, being the negative correlation strongest at scale 6. That is, at the trend-
component of the time series.  
 

Chile’s stock index shows no sensitivity to the exchange rate variation at the 2-8 day 
horizon, but, similarly to Brazil, exhibits an inverse correlation with it at scales 5 and 6. A 
similar pattern to Chile’s is that observed for Mexico. By contrast, the Asian stock indices 
tend to exhibit a more homogeneous behavior with respect to the exchange rate-risk factor 

                                                 
9 The energy in a given crystal is calculated as the sum of squares of all of its elements over the sum of 
squares of all observations in the original time series. One appealing characteristic of the DWT is that it is an 
energy preserving transform. This means that the energy in all the DWT coefficients equals the energy in the 
original time series. (This also holds for the MODWT).  
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across scales. Indeed, at almost all scales, the country indices exhibit a positive and 
statistically significant exposure to exchange-rate risk. A graphical representation of the 
linear models being estimated at different time scales is depicted in Figure 2 for Thailand.  
 With respect to market risk, sensitivities tend to be higher at the upper scales of the 
data, particularly for both scales 5 and 6. In addition, the good-of-fit of the regression 
models (R2) reaches its peak at either scale 5 or 6, depending on the country. In other 
words, the predictions of our ICAPM tend to be more meaningful for a medium- or long-
term horizon. A similar conclusion is reached by Gencay at al. (2003, 2005) for the single-
country CAPM.  
 
 In Panel (b) of Table 2, we have estimation results when using the World Index as a 
proxy for the world market portfolio. We observe, in general, that the country indices 
exhibit less sensitivity to market risk, but more and positive sensitivity to exchange-rate 
risk. An exception is Mexico, whose stock market appears to be more integrated with those 
of the developed countries comprising the MSCI World index. For instance, at scale 5, the 
beta on the world market portfolio reaches its peak at 1.02. In turn, Brazil’s stock market 
performance is again inversely correlated with the exchange rate variation in the raw data, 
but to a lesser extent than in Panel (a). At scales 1-3 and 5, the slope on the exchange-rate 
risk is small and statistically insignificant, whereas at scale 4 it is both positive and 
statistically significant. Only at scale 6, does the sensitivity to exchange-rate risk show the 
same negative sign observed in the raw data.  
 
 With respect to the good-of-fit of the ICAPM, the R2 are in general substantially 
lower than those reported in Panel (a). This finding suggests that the Emerging Markets 
index is a more suitable approximation to the world market portfolio than the World Index. 
As noted earlier, this seems indicative of a lower degree of stock market integration of the 
sampled countries with those of the countries comprising the World Index.  
 
 Table 3, Panels (a) and (b), shows the estimates using the MODWT variance-
covariance analysis described in Section 2.3. As we see, we can draw similar conclusions to 
the ones reported above. However, the magnitudes of the estimates differ, particularly so 
for the upper scales 4-6. This is not surprising for two reasons. First, the regression-based 
estimates are obtained from recomposed crystals, where the quality of reconstruction will 
affect the accuracy of the parameter estimates. Second, the DWT has practical limitations 
when compared with non-decimated wavelet transforms, as previously discussed. 
Interestingly, the R2 yielded by the two methods are very similar in all cases.  
 
 In order to further investigate how the magnitude of the parameter estimates are 
affected by the method utilized, we aggregated time scales to reduce the reconstruction 
error of the DWT. Tables 4 and 5 report our results. Scales 1-2 measure the dynamics of 
returns over 2-8 days, whereas scales 1-4, the dynamics over 2-32 days. As mentioned 
earlier, most variation in returns is captured at the three first scales. Panel (a) of Table 4 
shows reports the estimation results when the proxy of the world market portfolio is the 
Emerging Markets Index. Our conclusions are similar to those reported before: Brazil 
exhibits high market risk and the performance of its stock market is inversely correlated 
with the variation of the real/US dollar parity. Both Chile and Mexico’s stock indices 
present comparatively little sensitivity to exchange market risk and more moderate market 
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risk. Among Asian countries, South Korea exhibits the highest market and exchange risks 
(scales 1-2 and scales 1-4, respectively). When looking at the MODWT estimates of Panel 
(a) of Table 5, we see that the magnitudes of the estimated slopes are almost identical to the 
regression-based estimates of Table 4. Clearly, the discrepancies between the two methods 
are more noticeably at scales 1-2, given that at scales 1-4 most of the variation (energy) of 
the original return series is captured by the recomposed crystals.  
 
