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Abstract

In this paper we reexamine the linkages between output growth and real stock price changes for

the G7 countries using a battery of non-parametric procedures to account for the impact of long-lagged

observations. We find that correlation between growth and returns is detected at larger horizons than

those typically employed in parametric studies. The major feedbacks emerge from stock price changes

to growth within the first 6 to 12 months, but we show that significant feedbacks may last for up to two

or three years. Our evidence also suggests that the correlation patterns differ substantially between the

countries at hand when the sectoral share indices are considered.
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1. Introduction

What is the interaction between the goods market and the stock market? This relationship

has attracted considerable empirical research over the last thirty years.1 Early contributions,

beginning with the work by Goldsmith (1969), assessed the positive relationship between stock

returns and economic growth. Subsequent studies by, among others, Bosworth (1975), Hall

(1978), Fama (1981, 1990), Schwert (1990) and Estrella and Mishkin (1998), have focused on the

US and strongly indicate that the stock market index can serve as a reliable leading indicator in

the US economy. This conclusion reflects the view, put forward by Morck et al. (1990), that the

stock market is largely a ‘sideshow’, which simply mirrors ‘news’ about anticipated developments

in firms’ future payouts and output growth. Moreover, some spotty evidence in the relevant

literature suggests that there is also a negative -though weak- relationship between current

output and future stock prices in the US (see Park, 1997, McQueen and Roley, 1993). This

behavior might be triggered by the reaction of stock market participants to other macroeconomic

variables closely linked to output, such as employment and inflation, which are negatively related

to future earnings and business conditions.2

In general, the empirical studies have relied almost exlusively on single-equation or multi-

variate vector autoregressive (VAR) and panel models to investigate the relationship between

output growth and stock price changes. However, single equations or finite-order multivariate

models may be too restrictive to represent the true autocovariance structure of a given multiple

time series for several reasons. First, although the process assumed may be wide sense station-

ary and purely non-deterministic, it will fail to have an autoregressive representation if some of

1The theoretical relationship between these sectors have been founded by Brainard and Tobin (1968) who
pointed out that capital formation and, consequently, output growth are triggered when the market values new
capital higher than its replacement cost (q-theory of investment). Hayashi (1982) has reinforced this finding by
showing that under certain assumptions the stock market valuation of firms can be encapsulated in the neoclassical
investment model with adjustment costs and serve as the main determinant for investment and output growth.
Lettau and Ludvigson (2002) have shown that in the presence of a time-varying risk premium the q-theory implies
that a change in expected returns alters future stock prices and the cost of capital, thus triggerring a change in
investment over longer horizons. An alternative transmission channel involves consumption, and consequently
wealth and output, which may rise after an increase in stock prices generated by optimistic expectations of future
dividends or, alternatively, by a fall in interest rates (Parker and Julliard, 2005). These links may be more intense
in the case of a financial crisis (Bosworth, 1975). From a fiscal policy point of view, Blanchard (1981) has shown
that after an expansionary policy shock, asset prices change as a result of anticipated changes in real interest
rates and profitability, thus affecting wealth and spending, and spurring a rise in supply and equilibrium output.

2Another possible explanation for this pattern may be that it reflects countercyclical macroeconomic policy
through the reaction function of monetary authorities. For instance, in a period of unanticipated recession the
Fed may react by reducing interest rates, thus inducing a rise in stock prices, as investors find the stock market
more profitable. On the other hand, a rise in output growth is usually considered as a sign of future inflation,
which affects negatively future growth and returns, and policymakers may respond by raising interest rates which,
in turn reduces the future cash flows of firms.
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the roots of the Laurent expansion of its moving average representation lie on the unit circle.

Second, the process may admit a representation of infinite order, which implies that its finite

approximation may give misleading results in common size samples.3 Third, when paramet-

ric models are employed in which output growth is explained by lagged and contemporaneous

stock price changes, as in Fama (1981, 1990) and Barro (1990), it is implicitly assumed that the

latter are weakly exogenous to the parameters of interest, thus resulting in inconsistent and/or

inefficient estimators if this assumption fails to hold. Finally, the problem of approximating

the true data generation process by, say, a finite-order VAR may be particularly acute when

data on stock returns are employed. The work by Fama and French (1988) and Poterba and

Summers (1988) suggests the presence of transitory components in stock prices with returns

showing positive autocorrelation over short periods (reflecting e.g. the well-known momentum

effect, as in Jegadeesh, 1990), but negative autocorrelation over longer periods (due e.g. to

mean reversion to fundamentals). In view of such an autocovariance structure the use of a

finite-order VAR, or any other approximating parametric model, becomes questionable.4

The purpose of this study is to reinvestigate systematically this bivariate relationship by

using non-parametric tests of long-run correlation between growth and stock returns for the

G-7 countries. To remedy potential caveats associated with the use of standard parametric

techniques in the empirical investigation of the growth-returns nexus, we estimate the long-

run covariance matrix of the two series via kernel-based estimation techniques, which involve

only the choice of a kernel and a bandwidth parameter to estimate the covariance matrix of

the process that equals the spectral density of the process at frequency zero.5 Based then

