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Abstract 

 

The use of financial ratios by analysts to compare the performance of firms from one 
accounting period to the next is of growing importance with continued European 
economic integration. Recent studies suggest that the individual component series of 
financial ratios exhibit nonstationarity which is not eliminated by the ratio 
transformation. In this paper, we derive a generalised model that incorporates 
stochastic and deterministic trends and allows for restricted and unrestricted 
proportionate growth in the ratio numerator and denominator. When the individual 
firm series are included in a panel structure with large N and small T, we are unable to 
reject convincingly a joint hypothesis of nonstationarity, whilst in about one third of 
the individual firm panels there is no evidence of a unit root. Although the 
components of financial ratios are correlated variables, our estimates show that any 
cointegrating effects decay rapidly. 
 

Keywords: financial ratios, nonstationarity, proportionate growth, cointegration, 
panel methods
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1.  Introduction 

Cross-border and cross-market takeover activity involving firms from different 

European countries is a growing business phenomenon with the continued 

consolidation of European economic integration. As a consequence, financial analysts 

are being called upon to play an ever-increasing and important role in comparing the 

performance of firms with their competitors on both a national and international basis. 

Financial ratios are commonly used by financial analysts to compare the performance 

of a firm with its competitors and also to assess the firm’s progress from one 

accounting period to the next. In practice, whilst inter-firm comparison can involve 

financial data for large numbers of firms, trend analysis normally concerns only a 

short series of repeated measures. An important issue in this context is whether the 

simple ratio metric that is commonly used as a financial indicator provides an 

adequate measure on which to base both interfirm comparisons and financial trend 

analyses. In this paper, in addressing this issue, the context of day-to-day financial 

analysis for a large sample of European firms is modelled as a panel where the cross-

sectional dimension N is large and the time dimension T is short.  

The dynamic time series properties of financial ratios have been the subject of a 

number of other empirical research studies. The implications of nonstationarity and 

cointegration in financial ratios were first discussed by Whittington and Tippett 

(1995, 1999). Ioannides, Peel and Peel (2003) investigate whether nonstationarity is 

consistent with the well-documented mean reverting process in financial ratios (Lev, 

1969; Davis and Peles, 1993; Gallizo and Salvador, 2003). Peel, Peel and Venetis 

(2004) reassess nonstationarity in financial ratios in the context of cross-sectional 

dependence.  
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Whittington and Tippett (1999) reach the conclusion that the components of financial 

ratios exhibit nonstationarity which is not eliminated by the ratio transformation. They 

also show that the extent of cointegration between ratio components varies 

considerably across different financial ratios. Ioannides, Peel and Peel (2003) find that 

ratios are globally stationary, but that unit root behaviour close to equilibrium results 

from a non-linear partial adjustment process where the rate of adjustment towards the 

optimal value increases with deviation from the target. Peel, Peel and Venetis (2004) 

demonstrate that, although the standard Dickey-Fuller tests employed in Whittington 

and Tippett (1999) suggest that individual financial ratio series are nonstationary, 

panel tests reject the null hypothesis of a joint unit root, which implies strong 

persistence in the ratios and places doubt on their characterization as integrated 

processes. 

In the studies cited above, the statistical tests are carried out using a relatively small 

number of firm-specific ratio time series, with only Peel, Peel and Venetis (2004) 

employing panel estimation methods. In the present study, we use a panel with large 

N and small T. A suitable test for cointegration in such a panel structure is to test the 

hypothesis of a joint unit root in the panel by applying Pesaran’s method for short 

panels (Pesaran, 2006). We incorporate stochastic and deterministic trends in a 

generalised loglinear model of repeated measures that can assume proportionate 

growth in accounting variables that may be restricted to firm growth, as proposed in 

McLeay and Trigueiros (2002). The statistical fit of the restriction is compared with 

alternative time series specifications, with an empirical analysis that covers a large 

sample of European firms over a period of eight years. The study focuses on ‘pure’ 

financial ratios (Trigueiros, 1995) that are constructed from the non-negative 

 3



accounting totals which are the basic output of accounting systems, including balance 

sheet and income statement items.  

The accounting variables of interest in this study are amongst the principal financial 

aggregates reported in financial statements: Shareholders’ Equity (SE), Total 

Liabilities (TL), Total Assets (TA), Sales (SA) and Total Costs (TC). Total Liabilities 

is defined such that TA = SE + TL and Total Costs includes all charges such that SA – 

TC is equal to Earnings Available to Shareholders (EA).  Consider then the following 

accounting construction that incorporates these variables as financial ratios, where 

Return on Equity = EA/SE = SA/TA + TL/SE (SA/TA –TC/TL). The three financial 

ratios that explain ROE are: the Liabilities to Equity ratio (TL/SE), the Asset Turnover 

(SA/TA) and its counterpart that we refer to as the Liabilities Turnover (TL/TC). Each 

of the three drivers of return on equity in the accounting identity is a ‘pure’ financial 

ratio, having in theory the properties discussed above, and the analysis presented 

below is based on the properties of these three ratios.1  

2.  Accounting variables, financial ratios and nonstationary panels 

Accounting variables are aggregates of like transactions that are entered into by a 

firm, including totals for a given period (such as sales and costs) and accumulations 

over the longer term (such as assets and liabilities). These variables are reported 

periodically as financial statement line items, and are widely available as annual time 

series for large numbers of firms. The initial observation for a given firm may relate 

to the first year of its activities or, if censored on the left, to the first fiscal year 

covered by the database; each series will continue until the demise of the firm, or until 

the censor date on the right (i.e. the last fiscal year covered by the database), or 
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through to the present time. Financial ratios are constructed from such variables, and 

they too are widely available in commercial databases where, as indicated above, the 

cross-sectional dimension is large and the time dimension tends to be small in terms 

of the count of repeated observations. 