 Panels (b) of Tables 4 and 5 report analogous results when using the Word Index as 
a proxy of the world market portfolio. As we concluded earlier, all indices at scales 1-2 and 
scales 1-4 present lower sensitivity to the World than to the Emerging Market index, with 
the exception of Mexico. In particular, at scales 1-2, both Indonesia and Malaysia presents 
low sensitivity to market risk. In general, Asian countries display higher sensitivities to 
exchange rate than to market risk when using the World Index. It is worth noticing that at 
scales 1-2, the stock indices of Latin American countries have greater slopes on the World 
index than those of the Asian countries. In other words, the former appear as relatively 
more integrated with developed markets than the latter. 
 
3.3 Value at Risk estimations  
 
 One application of the time-scale decomposition of returns is to quantify the value 
at risk (VaR) of a portfolio for different investment horizons. Table 6 presents 95-percent 
VaR estimates for both proxies of the world market portfolio. We assume an equally-
weighted portfolio⎯whose value is measured in US dollars⎯comprised by the seven 
country indices. We report VaR estimates for the raw data and for different time scales, 
using both the regression-based and the MODWT estimates of risk-factor sensitivities and 
variance-covariance matrices of risk factors. If we invested US$100, we have that, with a 
95-percent confidence level, our portfolio loss in one day would be less than or equal to 
US$2.25, for the raw data, when using the Emerging Markets (EM) index as the proxy of 
the world market portfolio. Such a potential loss declines to US$1.85 when the world 
market portfolio is the World Index.  

 
When decomposing the data into time scales, we see that potential losses are greater 

at shorter-time horizons (i.e., higher frequencies of the data). For instance, at scale 1 (i.e., 
2-4 days), the 95-percent VaR is US$1.33 and US$1.34 in one day for the MODWT and 
regression-based estimates, respectively, when using the EM index as the proxy of the 
world market portfolio. Such figures drop to $1.095 and $1.1, respectively, when using the 
World index. By contrast, at the lower frequencies of the stock indices (i.e., trend 
component), potential daily losses substantially decrease. For instance, at scale 6 (i.e., 64-
128 days), the MODWT estimate of the 95-percent VaR is only US$0.386 per day, when 
using the EM index as the proxy of the world market portfolio, and US$0.341 per day, 
when using the World index. Such findings are confirmed when aggregating time scales. 
For instance, at scales 1-4 (i.e., 2-32 days), the 95-percent daily VaR is relatively close to 
that for the raw data. In other words, the contribution of the upper time scales to risk is 
relatively marginal.  
 
 Finally, Panels (a) and (b) of Table 7 present estimates of 95-percent marginal VaR 
for each country in the sample, for the raw data and for scales 1 through 6, using both 
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proxies of the world market portfolio. For the sake of brevity, we only present estimates 
based on the MODWT procedure. (Regression-based estimates are roughly equal). In 
general, we see that the countries that contribute the most to risk are Brazil, Mexico, and 
Indonesia. For instance for the raw data, Panel (a)—where the EM index is the proxy of the 
world market portfolio––shows that if we increased our exposure to the Brazilian index in 
US$1, the VaR would rise in 2.4 cents in one day, at the 95 confidence level. Moreover, we 
see that at higher frequencies of the data, the marginal VaR is greatest. For instance, for the 
Brazilian index, Panel (a) shows that the marginal VaR amounts to 1.6 cents for scale 1, but 
to only 0.3 cents at scale 6. 
 