3Luetkepohl and Poskitt (1996) discuss the problems that arise in causality testing by fitting finite VAR
models to infinite-order processes. The authors prove that the use of standard Wald tests for Granger-causality
can indeed be justified under more general regularity conditions, but in small samples these tests tend to reject
the null hypothesis of no causality more often than indicated by asymptotic significance levels. Additional reasons
that may produce misleading inferences in testing for causality within VARs are related to the time heterogeneity
properties of the vector process under consideration. For instance, if the process does admit a finite-order VAR
representation, but contains unit roots and exhibits cointegration, then some estimated coefficients of the VAR(p)
model converge to nonstandard limiting distributions with a faster rate than T 1/2. In such a case, testing for
Granger causality requires prior knowledge of the number and location of unit roots in the system. See, for
example, Sims et al. (1990), and Toda and Phillips (1993).

4To our knowledge, the only study that has attempted to tackle with this issue by use of a non-parametric
technique is Hassapis (2003), who has applied the Andrews (1991) procedure to estimate the long-run covariance
matrix of output growth and financial variables. The author investigates the relationship between Canadian and
U.S. financial market variables and Canadian growth and finds that as the number of autocovariances that are
assigned a non-zero weight increases, the feedback from selected Canadian or U.S. financial variables (including
stock prices) to future Canadian output growth increases.

5These methods were first proposed by Parzen (1957) and Priestley (1962). Contributions to the covari-
ance estimation literature include among others White (1984), Newey and West (1987, 1994), Andrews (1991),
Robinson (1991) and B.E. Hansen (1992).
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on the derivation of a normal asymptotic approximation of the spectral density matrix of the

process, we are able to derive the asymptotic distribution of the long-run correlation coefficient

between the series at hand and test for its significance. The aggregate correlation coefficient

can be further decomposed into the contemporaneous and temporal cross correlation, in order

to facilitate the analysis of the covariance pattern between growth and returns. We use the

non-parametric methodology proposed by Hong (2001) to perform hypothesis testing. The test

is based on the residual cross-correlation function of the series and is robust to distributional

assumptions, which are likely to be important here since the variables at hand typically exhibit

both autocorrelation and/or conditional volatility effects.

We utilize monthly data from the G-7 countries to investigate the bivariate relationship

between stock price changes and industrial output growth in the context of these non-parametric

methodologies. Until now, existing studies (including, among others, Barro, 1990, Fama, 1990,

and Schwert, 1990), have focused in the impact of current and lagged stock prices on future

output in the US, whereas fewer studies have investigated this pattern in other developed

economies, like Canada (Barro, 1990), Japan, Germany and the UK (Mullins and Wadhwani,

1989), and the G-7 countries (Choi et al., 1999). In line with the empirical literature on the

issue, our objective is not to test alternative theories on the determination of the growth-returns

nexus, but rather to employ a recently developed general econometric framework to reinvestigate

the direction of causality and the strength of the correlation patterns between real stock price

changes and output growth for the G-7 countries.6

In contrast to the bulk of the literature that has established that the major feedbacks emerge

from stock returns to growth within the first six to twelve months, our findings indicate that

the effect may last for up to two or three years. In particular, our results indicate a positive

correlation between stock returns and growth in the G-7 countries (with the exception of Italy).

Decomposing this long-run correlation to allow for contemporaneous and temporal feedbacks, we

6There are several reasons why this relationship might be different between developed countries (Mauro,
2003, Binswanger, 2004). First, the size of some G-7 economies is relatively small compared to the US and the
production of several large firms that are listed in domestic stock markets takes place abroad, which renders
them less sensitive to anticipated developments in domestic real activity. Also, the degree of openess in European
economies and in Canada is a lot higher than in Japan and the U.S. and, consequently, foreign disturbances may
have weakened the association between domestic stock returns and the real sector of the economy. Moreover,
in countries where the stock market regulations are of English origin the growth-returns link should be higher
because managers are less protected from shareholders and, hence, less able to pursue e.g. investment strategies
in the case of a negative market sentiment. In addition, these economies share some common characteristics,
such as greater possibility of takeovers, lower gearing ratios, and smaller role of employees in decision making.
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find that the long-run correlation is mainly triggered by the feedbacks from stock price changes

to future output growth with the strongest feedbacks occurring for US, Japan, Germany, and the

UK. The most interesting finding is that when the number of autocovariances that are assigned

a non-zero weight increases, the feedback from stock price changes to output growth increases,

reaching a peak at a range between eighteen to twenty-four months, whereas weaker effects may

last up to thirty-six months. On the other hand, with the exception of the UK we do not find

any evidence of substantial correlation running from output growth to stock returns. As regards

the correlation patterns from sectoral indices we establish that there are large variations across

sectors and countries with substantial information encountered in distant lags as well.