In this context, a general model for an accounting variable, X, at time t is given for the 

jth firm by: 

ln 1 1 2 ln,X t X , 1 uj t j j j j tα β β= + + +− t

1 u

      ……...………………………………… (1) 

This can be decomposed into lower level models by restricting the coefficients. In the 

first instance, consider the case of no drift and no deterministic time trend. That is, 

when α1 = 0 and β1 = 0, 

ln 2 ln, ,X Xj t j j tβ= − t+

u

    ………………….……..…………………………… (2) 

In a special case of (2), where the unit root features in the specification through the 

additional restriction of β2 = 1, we have a pure random walk 

ln ln, , 1X Xj t j t= − t+

u

u

       ………………………………………………………… (2′)           

Now consider a financial ratio X1/X2 that is constructed from two variables that are 

each described by (2), where 

ln 1 21 ln 1 1, , 1
.

ln 2 22 ln 2 2, , 1

X Xj t j j t t
X Xj t j j t t

β

β

= +⎧ ⎫−⎪ ⎪
⎨ ⎬= +−⎪ ⎪⎩ ⎭

 

The ratio has the following form: 
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1 ,ln 21 ln 1 22 ln 2 1 2, 1 , 12 ,

X j t X X u uj j t j j t t tX j t
β β= − +− − −  

In the specific case where each variable has an autoregressive unit root, i.e. where 

β21j = β22j = 1, the financial ratio is described by  

1 1, , 1ln ln 1 2
2 2, , 1

X Xj t j t u ut tX Xj t j t

−
= +

−
−

1 u

 

In this case, if the innovations u1t and u2t are uncorrelated, the ratio is characterized 

by a random walk over time. 

Now consider an accounting variable where, in the general model given by equation 

(1), α1 ≠ 0, β1 = 0 and β2 = 1. This variable is described as a random walk with drift, 

where  

ln 1 ln, ,X Xj t j j tα= + +− t

1

u

u

      ………...………...……………………………… (3) 

Consider the two accounting variables given below whose specifications are the same 

as that of equation (3): 

ln 1 11 ln 1 1, , 1
.

ln 2 12 ln 2 2, ,

X Xj t j j t t
X Xj t j j t t

α

α

= + +⎧ ⎫−⎪ ⎪
⎨ ⎬= + +−⎪ ⎪⎩ ⎭

 

When a financial ratio is constructed from these two variables, it is defined as 

 
1 1, ,ln 11 12 ln 1 2
2 2, ,

X Xj t j t u u1

1
j j tX Xj t j t

α α −
= − + + −

−
t  

This ratio follows a random walk with drift given by the constant α11j - α12j. 
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Recalling the univariate case given by equation (1), if α1 ≠ 0, β1 ≠ 0 and β2 = 1, we 

now have an accounting variable that is modelled as a random walk with constant 

drift plus a time trend. That is, 

ln 1 1 ln, , 1X t X uj t j j j t tα β= + + +−       …………...…..……………………… (4) 

In these circumstances, where a deterministic time trend is included and the 

denominator and numerator of the financial ratio are described by 

ln 1 11 11 ln 1 1, ,
,

ln 2 12 12 ln 2 2, ,

X t Xj t j j j t t
X t Xj t j j j t t

α β

α β

= + + +⎧ ⎫−⎪ ⎪
⎨ ⎬= + + +−⎪ ⎪⎩ ⎭

1

1

u

u  

then the ratio yields  

( )1 1, ,ln 11 12 11 12 ln 1 2
2 2, ,

X Xj t j tt uj j j j tX Xj t j t
α α β β −

= − + − + + −
−

1

1
u t

1

1

u

u

 

Cases 2′, 3 and 4 above are all examples of a stochastic trend in accounting variables 

resulting in nonstationary time series. Moreover, a financial ratio constructed from 

such processes also exhibits nonstationarity, which is not removed by the ratio 

transformation.  

Recall equation (1) where the natural logarithm of Xjt is generalized as α1j + β1jt + β2j 

ln Xj,t-1 + ut. Now applying the restriction α1 ≠ 0, β1 ≠ 0 and β2 < 1, the stochastic 

trend is no longer persistent, and the variable is stationary around a deterministic 

trend. For the ratio formed from two such accounting variables, where 

ln 1 11 11 21 ln 1 1, ,
,

ln 2 12 12 22 ln 2 2, ,

X t Xj t j j j j t t
X t Xj t j j j j t t

α β β

α β β

= + + +⎧ ⎫−⎪ ⎪
⎨ ⎬= + + +−⎪ ⎪⎩ ⎭
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we now have 

( )1 ,ln 11 12 11 12 21 ln 1 22 ln 2 1 2, 1 , 12 ,

X j t t X X u uj j j j j j t j j t tX j t
α α β β β β= − + − + − + −− − t  

The above equation may be rewritten as: 

( ) ( )ln 1 21 ln 1 ln 2 22 ln 2 11 12 11 12 1 2, , 1 , , 1X X X X t uj t j j t j t j j t j j j j t tβ β α α β β− − − = − + − +− − u−

 

Now, it can be demonstrated that, in the limit, where β21j = β22j = 0,  

( )1 ,ln 11 12 11 12 1 2
2 ,

X j t t u uj j j j tX j t
α α β β= − + − + − t  , …………..……………… (5) 2

and the ratio is equivalent to a proportionate growth model, where  

( ) ( ) ( )1 11 12 11 12, 1 2
2 ,

j j j j t t
X tj t u ue e e
X j t

α α β β− − −=  

This implies that, in the absence of a stochastic trend, both the accounting variables 

and their corresponding financial ratios are characterized by a deterministic trend that 

is loglinear. Implicit in this representation of the accounting variables and resultant 

financial ratios, is that they are stationary processes. In such processes, deviations 

from the trend line are random and will die out quickly.  