4 Conclusions 
 

In this article, we concentrated on a wavelet-based international asset pricing model 
(ICAPM). Previous studies have stressed the importance of exchange rate risk, given that in 
practice there can be considerable departures from the purchasing power parity. From a 
parsimonious ICAPM, which postulates that an investment in a country portfolio is subject 
to two sources of risk, namely, the country index’s sensitivity to a global portfolio and the 
performance of the domestic currency relative to the foreign currency, we derive an 
analytical formula for time-scale value at risk and marginal value at risk (VaR) of a 
portfolio.  

 
We apply our methodology to stock indices of seven emerging economies belonging 

to Latin America and Asia––namely, Brazil, Chile, Mexico, Indonesia, South Korea, 
Malaysia, and Thailand. Our main conclusions can be summarized as follows. First, the 
estimation results depend upon the choice of the world market portfolio. In particular, the 
stock markets of the sampled countries appear to be more integrated with other emerging 
countries than with developed ones. Second, value at risk depends on the time horizon we 
consider. In the short run, potential losses are greater than in the long run. Third, some 
stock indices are more likely to cause portfolio losses than others. In particular, both Brazil 
and Indonesia appear as risky investments whereas both Chile and Malaysia, as safe.  
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Tables 
 

Table 1 Descriptive statistics of stock returns and exchange rate variation: 1990-2004 
 

Country index returns in local currency 
 Mean Std. Dev Minimum Maximum Range Skewness Kurtosis Q1 Q3 

Brazil 0.00 0.03 –0.22 0.25 0.47 0.43 7.78 –0.01 0.02 
Chile 0.00 0.01 –0.06 0.09 0.15 0.23 3.95 –0.01 0.01 

Mexico 0.00 0.02 –0.13 0.12 0.25 0.04 4.71 –0.01 0.01 
Indonesia 0.00 0.02 –0.19 0.17 0.36 0.10 13.27 –0.01 0.01 

South Korea 0.00 0.02 –0.13 0.11 0.25 0.15 3.36 –0.01 0.01 
Malaysia 0.00 0.02 –0.24 0.23 0.47 0.75 36.74 –0.01 0.01 
Thailand 0.00 0.02 –0.10 0.21 0.32 0.87 9.17 –0.01 0.01 

Exchange rate variation against the US dollar 
 Mean Std. Dev Minimum Maximum Range Skewness Kurtosis Q1 Q3 

Brazil 0.00 0.01 –0.15 0.12 0.27 –1.67 27.15 –0.01 0.00 
Chile 0.00 0.01 –0.12 0.05 0.17 –2.94 94.26 0.00 0.00 

Mexico 0.00 0.01 –0.19 0.16 0.34 –2.60 123.37 0.00 0.00 
Indonesia 0.00 0.02 –0.24 0.20 0.44 –1.78 60.29 0.00 0.00 

South Korea 0.00 0.01 –0.14 0.20 0.33 0.87 159.89 0.00 0.00 
Malaysia 0.00 0.01 –0.36 0.19 0.55 –13.58 860.92 0.00 0.00 
Thailand 0.00 0.01 –0.07 0.06 0.13 –0.48 39.47 0.00 0.00 

MSCI Global index returns in US dollars 
 Mean Std. Dev Minimum Maximum Range Skewness Kurtosis Q1 Q3 

Emerging Markets 0.00 0.01 –0.07 0.06 0.14 –0.52 4.09 0.00 0.01 
World 0.00 0.01 –0.05 0.05 0.10 –0.09 3.21 0.00 0.00 