Our main contention is thus that there are valid grounds for expecting the growth-returns

nexus to be one with long-term impacts. Hence, these findings complement and extend those

reported by Fama (1990), Schwert (1990), Barro (1990), Choi et al. (1999) and other authors

who have reported that there is a strong positive link between stock returns and future industrial

production that reaches its maximum at a forecast interval of approximately 6 to 12 months,

depending on the horizon of returns. Our approach suggests that stock prices are correlated with

upward movements in industrial production at longer intervals as well, while useful information

is also contained in the sectoral stock price indices. Hence, the non-parametric methodologies

utilized here seem to provide additional information about the effect of the financial on the

real sector of the economy that can be obtained by examining the past behavior of the stock

price changes at horizons that are unlikely to be captured by parametric single-equation or

multivariate regressions. Finally, our approach suggests that the finding of a negative correlation

between output growth and future stock price changes, reported by Park (1997) and McQueen

and Roley (1993) for the US economy, is mainly driven by the negative association of US

output growth with future changes in the Basic Industries and the Consumer Goods share

indices. However, with few exceptions this association is not broadly supported by aggregate

or sectoral data from other developed economies.

The rest of the paper is structured as follows. Section 2 outlines the non-parametric pro-

cedures used for the empirical estimation of the growth-returns relationship and section 3 de-

scribes the data at hand. Sections 4 and 5 present and comment the empirical results for the

G-7 countries. Section 6 concludes the paper.
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2. Non-parametric tests for the growth-returns correlation

Consider the ‘long-run’ correlation coefficient between output growth, yt, and real stock

returns, xt. The long-run covariance matrix Ω of the process Zt = [yt, xt]
> is defined as:

Ω ≡

 ωyy ωxy

ωxy ωxx

 = lim
T→∞

T−1
TX
i=1

TX
j=1

E(ZiZ
>
j ) (1)

In practice, only a fraction of the sample autocovariances is used to estimate the asymptotic

variance Ω, by employing a class of kernel estimators and the selection of a bandwidth parameter,

M , with the estimator of Ω given by:

Ω̂T =
TX

j=−T
k(j/M)Γ̂(j) (2)

where Γ̂(j) =


1
T

TP
t=j+1

(ZtZ
T

t−j) for j ≥ 0,

1
T

TP
t=−j+1

(Zt+jZ
T

t ) for j < 0

 , and k(·) is a real-valued kernel.7 The esti-

mator bΩ is a consistent estimator of Ω for unconditionally fourth- or eighth-order stationary
random variables, and for any given bandwidth {M}, such that M → ∞ and M/T 1/2 → 0.

More importantly, this long-run covariance matrix given by (2) is equal to 2π times the spectral

density matrix evaluated at zero, an analogy which enables us to utilise the relevant asymptotic

theory for spectral density estimation. Specifically, under certain regularity conditions, these

nonparametric spectral density estimators have been shown to approximate the normal distrib-

ution.8 The elements of bΩ are jointly normally distributed and this joint distribution enables us
to derive the asymptotic distribution for the long-run correlation coefficient estimate between

the two series of interest, yt and xt, defined as ρ̂xy ≡ ω̂xy√
ω̂xxω̂yy

, with ρ̂xy normally distributed as

7Here, we employ the Quadratic Spectral (QS) kernel that gives a non-zero weight to all the sample cross
correlations and is best with respect to an Asymptotic Truncated Mean Square Error (ATMSE) criterion in the
class K as proved by Andrews (1991). The author, in an extensive Monte Carlo study, reports cases where the
kernel estimators of Ω yield confidence intervals whose coverage probabilities are too low. This problem is not
associated with a poor choice of a specific kernel or bandwidth parameter and is particularly severe when there
is considerable temporal dependence in the data. In such a case, data filtering before estimating Ω may yield
more accurately sized test statistics than standard kernel estimators; see Andrews and Monahan (1992). In the
context of the present study, however, such a data prewhitening is unecessary since both stock price changes and
output growth exhibit strong mean reverting properties.

8See Grenander and Rosenblatt (1953), Anderson (1971), and Priestley (1981). Sufficient regularity conditions

for obtaining such a result is that Zt =
∞

j=0

ψjεt−j , where εt is an i.i.d. process with (E(εt) = 0, E(ε2t ) <

∞, E(ε4t ) <∞,and
∞

j=0

ψj <∞.
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follows (see the Appendix for the detailed derivation):

r
T

M
(ρ̂xy − ρxy) ∼ N

³
0,
¡
1− ρ2xy

¢2 ´
(3)

An advantage of this methodology is that the long-run covariance matrix can be decom-

posed into the contemporaneous covariance matrix G and the temporal covariance matrix Λ

(or Λ>), i.e. Ω = G+ Λ+ Λ>where G ≡

 gyy gxy

gxy gxx

 = E(Z0Z
>
0 ) and Λ ≡

 λyy λyx

λxy λxx

 =
∞P
k=1

E(Z0Z
>
k ). This, in turn, implies that the long-run correlation coefficient ρxy can be decom-

posed as:

ρxy =

µ
gxy√
ωxxωyy

¶
+

µ
λyx√
ωxxωyy

¶
+

µ
λxy√
ωxxωyy

¶
≡ cxy + ryx + rxy (4)

Relationship (4) expresses the long-run coefficient, ρxy, as the sum of the contemporaneous cor-

relation coefficient, cxy, the temporal correlation coefficient, ryx, describing feedbacks from past

output growth to current real stock returns (yt → xt), and the temporal correlation coefficient

rxy that describes feedbacks of the opposite direction (xt → yt).