In the case of (5), the bivariate specification is 

ln 1 11 11 1, ,
.

ln 2 12 12 2, ,

X uj t j j t t
X uj t j j t t

α β

α β

= + +⎧ ⎫⎪ ⎪
⎨ ⎬= + +⎪ ⎪⎩ ⎭
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By adding a further restriction that β11 = β12, or in other words that each variable 

grows at the same rate, the ratio is modelled by 

1 ,ln 11 12 1 2
2 ,

X j t u uj j tX j t
α α= − + − t   …………...………..……………….…… (6) 

Assuming that the innovations u1t and u2t are uncorrelated, we arrive at the 

conclusion that the financial ratio X1jt/X2jt varies lognormally around a constant level 

as represented below: 

( ) ( )1 11 12, 1 2
2 ,

j j t t
X j t u ue e
X j t

α α− −=  

Figure 1 shows the effect of the above restriction on the ratios analysed here, for the 

first firm in our sample, A&C Black plc. Panel A illustrates how the restricted 

proportionate growth model fits a constant ratio, and it shows how this will apply to 

all of the financial ratios involved as we work through the return on equity identity. In 

contrast, Panel B shows how the unrestricted model that allows for variable-specific 

trends results in ratio estimates that reflect the changing structure of the firm over the 

period that is investigated, giving the appearance of ratio drift. 

3.  Ratios of cointegrated variables 

In the case of stationary variables, the stochastic processes that are involved do not 

accumulate past errors. Such processes are described as ‘integrated of order zero’, or 

I(0). For nonstationary variables, the integration will be of a higher order - for 

example, I(1) and I(2) processes require first and second differencing respectively in 

order to generate a stationary series. With regard to linear combinations of 
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nonstationary variables, it is possible in certain circumstances that the integration may 

cancel between series and produce an I(0) outcome (Hendry, 1995). These are 

cointegrated processes.  

In the context of financial ratios, it is this conjecture - that a ratio transformation may 

have a cointegrating relationship if both of the components are nonstationary - that is 

tested by Whittington and Tippett (1999).3 We provide a formal specification below 

of the cointegrating relationship, and demonstrate how cointegration is consistent with 

a proportionate growth model of financial ratios.  

Consider first a constant ratio, which can be written as 1 2, ,X X kj t j t j= for all t. 

Taking logarithms of both sides 

ln 1 ln 2, ,

where ln .

X Xj t j t

kj j

jδ

δ

= +

=
 

In its empirical form,  

ln 1 ln 2,X Xj t j j j t t,δ γ= + + ε …………………………………………………… (7) 

For the constant ratio, ( )1 and E ln 1 2 with E 0. X Xj jγ δ⎡ ⎤= = ⎣ ⎦tε⎡ ⎤ =⎣ ⎦  In other words, the 

logarithm of the ratio takes on random values around a constant level of δj. The 

parameter γj measures the long run linear growth rate that exists between the two log 

ratio components. If γj is not equal to one, then one component will be growing at a 

different rate than the other.  
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Now, if ln X1j,t and ln X2j,t are both unit root processes and εt is covariance stationary 

(i.e., an I(0) process), the linear model of the two log ratio components given by (7) 

describes the cointegrating relation between them.  

More generally, for the bivariate representation of the two accounting variables that 

form a financial ratio, i.e., 

ln 1 11 11 21 ln 1 1, ,
ln 2 12 12 22 ln 2 2, ,

X t Xj t j j j j t t
X t Xj t j j j j t t

α β β

α β β

= + + +⎧ ⎫−⎪ ⎪
⎨ ⎬= + + +−⎪ ⎪⎩ ⎭

1

1

u

u ’ 

substituting the above into (7) gives 

( )11 11 21 ln 1 1 12 12 22 ln 2 2, 1 , 1t X u t X uj j j j t t j j j j j j t t tα β β δ γ α β β+ + + = + + + + +− − ε

 

It follows that 

( ) ( )
( )

, 1 , 111 12 11 12 21 ln 1 22 ln 2

1 2

j t j tt X Xt j j j j j j j j j

u ut j t j

ε α γ α β γ β β γ β

γ δ

− −= − + − + −

+ − − ……..... (8) 

Consider in this context that εt follows a first order autoregressive process: 

1a bt t tε ε= + +− η ……..………………………………………………………...(9) 

Also, without loss of generality, let a = 0. Now, if b =1, then εt is a unit root process 

and, when ln X1j,t and ln X2j,t are also unit root processes, equation (7) is not a 

cointegrating relation. For | b| <1, however, the ratio components are cointegrated. 

Substituting (8) into (9) results in 
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( ) ( ) ( )11 12 11 12 21 ln 1 22 ln 2 1 2, 1 , 1t X X u uj j j j j j j j t j j j t t j t jα γ α β γ β β γ β γ δ− + − + − + − −− −

( ) ( )( ) ( )11 12 11 12 1 21 ln 1 22 ln 2 1 2, 2 , 2 1 1b t X X u uj j j j j j j j t j j j t t j t j tα γ α β γ β β γ β γ δ η⎡ ⎤= − + − − + − + − −− − − −⎢ ⎥⎣ ⎦
+

 

( ) ( ) ( )

( ) ( ) ( )
, 1 , 2

21 21
1 1

i.e., ln ln 1 11 12 11 12
22 22

2 2

11 12 1 2 1 21 1

j j

j j j j

j t j t

b
X X

b tj j j j j j j
X X

b u u b u uj j j t j t t j t t

β β

α γ α β γ β δ
γ β γ β

β γ β γ γ η

− −

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟ ⎡ ⎤= + − − + −⎜ ⎟ ⎜ ⎟ −⎢ ⎥⎣ ⎦⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

⎡ ⎤− − + − − − +− −⎢ ⎥⎣ ⎦

 

When the ratio components are nonstationary (i.e., β21= β22=1) and are not 

cointegrated (i.e., b=1),  

( )

( ) ( )

1 2

1 2

1 1
ln 11 12 ln

2 2

where 1 1 2 2 .1 1

j j

t t

t t

X X
j j j

X X

u u u ut t t j t t t

tβ γ β ξ
γ γ

ξ γ

− −

− −

= − − + +

= − − − +− − η
 

In other words, nonstationary variables that are not cointegrated will lead to a random 

walk with drift in , ,ln 1 2 j
j t j tX X

γ⎛
⎜

⎞
⎟

⎝ ⎠
, the adjusted ratio that allows for the differential 

growth relationship between X1 and X2, and in the unadjusted ratio when γj = 1. 