Observations 3,824        
 
Notes: (1) The data were obtained from Morgan Stanley. (2) Stock index returns and exchange rate variations are measure 
at a daily frequency. (3) Q1 and Q3 stand for the first and third quartile, respectively. (4) The range is a measure of 
dispersion that is calculated as the difference between the maximum and the minimum. (5) The MSCI Emerging 
Markets Index is a free float-adjusted market capitalization index that is designed to measure equity market 
performance in the global emerging markets. The MSCI Emerging Markets Index consists of the following 26 
emerging market country indices: Argentina, Brazil, Chile, China, Colombia, Czech Republic, Egypt, 
Hungary, India, Indonesia, Israel, Jordan, Korea, Malaysia, Mexico, Morocco, Pakistan, Peru, Philippines, 
Poland, Russia, South Africa, Taiwan, Thailand, Turkey and Venezuela. In turn, the MSCI World Index is a 
free float-adjusted market capitalization index that is designed to measure global developed market equity 
performance. The MSCI World Index consists of the following 23 developed market country indices: 
Australia, Austria, Belgium, Canada, Denmark, Finland, France, Germany, Greece, Hong Kong, Ireland, 
Italy, Japan, Netherlands, New Zealand, Norway, Portugal, Singapore, Spain, Sweden, Switzerland, the 
United Kingdom and the United States.  
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Table 2 Regression-based estimates of international CAPM 
 