While we are able to exploit the asymptotic normality of the estimator of the two-sided

long-run covariance matrix and derive the relevant distribution for the long-run correlation

coefficient, formal hypothesis testing on the basis of the contemporaneous correlation coefficient,

cxy, and the temporal correlation coefficients, rxy and ryx is not feasible. The main reason is

that asymptotic normal approximations for the respective components of the spectral density

matrix are not available, since the off-diagonal elements of the one-sided long-run covariance

matrix can not be expressed in terms of periodograms.

To circumvent the lack of formal hypothesis testing on the decomposed correlation coeffi-

cients, we indirectly investigate their significance by testing for the existence of causal relations

in the mean of two series in the context of the non-parametric method put forward by Hong

(2001). In particular, consider again the bivariate stationary and ergodic stochastic process

Zt = [yt, xt]
>. The test is based on the sample cross-correlations function of the standard-

ized residuals and involves two stages. In the first stage, we estimate univariate time-series

models for both the series under scrutiny and in the second stage, we calculate the sample

cross-correlations of the standardized residuals of output growth and real stock returns, buyt and
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buxt respectively.9 The sample cross-correlation function of uyt and uxt (bτx,y(k)) is given by:
bτx,y(k) ≡ bCx,y(k)qbCx,x(0) bCy,y(0)

(5)

where bCx,y(k) =
T−1

PT
t=k+1[buytbuxt−k], k = 0

T−1
PT

t=−k+1[buyt+kbuxt], k < 0
is the sample cross-covariance, bCx,x(0),

bCy,y(0) are the sample variances of the stock returns and output growth, respectively and

T is the sample size. The test statistic, Q, proposed by Hong (2001) is given by the following

formula:

Q =
T
PT−1

j=1 k
2(j/M) ∗ bτ2x,y(j)− C1T (k)p

2 ∗D1T (k)
(6)

where C1T (k) =
PT−1

j=1 (1 − j
T ) ∗ k2(j/M), D1T (k) =

PT−1
j=1 (1 − j

T ) ∗ (1 − j+1
T ) ∗ k4(j/M)

and k(j/M) is a weighting function.10 Under the null hypothesis of no causality and some

appropriate regularity conditions, the Q-test follows asymptotically a N(0, 1) distribution.11

This methodology allows for bivariate conditional mean specification and includes the case of

infinite unconditional variance, which is often encountered in empirical studies on stock returns.

Testing for the significance of the contemporaneous correlation coefficient between two series is

performed by employing the typical sample correlation coefficient, which is also asymptotically

normal (Anderson, 1971); assuming that the true value of the correlation coefficient is q, the

correlation coefficient estimator is then distributed as bqx,y → N
³
q, (1−q

2)2

T

´
.

3. Data

To gauge this empirical relationship between output growth and stock returns, we use ex-

isting measures of output and real composite and sectoral stock price changes for the G-7

countries. Our data set is monthly and covers the period from January 1973 to August 2003.

As a measure of the growth rate of output we use the industrial production index (seasonally

adjusted) from Thomson Financial (obtained by Datastream). Following Fama (1990) and other

authors, real stock price changes are obtained by use of Datastream-calculated composite and

sectoral indices, appropriately adjusted for the inflation rate of the countries under considera-

tion. So, apart from the total market aggregate index and the total non-financial market index,
9In our study, we employ the typical ARMA(p,q)-GARCH(1,1) models, the correct order of which is deter-

mined by means of the Akaike information criterion.
10In the present study, we use the QS kernel.
11Notice that the Q−test is an one-sided test and upper-tailed critical values should be used.
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the following sectoral indices are employed: Financial, Basic Industries, General Industries,

Cyclical Services, Non-Cyclical Services, Information Technologies, Cyclical Consumer Goods,

Non-cyclical Consumer Goods, Utilities.12

4. Empirical evidence

In this section we apply the non-parametric techniques outlined above to examine the em-

pirical relationship between growth and stock returns. We emphasize that, following Fama

(1990), Schwert (1990) and others, we do not try to discriminate among various theoretical

hypotheses. Instead, we implement the estimation and testing strategy outlined in section 2 to

investigate non-parametrically the strength and the direction of correlation between real stock

price changes and output growth for the G-7 countries.

4.1. Long-run correlation between growth and returns

We begin the empirical analysis with the estimates of the long-run correlation between

growth and stock returns. The first column in the upper part of Table 1 reports the relevant

figures for the aggregate market returns at the highest bandwidth examined (36 months). This

choice of bandwidth, i.e. the number of autocovariances that are assigned a non-zero weight,

represents one tenth of our sample and ensures that the majority of the effects have been taken

into account. With the exception of Italy, estimates of the long-run correlation range from

0.488 (Japan) to 0.656 (UK). The second column reports the standard deviation of the point

estimates of the long-run correlation based on (3). As was shown in the previous section, the

variances of the point estimates are inversely related to the true value of the long-run correlation

coefficients. Accordingly, Italy has the lower long-run correlation and thus exhibits the higher

standard deviation of the respective estimate. The next column reports the respective figures

for all the countries. In this respect, the long-run correlation of the rest of the countries is

found to be significantly different from zero.13 Not surprisingly, the only country for which we

cannot reject the null hypothesis of zero long-run correlation is Italy.14 In the same mode, we