Moreover, if γj = β11j / β12j, there will be no drift.  

In contrast, when nonstationary ratio components are cointegrated, such that b<1 and 

b→0, then in the limit 

( ) (

( )

1

1

1
ln 11 12 11 12

2

where 1 2 .

j

t

t

X
t)j j j j j j j

X

u ut t j t t

tδ α γ α β γ β
γ

φ γ η

−

−

= − − − − +

= − +

φ
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Thus, nonstationary variables that are cointegrated, with diminished autoregression in 

the error, form a financial ratio that tends in the limit towards the proportionate 

growth model, and to its restricted form of a constant when γj = β11j / β12j. 

4.  Analysis 

As set out above, in this paper we evaluate a generalised model that incorporates 

stochastic and deterministic trends in the ratio, allowing also for restricted and 

unrestricted proportionate growth. The sample consists of European firms that are 

included in the Worldscope database. The period examined in the study is from 1992 

to 1999, and the sample is restricted to firms that report for a calendar year in every 

period. Furthermore, we also require that all necessary financial information is 

provided for all eight years, and that the balance sheet and income statement 

information extracted from the database articulate. Firms with negative equity, 

liabilities, assets, sales or costs were excluded. The final sample on which the results 

are based comprised 609 firms over eight years, i.e. 4872 firm years.  

The median values of the logarithm of equity, liabilities, assets, sales and costs are 

given in Table 1 for each year from 1992 to 1999. It is evident that the general trend is 

upwards, in all cases without exception, and Figure 2 demonstrates this pervasive 

effect of firm growth on each of the variables of interest. The similarity in their 

gradients is the key feature of these plots.  

Table 1 also provides an understanding of the cross-sectional distributions of the 

ratios under investigation. The log distributions are particularly stable across the 

years. We find that the log of Sales/Assets (SA/TA) is consistently logistic, the log of 

Liabilities/Equity (TL/SE) is consistently log-logistic, and the log of Costs/Liabilities 
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(TC/TL) is consistently Weibull, as illustrated in Figure 3 using observed values for 

the first year, 1992.4  The logistic, log-logistic and Weibull distributions are closely 

related extreme value distributions, and are special cases of the generalized Gamma 

function.5 However, this function requires analytical integration as there is no closed-

form equivalent. The paper proceeds on the basis of the reasonable simplifying 

assumption of loglinearity between the components of each of the three pure financial 

ratios that are examined. This is supported by Figure 4, which presents bivariate plots 

on a log scale, for Sales v. Assets, Liabilities v. Equity and Costs v. Liabilities. 

The drawback of focussing on a small sample of long-lived firms, as analysed by 

Whittington and Tippett (1999), Ioannides, Peel and Peel (2003) and Peel, Peel and 

Venetis (2004), is that they are not representative of the population of firms. In 

contrast, we consider a larger number of shorter series (eight observations), which is 

more in keeping with the timespan over which a financial analyst may look 

backwards in attempting to understand how a firm’s financial structure and 

performance arrived at their present position and how the firm compares with others. 

For each accounting variable, initial estimates are obtained from a vector 

autoregression at the firm level. Figure 5 provides an indication of the distribution of 

the autoregressive coefficient β across the firms for each of the five variables of 

interest. The mean varies between 0.6388 (Liabilities) and 0.7207 (Assets), as shown 

in the fourth column of Panel A in Table 2. In each case, the density rises towards 1, 

and the mode always lies below 1, but there is a small but significant proportion of 

series in each case where β is equal to or greater than 1. Indeed, the top 5% of 

observed estimates is always above 1. Thus, univariate analysis suggests that 

nonstationarity is plausible in ratio numerators and denominators, although the vast 

majority of series are stationary.  
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The potential for nonstationarity is mitigated however by the fact that any influence 

from prior errors is expected to decay relatively quickly. Panel B of Table 2 shows the 

results when the current error for the jth firm is estimated from the lagged estimate as 

uj,t = a + buj,t-1 + ηj,t. After pooling the regression, b is shown to be between 0.5 and 

0.6.6  

To resolve the issue, a test of the joint null hypothesis of nonstationarity is required. 

Testing for unit roots in heterogeneous panels has already received a great deal of 

attention in the econometrics literature, and proposals include the cross-sectional de-

meaning of series (Im, Pesaran and Shin, 1995), the incorporation of integrable 

functions of lagged dependent variables (Chang, 2002) and the adjustment of 

observed values to remove common factors (Moon and Perron, 2004). Each of these 

cross-sectionally augmented tests has the appropriate asymptotic properties, but they 

are for T→∞, and generally for T>N. Panel C of Table 2 reports the results of an 

alternative unit root test which offers the finite sample properties that are necessary 

(Pesaran, 2006).7  This test also relaxes the assumption of cross-sectional 

independence implicit in the standard univariate Dickey-Fuller approach, and is 

consistent with the model structure described earlier, i.e. it is asymptotically 

convergent for short T and large N, and it is robust in the presence of a deterministic 

trend. In order to avoid the influence of nuisance parameters, the test is applied to the 

deviation between the dependent variable and its initial cross-section mean in year 0, 

where the time series is indexed 0…T. The standard Dickey-Fuller regression of the 

first difference in the dependent variable on the lagged dependant variable is 

augmented cross-sectionally by the addition of the first difference in the yearly mean 

and the lagged mean. The cross-sectionally augmented Dickey-Fuller (CADF) test is 

based on the t-ratio of the OLS estimate of the coefficient on the lagged value of the 
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dependent variable, and for significance we rely here on critical values for the shortest 

T (10) and the largest N (200) as tabulated in Pesaran (2006).8 The results in Panel C 

show that, for all five variables, the null hypothesis of a joint unit root cannot be 

rejected convincingly, although there is some (weak) evidence in support of 

stationarity in Shareholders’Equity and Total Liabilities, and, for individual firms, the 

unit root hypothesis is strongly rejected at the 1% level in about one third of cases for 

each variable.  