(a) World market portfolio is the Emerging Markets MSCI Index 
 

  Brazil Chile Mexico Indonesia Korea Malaysia Thailand 
Raw data 

1β̂  1.50 0.45 0.81 0.47 0.93 0.65 0.87 

 
2β̂  –0.34 –0.01 0.06 0.19 0.39 0.12 0.28 

 
1ˆt

β
 44.41 28.12 38.22 15.93 31.41 27.15 29.86 

 
2ˆt

β
 –11.40 –0.45 2.49 10.31 10.71 4.11 5.63 

 R2 0.34 0.18 0.31 0.10 0.25 0.17 0.21 
Scale 1 

1β̂  1.52 0.38 0.76 0.30 0.99 0.63 0.76 

 
2β̂  –0.21 0.00 0.08 0.20 0.42 0.04 0.14 

 
1ˆt

β
 39.60 22.88 30.46 9.42 27.22 22.69 23.26 

 
2ˆt

β
 –6.49 –0.18 3.77 10.79 10.53 1.47 2.82 

 R2 0.29 0.12 0.23 0.06 0.20 0.12 0.13 
Scale 2 

1β̂  1.50 0.49 0.81 0.43 1.01 0.58 0.85 

 
2β̂  –0.19 0.03 0.06 0.24 0.33 0.07 0.46 

 
1ˆt

β
 46.12 30.33 36.44 13.97 35.15 23.48 28.21 

 
2ˆt

β
 –5.88 0.91 1.86 12.39 10.57 2.32 9.37 

 R2 0.36 0.20 0.28 0.10 0.27 0.13 0.21 
Scale 3 

1β̂  1.40 0.46 0.86 0.60 0.91 0.75 0.97 

 
2β̂  –0.20 0.16 0.05 0.15 0.54 0.31 0.42 

 
1ˆt

β
 48.00 31.07 47.42 22.69 37.69 37.03 38.44 

 
2ˆt

β
 –5.46 4.05 1.96 9.21 16.31 12.62 8.49 

 R2 0.38 0.22 0.43 0.16 0.37 0.33 0.33 
Scale 4 

1β̂  1.12 0.43 0.91 0.68 0.97 0.59 0.94 

 
2β̂  0.17 –0.18 –0.13 0.06 0.08 0.04 0.23 

 
1ˆt

β
 34.69 25.09 52.04 24.08 38.75 27.42 34.90 

 
2ˆt

β
 4.67 –4.38 –4.08 2.71 1.38 1.51 4.05 

 R2 0.28 0.14 0.42 0.14 0.32 0.17 0.26 
Scale 5 

1β̂  1.78 0.51 0.86 0.35 0.46 0.69 1.18 

 
2β̂  –0.37 –0.18 0.08 0.28 0.75 0.40 –0.13 

 
1ˆt

β
 47.58 31.95 52.76 15.90 21.57 39.78 42.16 

 
2ˆt

β
 –7.33 –4.65 4.21 16.81 17.14 20.10 –2.20 

 R2 
0.37 0.21 0.45 0.15 0.18 0.37 0.34 

Scale 6 
1β̂  1.62 0.65 0.93 1.12 0.79 0.58 0.85 

 
2β̂  –0.58 –0.60 –0.37 0.36 0.71 –0.05 0.69 

 
1ˆt

β
 57.77 38.98 57.17 39.80 39.25 28.86 34.28 

 
2ˆt

β
 –27.50 –16.32 –13.74 17.77 21.04 –1.42 14.79 

 R2 0.47 0.29 0.46 0.34 0.47 0.18 0.31 
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(b) World market portfolio is the World MSCI Index 
 