12The Datastream codes for the corresponding stock market indices are the following: TOTMKXX, TOTLFXX,
BASICXX, GENINXX, CYSERXX, NCYSRXX, ITECHXX, UTILSXX, CYCGDXX, NCYCGXX, where XX
stands for the country code, i.e. CN (Canada), FR (France), BD(Germany), IT (Italy), JP (Japan), UK and
US. In the same mode, the Consumer Price Index code is the XXI66...CE and the Industrial Production code is
XXI64...F. All the reported results were obtained by programs written in E-views 4.1 and are available from the
authors upon request.
13These tests are performed based on the asymptotic approximation of the distribution of the zero long-run

correlation, which is shown to be standard normal.
14In principle, we could also calculate the range of bandwidths over which we reject the null hypothesis of a zero
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can test whether the estimated long-run correlations are significantly different from any value

of the correlation coefficient. The fourth column reports the results from such hypothesis tests

for different imposed levels of the correlation coefficient for each country chosen on the basis

of the estimated values. In all countries we can not reject the null, i.e. the estimated long-run

correlation is not significantly different from the imposed value. The respective figures are 0.7

for the UK, 0.6 for Canada, France and the US, and 0.5 for Germany and Japan.

Our findings are not far from those derived by Choi et al. (1999) for the G-7 countries

using in-sample cointegration techniques. These authors have established that there is strong

evidence of short-run causality running from stock returns to growth in the cases of US, UK,

Japan, Germany, and Canada, whereas weaker evidence is found for France and no causality

is detected for Italy. In general, these results corroborate and extend the Fama (1990) and

Schwert (1990) conclusions on the important correlation of lagged values of real stock price

changes with output growth in six of the G-7 countries.

4.2. Temporal and contemporaneous feedbacks

Having established a significant long-run correlation between stock returns and growth, we

move on to decompose it into the contemporaneous correlation coefficient, cxy, and the temporal

correlation coefficients, rxy and ryx, that describe feedbacks from past real stock price changes

to current output growth (xt → yt) and in the opposite direction (yt → xt), respectively. The

last three columns in the upper part of Table 1 report these correlation coefficients for the total

market indices for the maximum value of bandwidth (36 months). Our findings suggest that

the contemporaneous correlation is close to zero and, in fact, slightly negative for the majority

of countries. The highest contemporaneous correlation is detected for France and the UK with

estimates reaching 0.12. On the other hand, the estimates of the temporal correlation from

stock returns to growth, rxy, appear to be significant. Specifically, the respective estimates

range from 0.50 (US) to 0.35 (Canada), whereas Italy fails to show any correlation with a low

estimate of 0.19. The results from the temporal correlation from growth to stock returns paint

the opposite picture with most estimates being close to zero (the largest coefficients are observed

for Canada, UK, and the US and range between 0.12 and 0.16).

coefficient. However, the concave pattern of the relevant t-stat with respect to the bandwidth value M renders
such an experiment uninformative for a given sample size. Typically, the null of a zero correlation coefficient
is expected not to be rejected for low and high bandwidths due to a low correlation coefficient and a low T/M
ratio, respectively.
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As outlined in section 2, we can investigate the significance of the temporal correlation by

testing for causal relations in the mean of the series following Hong (2001). Table 2A reports the

results for causality-in-mean running from stock returns to growth, which indicate that there is

a (positive) impact from stock returns to growth. Irrespective of the choice of bandwidth, the

evidence is particularly strong for the US and Germany (in the latter case at bandwidths above

9). On the other hand, the test indicates that stock returns changes pass through Italy and

Japan growth within 3 to 12 months as significant correlation is detected only at low bandwidths.

As far as the UK is concerned, significant correlation is detected within 9 to 24 months. Canada

paints the opposite picture as bandwidths exceeding 18 months are necessary for the detection

of correlation. Interestingly, the only country for which our test fails to indicate any correlation

from stock returns to growth is France.

Regarding the reverse pattern of correlation from growth to stock returns, our results re-

ported in Table 2B do not provide any evidence of association for all the countries at hand,

with the exception of the UK where correlation is detected for bandwidths above 12 months.

This picture is somewhat against the evidence reported by Park (1997) and McQueen and Roley

(1993), who have established a negative, although weak, correlation between output growth and

future stock price changes for the US. Given this apparent discrepancy, we postpone any de-

tailed discussion of these findings for the next subsection, where the presentation of the sectoral

results from the non-parametric long-run correlation coefficient and its decomposed estimates

may shed some further light.

Finally, turning to the contemporaneous part of the decomposed correlation coefficient,

Table 3 displays the relevant values for the countries at hand.15 Following the discussion in

section 2, the Anderson (1971) test uses the original series and follows the standard normal

distribution under the null of no correlation. The null of a zero coefficient can not be rejected

in all countries though only marginally for Canada and France.