To test for cointegration, firm level estimates of δ and γ are obtained from firm-

specific fits of Equation (7), the empirical form of the loglinear ratio.  First, it should 

be noted that Panel A of Table 3 gives mean values of γ as 0.8582 in the case of Sales 

to Assets, 0.5280 for Liabilities to Equity and 0.6782 for Costs to Liabilities. In each 

case, the range of the estimates includes 1, the value at which an assumption of equal 

growth rates in the two variables would hold. In effect, the proportion of cases where 

γ ≥1 is 38% for Sales to Assets, 27% for Liabilities to Equity and 20% for Costs to 

Liabilities. To test for cointegration between the ratio components, the error term is 

subject to a pooled Dickey-Fuller test where εj,t = a + b εj,t-1 + ηj,t. As with the 

univariate stationarity tests of ratio components, by construction the constant, a, in the 

cointegrating regression is equal to zero, as the estimates reported in Panel B of Table 

3 confirm. The cross-sectionally augmented unit root test reported in Panel C finds no 

support for the joint hypothesis that b=1 for each of the three pairings, and, for 

individual firms, the test rejects b=1 at the 10% level in 57% of cases for Sales to 

Assets, 68% for Liabilities to Equity and 79% for Costs to Liabilities. Indeed, the 

average estimates of b are 0.097 for Sales to Assets, 0.125 for Liabilities to Equity 

and 0.106 for Costs to Liabilities, suggesting again a rapid decay in the effects carried 

forward to future accounting periods. Furthermore, given that cointegration between 
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the financial ratio components seems to tend to its limit with b→0, these results imply 

that, in cases where there is nonstationarity in the variables examined here, 

proportionate growth may be a plausible model for the financial ratios involved.9

Table 4 gives the results from the proportionate growth regression in Panel A. When 

we introduce the restriction that β1j is equal for each variable involved, the joint 

estimate across the five accounting variables provides a measure of the firm’s growth 

during the period. The mean estimate of the continuous growth rate β1j across all 

firms is 8.59% p.a. and the 5th and 95th percentiles of the distribution range from 

-6.03% to 29.3%. When the proportionate growth estimation is unrestricted, such that 

β1j varies not only across firms but also across accounting variables, it can be seen 

that the mean estimates of growth vary little from one variable to another, the lowest 

being 8.40% (Total Costs) and the highest 8.81% (Total Liabilities).  

In order to assess the proportionate growth model, we compare the fit of each of the 

processes that have been used to describe the component variables of the financial 

ratios. Equation (1) is the full model defined as lnXjt = α1j + β1jt + β2j lnXj,t-1 + ut, with 

the restriction β1=0 leading to the stochastic trend model lnXjt = α1j + β2j lnXj,t-1 + ut. 

If each of these processes are nonstationary time series, then, as demonstrated earlier, 

financial ratios constructed from such variables are also nonstationary. The restriction 

β2=0 leads to the deterministic trend model of proportionate growth, lnXjt = α1j + β1jt 

+ ut. This model may be further restricted by constraining β1jt to be equal across all 

variables, in which case the ratio of two such variables would tend towards a constant 

as cointegration between the variables tends towards its limit. Finally, as shown in 

Panel B of Table 4, the null is the firm mean where lnXjt = α1j + ut. It can be seen that 

the adjusted mean squared error falls for the average firm from the null of 0.1505 to 
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0.0508 (F=12.781, prob<0.0001) when a deterministic trend is fitted to each variable 

for each firm, and to 0.0682 (F=8.245, prob<0.0001) when a stochastic trend is fitted 

to each variable for each firm.10 The deterministic trend is a better fit to all variables 

than the stochastic trend. On average, across all five variables, the R2 is 62.2% for the 

stochastic trend, 72.9% for the deterministic trend and 76.3% for the full model. 

Although the latter will always provide the best fit overall, the gain in explanatory 

power requires an additional parameter for each variable, and this seems to have little 

statistical support. That is to say, the indicative F-ratios for the average firm are 0.735 

(prob=0.6040) when a stochastic trend is added to the unrestricted proportionate 

growth model. On the other hand, the explanatory power that is lost when the growth 

estimates are constrained to be equal across all variables is not of great statistical 

significance, the F-ratio between the restricted and unrestricted models being 2.120 

(prob=0.1081). Furthermore, given the degrees of freedom that are gained, the model 

of restricted proportionate growth (average mean squared error 0.0586) provides a 

more plausible and parsimonious model than the stochastic trend (average mean 

squared error 0.0682).   

5.  Conclusions 

This paper sets out to provide a comprehensive model of deterministic and stochastic 

trends in accounting variables and the financial ratios which they form, building on 

innovative research by Whittington and Tippett (1999), Ioannides, Peel and Peel 

(2003) and Peel, Peel and Venetis (2004). The focus of the present paper differs from 

the above however, as the main concern here is not primarily with the potential for 

spurious regression when potentially nonstationary variables are employed as 

regressors, which is well documented in econometrics11, but instead with the 
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statistical validity of the simple ratio metric that is commonly used in business and 

finance as a measure on which to base both interfirm comparisons and financial trend 

analyses.  