  Brazil Chile Mexico Indonesia Korea Malaysia Thailand 
Raw data 

1β̂  0.92 0.37 0.86 0.20 0.48 0.31 0.43 

 
2β̂  –0.18 0.08 0.25 0.23 0.55 0.21 0.53 

 
1ˆt

β
 18.86 18.03 32.73 5.38 12.05 9.90 10.97 

 
2ˆt

β
 –5.00 2.29 9.87 12.41 13.88 6.78 9.72 

 R2 
0.09 0.08 0.25 0.05 0.09 0.04 0.06 

Scale 1 
1β̂  0.86 0.29 0.80 –0.02 0.13 0.10 0.10 

 
2β̂  0.03 0.04 0.21 0.22 0.55 0.11 0.29 

 
1ˆt

β
 17.67 15.23 29.41 –0.60 2.90 3.00 2.51 

 
2ˆt

β
 0.70 1.41 9.85 11.96 12.92 3.37 5.33 

 R2 
0.08 0.06 0.21 0.04 0.04 0.01 0.01 

Scale 2 
1β̂  0.96 0.43 0.86 0.22 0.59 0.32 0.48 

 
2β̂  –0.05 0.11 0.26 0.27 0.41 0.14 0.67 

 
1ˆt

β
 20.74 20.73 32.29 5.73 15.17 10.05 12.37 

 
2ˆt

β
 –1.34 3.01 8.04 13.86 11.60 4.33 13.03 

 R2 
0.10 0.11 0.24 0.06 0.09 0.03 0.08 

Scale 3 
1β̂  0.84 0.42 0.90 0.35 0.73 0.48 0.74 

 
2β̂  0.03 0.32 0.39 0.22 0.79 0.48 0.84 

 
1ˆt

β
 18.92 21.59 40.20 10.16 22.48 16.88 21.39 

 
2ˆt

β
 0.79 7.51 14.82 13.17 22.68 18.03 15.66 

 R2 
0.09 0.13 0.36 0.08 0.24 0.15 0.17 

Scale 4 
1β̂  0.67 0.37 0.93 0.54 0.93 0.67 0.67 

 
2β̂  0.49 0.04 0.12 0.16 0.62 0.10 0.60 

 
1ˆt

β
 14.13 15.75 34.06 13.41 26.28 21.91 16.60 

 
2ˆt

β
 12.68 0.99 3.14 6.47 10.71 3.84 9.60 

 R2 
0.11 0.06 0.24 0.06 0.20 0.12 0.09 

Scale 5 
1β̂  1.01 0.41 1.02 0.16 0.69 0.88 1.27 

 
2β̂  –0.04 –0.01 0.30 0.33 0.74 0.41 0.44 

 
1ˆt

β
 15.65 17.20 42.70 5.19 23.08 34.81 31.81 

 
2ˆt

β
 –0.66 –0.19 14.31 19.42 17.17 20.08 7.18 

 R2 
0.06 0.07 0.36 0.10 0.19 0.33 0.24 

Scale 6 
1β̂  1.46 0.52 0.89 0.93 1.10 0.35 0.54 

 
2β̂  –0.46 –0.48 –0.15 0.35 0.69 –0.07 0.77 

 
1ˆt

β
 32.79 21.00 36.55 22.50 43.58 12.29 14.43 

 
2ˆt

β
 –17.99 –11.30 –4.84 15.61 21.24 –1.71 14.43 

 R2 
0.23 0.11 0.26 0.18 0.50 0.04 0.14 

Note: The wavelet function is a symmmlet, s8. Scale 1: 2-4 days, scale 2: 4-8 days, scale 3: 8-16 day, scale 4: 
16-32 days, scale 5: 32-64 days, and scale 6: 64-128 days. 
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Table 3  MODWT-based estimates of international CAPM 
 

  Brazil Chile Mexico Indonesia Korea Malaysia Thailand 
(a) World market portfolio is the Emerging Markets MSCI Index 

Scale 1 
1β̂  1.52 0.38 0.74 0.31 0.98 0.66 0.74 

 
2β̂  –0.21 –0.03 0.05 0.21 0.44 0.03 0.25 

 R2 0.28 0.12 0.19 0.06 0.19 0.12 0.13 
Scale 2 

1β̂  1.48 0.47 0.86 0.45 1.01 0.58 0.87 

 
2β̂  –0.17 0.07 0.15 0.19 0.39 0.16 0.21 

 R2 0.36 0.19 0.33 0.09 0.29 0.15 0.20 
Scale 3 

1β̂  1.37 0.46 0.84 0.59 0.97 0.71 0.98 

 
2β̂  –0.02 0.12 0.03 0.22 0.36 0.22 0.62 

 R2 0.37 0.22 0.41 0.17 0.36 0.28 0.33 
Scale 4 

1β̂  1.28 0.43 0.93 0.53 0.86 0.64 0.99 

 
2β̂  –0.27 –0.13 –0.08 0.16 0.11 0.20 0.30 

 R2 0.28 0.15 0.40 0.12 0.27 0.21 0.30 
Scale 5 

1β̂  1.42 0.55 0.95 0.44 0.65 0.69 1.25 

 
2β̂  –0.52 –0.49 0.05 0.10 0.79 0.50 –0.08 

 R2 0.37 0.20 0.49 0.09 0.26 0.36 0.39 
Scale 6 

1β̂  1.68 0.93 0.84 1.14 0.84 0.42 0.85 

 
2β̂  –0.82 –0.40 –0.02 –0.07 0.30 0.00 –0.16 

 R2 0.45 0.48 0.41 0.29 0.37 0.12 0.23 
(b) World market portfolio is the World MSCI Index 

Scale 1 
1β̂  0.85 0.30 0.80 0.00 0.14 0.09 0.06 

 
2β̂  0.02 0.02 0.18 0.23 0.57 0.10 0.40 

 R2 0.07 0.06 0.20 0.04 0.04 0.00 0.02 
Scale 2 

1β̂  0.95 0.42 0.87 0.21 0.57 0.31 0.50 

 
2β̂  –0.03 0.13 0.36 0.22 0.52 0.24 0.44 

 R2 0.11 0.11 0.28 0.05 0.12 0.05 0.07 
Scale 3 

1β̂  0.88 0.40 0.88 0.34 0.75 0.51 0.74 

 
2β̂  0.19 0.29 0.30 0.29 0.55 0.39 1.02 

 R2 0.10 0.12 0.32 0.09 0.18 0.12 0.17 
Scale 4 

1β̂  0.71 0.38 0.97 0.29 0.84 0.65 0.81 

 
2β̂  0.04 0.07 0.20 0.22 0.48 0.31 0.70 

 R2 0.05 0.07 0.27 0.05 0.17 0.14 0.14 
Scale 5 

1β̂  0.99 0.40 0.96 0.39 0.87 0.70 1.20 

 
2β̂  –0.28 –0.30 0.27 0.12 0.73 0.52 0.28 

 R2 0.10 0.07 0.31 0.05 0.26 0.26 0.23 
Scale 6 

1β̂  1.87 0.86 0.85 1.19 1.29 0.28 0.66 

 
2β̂  –0.70 –0.11 0.22 0.03 0.32 –0.08 0.05 

 R2 0.25 0.21 0.24 0.16 0.42 0.03 0.07 
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Table 4 Aggregating time-scales: regression-based estimates 
 