An open issue is whether these correlation patterns have been stable over the period under

consideration or whether structural changes have induced shifts in the relationship between

output growth and stock price changes. To explore this possibility, the second (lower) part of

Table 1 presents the corresponding estimates for the post-1987 crash period covering the years

15Notice that the figures are different from the corresponding ones displayed in Table 1 as the latter are scaled
by the related long-run variances.
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1989-2003 for a bandwidth of 18 months (covering approximately ten percent of the sample).

As can be readily seen, the point estimates do not display substantial differences, with the

possible exceptions of Japan (0.27 compared to 0.49 for the whole sample) and Italy (0.37

compared to 0.19). This affects the tests on the null hypothesis of zero correlation, which is not

rejected for Germany, Italy and Japan. As an informal test on the stability of the correlation

coefficients, we also conduct tests of equality of the estimated values with the imposed values for

the whole sample (see fourth column in the upper part of Table 1). In all cases the null cannot

be rejected, which confirms that the correlation coefficients have not changed dramatically for

the subsample investigated.16 Hence, the contemporaneous and the temporal correlations do

not display marked differences with those derived from the whole sample.

Now, to obtain a more in-depth picture of the pattern of the correlation estimates as the

bandwidth increases, we depict in the top left plot of Figures 1 to 7 our estimates of the

correlation coefficients, cxy, rxy and ryx, under increasing values of the bandwidth parameter,

M , for the total market index in the G-7 countries for the period 1973-2003. Specifically, we

allow the bandwidth parameter (i.e. the number of autocovariances that are assigned a non-

zero weight) to take values in the interval [1, 36] by steps of one. In general, the information

content in these Figures shows that when the bandwidth parameter increases, the estimates of

the temporal correlation coefficient rxy describing the feedback from past stock price changes

to output growth increase as well. On the other hand, the estimates of the contemporaneous

correlation coefficient cxy and the temporal correlation coefficient ryx, remain close to zero for

all values of the bandwidth parameter.

Interestingly, the rate of growth of the estimates of rxy does not remain constant over the

whole range of values of the bandwidth parameter M . Moreover, its pattern is not uniform

across countries. In most cases, brxy increases with the correlation function having a concave
form in terms of the bandwidth; this is cleary the case for France, Japan, UK and the US for

bandwidth values below twenty-four. In these countries, brxy remains roughly constant beyond
this point, indicating that it has reached its maximum value and no additional information

can be gained by utilizing more lags of stock price changes. On the other hand, in the case

of Germany, brxy yields additional information up to the point where the bandwidth parameter
16In fact, the point estimates derived from a bandwidth of 36 months are much closer to the estimates reported

for the whole sample; these results are available upon request.
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equals thirty-six, whereas it appears to be stable for values above twelve in Canada. Thus,

although the general picture is consistent with the broad finding that the major feedbacks from

stock price changes to output growth occur within the first six to twelve months, non-negligible

feedbacks can be detected for periods lasting up to three years.

We close this section by noting that the earlier findings by Fama (1990), Schwert (1990)

and other authors have pointed towards a strong positive relation between stock prices and

future industrial production at a two to four quarter forecast interval, depending on the horizon

of calculated returns. As has been shown by Fama (1990), the significance of lags tends to

increase with the horizon of returns, due to their overlapping with future cash flows. These

findings have been reinforced by the results in Estrella and Mishkin (1998) who have found

that the stock market is a useful predictor of output in the US at a two quarter horizon. The

evidence presented here suggests that in the G-7 countries (with the exception of Italy) stock

prices anticipate upward movements in industrial production at longer intervals (lasting up to

three years) as well. The overall picture from the estimates of long-run correlation coefficients

and the relevant hypothesis testing suggests that, as pointed out by Mauro (2003), this long-

term association is stronger in countries with high market capitalization (US, UK), but less

weaker when capitalization is low (Italy).

5. Sectoral estimates

As mentioned in the Introduction, there are several theoretical channels through which

output growth and stock price changes can be interrelated. In addition to the links between

these variables at the aggregate level, which have been investigated extensively in the relevant

literature via parametric methods, stock price indices of individual sectors may also be related

with output. For instance, it is well known that profits tend to grow in line with output in

the long run. So, if profits in certain sectors, and consequently sectoral indices, are highly

procyclical, then useful information may be extracted from stock price changes in these sectors.

Also, given that the stock market value of companies is related to investment projects (q-

theory of investment), information from sectoral stock price changes may vary according to the

sensitivity of sectors with different capital structure to the economic environment.17

We investigate the decomposed long-run correlation between output growth and sectoral

17For instance, Duffee and Prowse (1996) have shown that auto industry stock returns have higher explanatory
power for future GDP than market returns.
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share price changes in Figures 1 to 7. As a first observation, we note that the changes in the

non-financial market share index appear more highly correlated with output growth compared

to the changes in the financial index with the correlation appearing relatively stronger at lower

bandwidths. The temporal correlation coefficient, rxy, rises in a similar manner as the one

obtained by use of the composite market index. Hence, the results derived earlier on are mainly

driven by the changes in the non-financial index that yields a higher correlation with future

output growth.18 As expected, the temporal and the contemporaneous correlation coefficients,

ryx and cxy, appear again insignificant.