When account is taken of cross-sectional dependence between companies, and also of 

the relatively short length of accounting time series, we are unable to reject a joint 

hypothesis of nonstationarity in accounting variables, although there is no significant 

evidence of a unit root in about one third of the individual firm series. By their very 

nature, however, the components of financial ratios are correlated variables, and our 

estimates show that any cointegrating effects will decay rapidly.  

Furthermore, it is important to recognise that line items in income statements and 

balance sheets, such as sales or total assets, will tend to grow as the firm grows. Over 

a given period, accounting variables may grow at a rate that is higher or lower than 

the firm as a whole, especially if it is in the process of altering its financial or 

operating structure. This transitory divergence in deterministic trends within the same 

firm may give the appearance of drift in the ratio of two variables as the level 

changes. However, it is shown here that ‘pure’ financial ratios can be defined 

parsimoniously by their lognormal variation around an expected value, and that such 

ratios can be represented succinctly by a statistically valid model of proportionate 

growth in the firm. 
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Appendix 

Although the analytical result in this paper relies on the restrictive assumption that 

there is no stochastic trend in either ratio component, i.e. that β21j = β22j = 0 in (5), a 

more general ratio model that allows us to relax this assumption may be derived with 

recursive substitution.  

Consider the accounting variable, X, such that 

 lnXt = α1+ β1t + β2lnXt-1 + ut , as in Equation (1) in the text. 

Then, by substitution  

lnXt = α1+ β1t + β2(α1+ β1(t-1) + β2lnXt-2 + ut-1) + ut .  

This may be rearranged as  

lnXt = α1(1+β2) + β1t + β1β2(t-1) + β22lnXt-2 + ut + β2ut-1.  

By substituting for lnXt-2, it follows that  

lnXt = α1(1+β2) + β1t + β1β2(t-1) + β22(α1+ β1(t-2) + β2lnXt-3 + ut-2) + ut + β2ut-1

which may be rearranged in turn as  

lnXt = α1(1+β2+β22) + β1t + β1β2(t-1) + β1β22(t-2) + β22lnXt-3 + ut + β2ut-1 + β22ut-2.  

With recursive substitution through t=0, and given an initial value Xj,0 on the 

accounting variable X reported by firm j, the specification in (1) may be rewritten as: 
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which, as in (6), simplifies to 11 12 1 2u uj j tα α− + − t when  

β11j = β12j and β21j = β22j = 0. 

If we now relax the restriction by holding both trends, deterministic and stochastic, 

equal across the ratio components (i.e. β11j = β12j and β21j = β22j = β2j), it follows 

that 
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Footnotes 

                                                 
1 It is not the aim of this paper to derive the distributional form of return on equity, a ratio that 
has non-convergent moments (i.e. if book equity reaches its lower bound of zero, the ratio is 
infinity, and if earnings are also at break-even, the ratio is undefined). 

2 Note that a model that allows us to relax the assumption β21j = β22j = 0 may be derived with 
recursive substitution. The derivation of this more general model is given in the Appendix.  

3 Whittington and Tippett (1999) provide an excellent overview of cointegration and unit 
roots. Their evidence is based on Dickey-Fuller tests at the firm level, and suggests that the 
ratio does not always remove the effects of nonstationarity in the ratio components, even 
when drift in the ratio is accounted for with an additional trend term.  

4 The stability of the distributions of the three pure ratios is in contrast to Return on Equity, 
where the best fit varies between normal, Student t, logistic, beta and log-logistic, as is also 
shown in Table 1. However, this overfitting is attributable to small numbers of extreme values 
- if the extreme negative values that arise when Shareholders’ Equity approaches its lower 
bound of zero are removed, this results in a consistently best fit by the logistic distribution. 

5 Extreme value distributions are commonly applied in survival analysis - see George and 
Devidas (1992). 

6 By construction, the mean residual is zero, and the estimate of  a  is not significantly 
different to zero (the 0.05 and 0.95 confidence limits are below and above zero respectively 
for each of the five variables of interest).  

7 For fixed and random effects models, where the time dimension is small and the cross-
sectional dimension is large, maximum likelihood estimators have also been obtained and 
their finite sample properties documented (Binder, Hsiao and Pesaran, 2005). 

8 The critical values of the limit distribution of the test statistic are tabulated in Pesaran (2006) 
for N = 10 … 200 and T = 10…200. When the model has an intercept but no trend, the critical 
values for the largest N = 200 and the shortest T = 10 are as follows: 

 

 
9 As the main interest is not in the contemporaneous correlation between ratio components but 
in any systematic effects in the error term, firm level estimates of β are not required, and a 
panel data analysis may be undertaken to allow for between-firm variation as fixed effects.  In 
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this case, the fixed effects estimates of b are: Sales to Assets 0.3569 (s.e.=0.0140); Liabilities 
to Equity 0.4118 (s.e.=0.0129); and Costs to Liabilities 0.3436 (s.e.=0.0143), and b=1 is 
rejected for each of the three pairings.  

10 Although a predicted value may be fitted to year one for the null and deterministic trend 
models, there is no initial prediction in the case of the full and stochastic trend models, which 
are autoregressive. Given that the firm series are short, and the degrees of freedom are a 
function of series length, we compare all model fits by excluding year 1 from the mean 
squared error of the deterministic trend models and the null. The number of observations in 
years 2 to 8 is 35 per firm when all 5 variables are considered jointly in the seemingly 
unrelated regression that restricts the proportionate growth model. The mean squared error is 
calculated as the sum of squared errors divided by the adjusted degrees of freedom (i.e. 35 
less the number of parameters in the model), and standard F-tests are used here to compare 
models and to evaluate model restrictions, given the small samples by firm. 