  Brazil Chile Mexico Indonesia Korea Malaysia Thailand 

(a) World market portfolio is the Emerging Markets MSCI Index 
Raw data 

1β̂  1.50 0.45 0.81 0.47 0.93 0.65 0.87 

 
2β̂  –0.34 –0.01 0.06 0.19 0.39 0.12 0.28 

 
1ˆt

β
 44.41 28.12 38.22 15.93 31.41 27.15 29.86 

 
2ˆt

β
 –11.40 –0.45 2.49 10.31 10.71 4.11 5.63 

 R2 0.34 0.18 0.31 0.10 0.25 0.17 0.21 
Scales 1-2 

1β̂  1.51 0.43 0.78 0.36 1.00 0.61 0.80 

 
2β̂  –0.20 0.01 0.08 0.22 0.38 0.05 0.27 

 
1ˆt

β
 42.02 25.98 32.83 11.30 29.98 22.97 25.30 

 
2ˆt

β
 –6.27 0.18 3.12 11.41 10.48 1.78 5.41 

 R2 0.32 0.15 0.25 0.07 0.22 0.13 0.16 
Scales 1-4 

1β̂  1.45 0.43 0.81 0.44 0.98 0.64 0.85 

 
2β̂  –0.18 0.01 0.06 0.20 0.40 0.11 0.30 

 
1ˆt

β
 42.54 26.91 36.77 14.46 31.85 25.86 28.54 

 
2ˆt

β
 –5.39 0.35 2.54 10.50 10.90 3.71 5.87 

 R2 0.32 0.16 0.29 0.09 0.25 0.16 0.20 
(b) World market portfolio is the World MSCI Index 

Raw data 
1β̂  0.92 0.37 0.86 0.20 0.48 0.31 0.43 

 
2β̂  –0.18 0.08 0.25 0.23 0.55 0.21 0.53 

 
1ˆt

β
 18.86 18.03 32.73 5.38 12.05 9.90 10.97 

 
2ˆt

β
 –5.00 2.29 9.87 12.41 13.88 6.78 9.72 

 R2 0.09 0.08 0.25 0.05 0.09 0.04 0.06 
Scales 1-2 

1β̂  0.90 0.35 0.83 0.07 0.31 0.18 0.25 

 
2β̂  0.00 0.06 0.22 0.24 0.50 0.12 0.44 

 
1ˆt

β
 18.83 17.47 30.55 1.94 7.20 5.64 6.32 

 
2ˆt

β
 –0.05 1.98 9.15 12.75 12.45 3.73 8.36 

 R2 0.09 0.08 0.22 0.04 0.05 0.01 0.03 
Scales 1-4 

1β̂  0.88 0.36 0.85 0.16 0.44 0.28 0.38 

 
2β̂  0.04 0.09 0.24 0.24 0.56 0.20 0.52 

 
1ˆt

β
 18.61 18.06 32.48 4.35 11.00 8.74 9.81 

 
2ˆt

β
 0.97 2.64 9.56 12.44 14.11 6.39 9.63 

 R2 0.08 0.08 0.25 0.05 0.08 0.03 0.05 
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Table 5 Aggregating time-scales: MODWT-based estimates 
 

  Brazil Chile Mexico Indonesia Korea Malaysia Thailand 
(a) World market portfolio is the Emerging Markets MSCI Index 