Turning to the individual sectoral indices, we observe that their patterns vary across sectors

and across countries. For instance, in the US the estimates of the temporal correlation coeffi-

cient, brxy, take the largest values in the cases of the General Industries, the Cyclical Services,
and the Cyclical Consumer Goods indices. As in the case of the aggregate indices, the band-

widths required range from eighteen to thirty-six months, which implies that the information

content for future growth in these indices is present in distant lags as well. Looking at the other

countries, the Cyclical Consumer Goods appears to take relatively large values too in the cases

of Canada, France, Germany, and Japan. More importantly, the estimated coefficient increases

with the bandwidth in Canada, and Japan indicating that, as in the US, the association be-

comes stronger when more lags are given a non-zero weight. Other noteworthy patterns appear

in Germany for the General Industries and the Utilities indices, which increase substantially as

the bandwidth widens, in Japan for the General Industries index, which takes its largest value

when more than twenty lags are utilized, and in the UK where more than six lags are required

for the long-run coefficient to start increasing. The contemporaneous correlation again is very

close to zero confirming the results obtained from the aggregate indices.

Finally, an interesting feature is that output growth in the US is negatively correlated with

future changes in the Basic Industries share index with the long-run correlation coefficient

reaching its minimum value of -0.2 at a bandwidth of 20 months. A similar negative effect

(though somewhat weaker) appears in the case of the Cyclical Consumer Goods share index in

the US (and also in Canada and France). This evidence implies that a fall in output is associated

with a future rise of US stock prices in these sectors, particularly in the capital-intensive sector

18In interpreting these results one should take into account that the industrial production index has been used
as a measure of output.
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of Basic Industries.19

Our finding of a negative coefficient only in the case of the US Basic Industries index explains

the negative correlation between output growth and future stock price changes, reported by

McQueen and Roley (1993) and Park (1997) for the US economy. Specifically, the capital-

intensive Basic Industries index had a higher weight in the decades of the 70s and 80s and,

thus, is likely to have been strongly affected by adverse developments in US monetary policy in

a less open economic environment. This has driven the negative correlation during an era when

manufacturing output and profits accounted for the largest portion of total output and profits,

but the link has gradually evaporated as other sectoral indices became more heavily weighted

in the total share market index.

6. Conclusions

The bulk of empirical evidence from parametric models has shown that stock price changes

are useful in forecasting growth. However, inference within parametric models will be affected

if some of the underlying assumptions are inappropriate for the dataset at hand. In particular,

long-range dependence may call for a dynamic model with an unusually long lag-structure and,

therefore, the usual practice of using parsimonious models may prove costly in terms of the

desirable properties of estimators and related test-statistics. In this vein, we re-examined the

correlation between stock price changes and output growth in the G-7 countries by employing

non-parametric estimates of the long-run covariance matrix. The most important finding of

the paper is that we have found non-negligible feedbacks from stock returns to growth lasting

for up to three years, which implies that the underlying covariance structure of the two series

evolves at a long-run level as well. Furthermore, we extended our analysis by including sectoral

stock price indices, in order to investigate for possible links at a more disaggregate level, and

we have established that the sectoral indices exhibit substantial variations across sectors and

across countries.

Our results on the long-run links between these variables in the G-7 countries may shed

some light in explaining the poor performance of stock price changes as predictors of future

output growth despite their strong in-sample correlation (see Choi et al., 1999, and the survey

19To some extent, this result is to be anticipated as the growth rate of the industrial production index, used
as a measure of output growth in this study, is more highly correlated with future growth rates of the industrial
stock price index.
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by Stock and Watson, 2003). It is likely that a subsantial portion of information is lost by

the need to estimate parsimonious single-equation and multivariate parametric models, which

in turn reduces their forecasting ability. Hence, although the evidence presented here can only

be interpreted tentatively in terms of forecasting ability, there is some indication that some

predictive content could be found if larger lags of stock price changes are utilized in parametric

specifications aiming at predicting output in the G-7 countries.

The method employed here can also be applied to other cases in which parametric methods

leave empirical questions open. For instance, Thoma and Gray (1998) claim that, contrary to the

view popularly held in the literature, financial variables (money supply and interest rates) do not

provide any predictive power for future industrial growth. The authors note that, given that the

predictive power of parametric models should be evaluated in out-of-sample forecasting, much of

their power is the outcome of specific outliers. The non-parametric empirical strategy used here

can be extended to the estimation and hypothesis testing for the long-run covariance structure

between monetary variables and real activity. Another promising route for further research

involves the links between domestic and international stock portfolios and future output. Dumas

et al. (2003) point out that an open question in the study of international financial markets is

whether stock markets correlations across countries can be explained by economic fundamentals.