11 With regard to spurious regression in panel data, see Baltagi (2003, chapter 12). 
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Table 1.   Median values of observed variables and ratios, and their fitted probability distributions 
 

                                             Years
 
Accounting Variables
Loge Sales 12.046 12.093 12.165 12.331 12.408 12.485 12.578 12.609
Loge Costs 12.006 12.090 12.126 12.269 12.364 12.428 12.506 12.554
Loge Assets 12.034 12.076 12.143 12.254 12.349 12.355 12.408 12.568
Loge Liabilities 11.392 11.450 11.591 11.645 11.718 11.743 11.888 11.997
Loge Equity 11.122 11.098 11.218 11.385 11.437 11.483 11.627 11.698
 
Financial Ratios

 

Loge (Sales/Assets) 0.128       0.132       0.131   0.158   0.172  0.165 0.141 0.131
 Best fit LS LS LS LS LS LS LS LS

Loge (Liabilities/Equity) 0.300      0.258 0.256 0.248 0.285 0.279 0.300 0.287
 Best fit LL LL LL LL LL LL LL LL

Loge (Costs/Liabilities) 0.730 0.750 0.736 0.761 0.787 0.753 0.713 0.699
 st fit W W W W W W W WBe  

Return on Equity 
 - Observed 0.090 0.100 0.106 0.111 0.113 0.123 0.118 0.118
 Best fit B ST N ST LL LL LS ST
 - Truncated 0.092 0.100 0.106 0.111 0.113 0.123 0.119 0.120

 Best fit LS LS LS LS LS LS LS LS
Best fitting distributions: B Beta General. LL Log-logistic. LS Logistic. N Normal. ST Student. W Weibul. The BEST FIT statistical 
software provides estimates of the best fitting distribution from a wide range of potential models. 



 
 

Table 2. Cross-sectional tests of stationarity 
 
A. First order autoregression by firm 
lnXj,t = α1j + β2jlnXj,t-1 + uj,t α 5th % 95th % 2β 5th % 95th % MSE 5th % 95th %

Shareholders’ Equity 3.7299 -3.9520 13.1232 0.6804 -0.1972 1.3773 0.1007 0.0016 0.3303
Total Liabilities 4.2641 -3.7009 13.6857 0.6388 -0.1786 1.3430 0.0847 0.0029 0.2975
Total Assets 3.4798 -5.0692 12.5607 0.7207 -0.0310 1.4118 0.0450 0.0021 0.1579
Sales 3.7156 -2.7705 12.3210 0.7064 0.0026 1.2141 0.0544 0.0016 0.1600
Total Costs 3.9033 -2.8701 13.5490 0.6957 -0.0778 1.2480 0.0561 0.0017 0.1660

 
B. Error decay (pooled) 
uj,t = a + buj,t-1 + ηj,t â s.e. 0.05 0.95 b̂ s.e. 0.05 0.95

Shareholders’ Equity 0.0047 0.0048 -0.0047 0.0141 0.4752 0.0133 0.4491 0.5012
Total Liabilities 0.0058 0.0045 -0.0030 0.0146 0.5579 0.0109 0.5365 0.5794
Total Assets 0.0049 0.0033 -0.0017 0.0114 0.6539 0.0087 0.6368 0.6710
Sales 0.0051 0.0037 -0.0021 0.0123 0.6049 0.0099 0.5856 0.6242
Total Costs 0.0038 0.0037 -0.0035 0.0111 0.6055 0.0099 0.5861 0.6249
 
C. Cross-sectionally augmented Dickey-Fuller (CADF) test 

 
Average: 

full 
distribution

Average:
truncated 

distribution

By firm: 
% rejection of unit root hypothesis 

 CADF CADF ′′ CADFj  

 Signif: 0.10 0.05 0.01
Shareholders’ Equity -2.3248 *** -2.0264 * 50.4% 41.5% 34.0%
Total Liabilities -2.1475 ** -2.0391 * 54.2% 44.0% 34.5%
Total Assets -2.0464 * -1.9455 51.4% 42.7% 34.0%
Sales  -2.0385 * -1.9713 54.4% 47.0% 36.9%
Total Costs -1.9733  -1.9276 54.0% 44.8% 32.2%
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The estimates in Panel A were obtained from vector autoregressions by firm for 609 firms, as specified by Equation (2). The coefficients 
and mean squared error are reported as averages across firms, together with the 5th and 95th percentiles. Panel B reports the estimates ( )ˆâ , b  

from a pooled regression of the error terms from firm-specific autoregressions, and the range of plausible coefficient estimates is indicated 
in each case by the 0.05 and 0.95 confidence levels. Panel C reports on the cross-sectionally augmented Dickey-Fuller (CADF) test of the 
unit root hypothesis, based on the t-ratio of the coefficient bj in the CADF regression 1 1, , ,j t j j j t j t j t j ty a b y c y d y e− −∆ = + + + ∆ + , 

where yj,t represents the deviation between  and ,ln j tX 0ln X  (i.e., the initial cross-section mean is set to zero to eliminate the effect of 
nuisance parameters - see Pesaran, 2006). 
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Table 3. Cross-sectional tests of cointegration 
 
A. Loglinear regression of ratio components (by firm) 

 lnX1j,t  = δj + γjlnX2j,t  + εj,t    δ 5th % 95th % γ 5th % 95th % MSE  
  
 Sales : Total Assets 1.9416 -8.8039 14.0120 0.8582 -0.1012 1.7430 0.0315 
 Total Liabilities : Shareholders’ Equity 5.7067 -12.0300 21.5440  0.5280 -0.8038 2.0004 0.0769
 Total Costs : Total Liabilities  4.4905 -4.4057 13.7180 0.6782 -0.1211 1.5059 0.0355 
 
B. Cointegrating regression (by firm) 
 εj,t = a + bεj,t-1 a 5th % 95th % b 5th % 59 th % 

 
Sales : Total Assets -0.0032 -0.0411 0.0285 0.0975 -0.5654 0.7609 
Total Liabilities : Shareholders’ Equity -0.0059 -0.0898 0.0758 0.1252 -0.4600 0.8266 
Total Costs : Total Liabilities -0.0090 -0.0592 0.0288 0.1060 -0.5504 0.8096 
 