Scales 1-2 
1β̂  1.51 0.42 0.79 0.37 0.99 0.62 0.80 

 
2β̂  –0.20 0.00 0.08 0.20 0.41 0.07 0.24 

 R2 0.31 0.15 0.23 0.07 0.22 0.13 0.15 
Scales 1-4 

1β̂  1.45 0.43 0.81 0.43 0.97 0.65 0.86 

 
2β̂  –0.18 0.01 0.06 0.20 0.39 0.11 0.30 

 R2 0.31 0.16 0.27 0.09 0.24 0.16 0.19 
(b) World market portfolio is the World MSCI Index 

Scales 1-2 
1β̂  0.89 0.35 0.83 0.09 0.32 0.18 0.25 

 
2β̂  0.01 0.06 0.23 0.23 0.55 0.15 0.42 

 R2 0.08 0.08 0.23 0.04 0.06 0.02 0.03 
Scales 1-4 

1β̂  0.87 0.36 0.85 0.15 0.44 0.28 0.38 

 
2β̂  0.03 0.08 0.24 0.24 0.56 0.20 0.53 

 R2 0.08 0.08 0.24 0.05 0.08 0.03 0.05 
 

Table 6  95-percent VaR computations for a USD 100-investment 
 

 MODWT-based estimates Regression-based estimates 
 EM portfolio World portfolio EM portfolio World portfolio 

Raw data 2.249 1.853 2.249 1.853 
Scale 1 1.332 1.095 1.341 1.101 
Scale 2 1.178 1.000 1.134 0.964 
Scale 3 1.024 0.857 1.057 0.896 
Scale 4 0.623 0.527 0.611 0.509 
Scale 5 0.434 0.377 0.462 0.395 
Scale 6 0.386 0.341 0.389 0.343 
Scales 1-4 2.129 1.759 2.121 1.750 
Scales 1-2 1.760 1.453 1.679 1.421 

 
Table 7  MODWT-based estimates of 95-percent marginal VaR (in US dollars) 

 
 Brazil Chile Mexico Indonesia Korea Malaysia Thailand 

(a) World market portfolio is the Emerging Markets MSCI Index 
Raw data 0.024 0.007 0.025 0.031 0.019 0.014 0.015 
Scale 1 0.016 0.004 0.017 0.021 0.013 0.010 0.009 
Scale 2 0.011 0.004 0.035 0.016 0.011 0.007 0.008 
Scale 3 0.009 0.003 0.030 0.014 0.008 0.006 0.007 
Scale 4 0.006 0.002 0.007 0.007 0.004 0.004 0.004 
Scale 5 0.004 0.001 0.008 0.005 0.003 0.003 0.003 
Scale 6 0.003 0.001 0.008 0.004 0.002 0.001 0.002 

(b) World market portfolio is the World MSCI Index 
Raw data 0.026 0.006 0.031 0.038 0.020 0.015 0.015 
Scale 1 0.017 0.004 0.020 0.025 0.014 0.009 0.009 
Scale 2 0.012 0.003 0.036 0.019 0.010 0.007 0.008 
Scale 3 0.009 0.002 0.033 0.017 0.008 0.007 0.006 
Scale 4 0.008 0.002 0.008 0.008 0.004 0.004 0.004 
Scale 5 0.006 0.001 0.009 0.007 0.002 0.004 0.003 
Scale 6 0.004 0.001 0.008 0.005 0.002 0.001 0.002 
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Figure 1 Multi-resolution decomposition (MRD) of Thai data 
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Figure 2 Regression-based estimates of market and exchange rate risk for Thailand  
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Notes to Figures 1 and 2: The time period is 1990-2004. Returns are logarithmic and measured at a daily 
frequency. The data source is Morgan Stanley. The wavelet function is a symmmlet, s8. Scale 1: 2-4 days, 
scale 2: 4-8 days, scale 3: 8-16 days, scale 4: 16-32 days, scale 5: 32-64 days, and scale 6: 64-128 days. In 
Figure 2, the world market portfolio is the Emerging Markets MSCI Index.  
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