C. Cross-sectionally augmented Dickey-Fuller (CADF) test 

 
Average: 

full 
distribution

Average:
truncated 

distribution

                By firm: 
                    % rejection of unit root hypothesis 

 CADF CADF ′′                       CADFj  

    Signif: 0.10 0.05 0.01
Sales : Total Assets -2.1194 ** -2.0097 **     57.0% 42.9% 29.6%
Total Liabilities : Shareholders’ Equity -2.3970 -2.3116 ***     68.0% 54.2% 39.4%
Total Costs : Total Liabilities -2.7557 -2.6734 ***     79.3% 71.1% 60.6%

 

The estimates ( )ˆˆ ,µ γ in Panel A were obtained from OLS regression by firm of the empirical form of the ratio specification in Equation (7).  Panel B reports on 
the cointegration of ratio components, based on the autoregressive process specified in Equation (9). In both panels, the coefficients and mean squared error are 
reported as averages across firms, together with the 5th and 95th percentiles.  Panel C reports on the cross-sectionally augmented Dickey-Fuller (CADF) test of the 
unit root hypothesis, based on the t-ratio of the coefficient bj in the CADF regression 1 1, , ,a b c d e∆ = + + + ∆ +ε ε ε ε , (see Pesaran, 2006). j t j j j t j t j t j t− −
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Table 4. Proportionate growth 

 
A. Estimation of deterministic trends by firm (seemingly unrelated regression) 

lnXj,t = α1j + β1j t α 5th % 95th % 1β  5th % 95th % MSE 5th % 95th % 

Restricted proportionate growth 
Shareholders’ Equity 11.8549 8.7150 15.6367  0.0942 0.0128 2.0377 
Total Liabilities 11.5319 8.3556 14.8574  0.0720 0.0200 1.2975 
Total Assets 11.5690 8.6141 15.1591 0.0859 -0.0634 0.2929 0.0342 0.0080 0.6679 
Sales   12.1027 8.5661 15.6953 0.0455 0.0089 0.8116
Total Costs 11.8583 8.5638 15.3888  0.0472 0.0100 0.8910 

Unrestricted proportionate growth 
Shareholders’ Equity 11.1431 8.1552 14.5844 0.0876 -0.0882 0.2975 0.0714 0.0011 0.2663 
Total Liabilities 11.4208 7.9617 15.1324 0.0881 -0.1151 0.3333 0.0622 0.0019 0.2134 
Total Assets 12.0702 8.7873 15.5261 0.0861 -0.0649 0.2963 0.0341 0.0011 0.1243 
Sales   12.1568 9.0519 15.7460 0.0853 -0.0778 0.2940 0.0423 0.0010 0.1328
Total Costs 12.1185 8.9628 15.6890 0.0840 -0.0814 0.2931 0.0439 0.0010 0.1371 

 
B. Comparison between proportionate growth and stochastic trend models 

 Sums of Squared Errors and Mean Squared Errors of Fitted Models  
 Full Model Stochastic Trend Deterministic Trend Mean 

   
Unrestricted 

Proportionate Growth 
Restricted 

Proportionate Growth  

 lnXj,t = α1j + β1jt + β2jlnXj,t-1 lnXj,t = α1j + β2jlnXj,t-1 lnXj,t = α1j + β1jt  lnXj,t = α1j + β1j t 
(β1 jointly estimated) lnXj,t = α1j

 SSE  MSE  SSE  MSE  SSE  MSE  SSE  MSE  SSE  MSE  
Shareholders’ Equity         0.2997 0.0749 0.5033 0.1007 0.3572 0.0714 0.5462 0.0942 1.0644 0.1774
Total Liabilities 0.2675 0.0669 0.4237     0.0847 0.3108 0.0622 0.4178 0.0720 1.0604 0.1767
Total Assets 0.1442        0.0361 0.2249 0.0450 0.1704 0.0341 0.1986 0.0342 0.7491 0.1248
Sales 0.1795        0.0449 0.2719 0.0544 0.2116 0.0423 0.2638 0.0455 0.8175 0.1363
Total Costs          0.1815 0.0454 0.2805 0.0561 0.2195 0.0439 0.2740 0.0472 0.8234 0.1372
 
All variables          1.0724 0.0536 1.7044 0.0682 1.2695 0.0508 1.7003 0.0586 4.5148 0.1505
 
R2 76.3%          62.2% 71.9% 62.3%
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Parameters, P                    15                     10  10                    6  5  
Degrees of freedom, DF                    20                     25  25                    29 30  
 
F : against null (mean effects model) 8.245 12.781   
    prob<0.0001 prob<0.0001  
 
F : against full model      2.357 0.735
    prob=0.0776 prob=0.6040  
 
F : proportionate growth restriction     2.120

     

6

Prob=0.1081 

The estimates in Panel A were obtained from a seemingly unrelated regression, allowing restriction on coefficients across firms. In order to compare the sum of 
squared errors (SSE) and the mean squared error (MSE) across models, all fits exclude year 1. The coefficients and MSEs in Panel A are reported as averages 
across firms, together with the 5th and 95th percentiles, as are the SSEs in Panel B. The MSE is calculated here as SSE/DF, where the available degrees of freedom 
(DF=N-P) is equal to the number of observations across all five variables (N=35) less the number of parameters (P). The indicative R2 is unadjusted, and is 
computed in aggregate over all variables as 1 – SSE(model)/SSE(null). 
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Figure 1. Ratios that allow for proportionate growth in the numerator and denominator 
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(B) Unrestricted proportionate growth 
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Figure 2. Ratio components grow at similar rates 
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Figure 3. Best Fits to Ratio Frequency Distributions 
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Figure 4. Ratio bivariate log plots  
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Figure 5. AR (1) betas 
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