Empirical findings on this issue have not been universally conclusive (see Smith, 1999) and the

present methodology could shed some light on the links between variations in international

aggregate or sectoral stock market links and underlying economic variables.
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Appendix: Asymptotic distribution of the long-run correlation coefficient

Here we derive the asymptotic distribution of the long-run correlation coefficient ρ̂xy. Given

that the covariance between any two elements of the spectral density matrix, for example (a, b)

and (c, d), is equal to facfbd + fadfbc, we obtain the following asymptotic distribution for the

elements of bΩ:
r

T

M


ω̂xx − ωxx

ω̂yy − ωyy

ω̂xy − ωxy

 ∼ N

0,


2ω2xx 2ω2xy 2ωxxωxy

2ω2xy 2ω2yy 2ωyyωxy

2ωxxωxy 2ωyyωxy ωxxωxy + ω2xy


 (A1)

In order to derive the asymptotic distribution of the long-run correlation coefficient ρ̂xy ≡
ω̂xyp
ω̂xxω̂yy

we apply the delta method with the transformation vector J equal to the partial

derivatives of ρxy with respect to ωxx, ωyy and ωxy:

J =

·
∂ρ

ϑωxx

∂ρ

ϑωyy

∂ρ

ϑωxy

¸

Specifically, we get that:

∂ρ

ϑωxx
=

∂

µ
ωxy√
ωxxωyy

¶
ϑωxx

=
−ωxy

2ω2xx
√
ωxxωyy

∂ρ

ϑωyy
=

∂

µ
ωxy√
ωxxωyy

¶
ϑωyy

=
−ωxy

2ω2yy
√
ωxxωyy

∂ρ

ϑωxy
=

∂

µ
ωxy√
ωxxωyy

¶
ϑωxy

=
1√

ωxxωyy

Setting Q the asymptotic variance of the Ω matrix in (A1), the asymptotic variance of the

long-run correlation coefficient is calculated as follows:

P = JQJ 0
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After some simple algebra, we have:

P =
(ω2xy − ωxxωyy)

2

ω2xxω
2
yy

= (ρ4xy + 1− 2ρ2xy) = (ρ2xy − 1)2 (A2)

It follows from (A1) and (A2) that:

r
T

M

£
ρ̂xy − ρxy

¤
∼ N

³
0,
¡
1− ρ2xy

¢2 ´

which is equation (3) in the text.
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Table 1. Long-run correlation estimates between output growth (y) and stock price changes (x) 

 
Country Long-Run 

Correlation 
Standard 
Deviation 

t-stat 
Ho: ρxy =0 

t-stat 
Ho: ρxy =ρ 

Contemporaneous 
correlation 

Temporal 
correlation 

x→y 

Temporal 
correlation  

y→x 
Sample period: 1973-2003 

Canada 0.556 0.221 2.536 -0.203 (ρ=0.6) 0.041 0.353 0.162 

France 0.564 0.219 2.536 -0.201 (ρ=0.6) 0.116 0.362 0.086 

Germany 0.491 0.243 2.219 -0.040 (ρ=0.5) -0.021 0.451 0.061 

Italy 0.194 0.309 0.862 -0.034 (ρ=0.2) -0.033 0.190 0.037 

Japan 0.488 0.244 2.216 -0.041 (ρ=0.5) -0.022 0.476 0.034 

UK 0.656 0.183 2.988 -0.158 (ρ=0.7) 0.116 0.422 0.118 

US 0.583 0.211 2.641 -0.083 (ρ=0.6) -0.018 0.498 0.103 

Sample period: 1989-2003 

Canada 0.575 0.210 2.005 -0.130 (ρ=0.6) 0.001 0.278 0.296 

France 0.549 0.219 1.918 -0.254 (ρ=0.6) 0.090 0.321 0.138 

Germany 0.412 0.260 1.439 -0.374 (ρ=0.5) -0.131 0.424 0.119 

Italy 0.371 0.271 1.296 0.562 (ρ=0.2) 0.084 0.285 0.002 

Japan 0.275 0.289 0.961 -0.957 (ρ=0.5) -0.030 0.348 -0.043 

UK 0.565 0.214 1.974 -0.844 (ρ=0.7) 0.033 0.368 0.164 

US 0.648 0.182 2.264 0.239 (ρ=0.6) -0.020 0.395 0.273 

 
Notes: The bandwidth for the 1973-2003 period is 36 months and for the 1989-2003 period is 18 months; see section 2 in text for details. 

 



Table 2A. Hypothesis testing for temporal correlation: from stock price changes to output growth 
Q-test 

Country/Bandwidth 3 6 9 12 18 24 30 36 48 
Canada No No No No Yes** Yes** Yes** Yes** Yes**
France No No No No No No No No No 
Germany No No Yes** Yes** Yes** Yes** Yes** Yes** Yes**
Italy Yes* Yes** Yes* No No No No No No 
Japan Yes** Yes** Yes* No No No No No Yes*
UK No No Yes* Yes** Yes** Yes* No No No 
US Yes** Yes** Yes** Yes** Yes** Yes** Yes** Yes** Yes**

 

Table 2B. Hypothesis testing for temporal correlation: from output growth to stock price changes 
Q-test 

Country/Bandwidth 3 6 9 12 18 24 30 36 48 
Canada No No No No No No No No No 
France No No No No No No No No No 
Germany No No No No No No No No No 
Italy No No No No No No No No No 
Japan No No No No No No No No No 
UK No No No Yes** Yes** Yes** Yes** Yes** Yes**
US No No No No No No No No No 

Notes: Q-test denotes the Hong (2001) test; see section 2 for details.* denotes statistical significance 
at the 5% level and ** at the 1% level.  

 

Table 3. Hypothesis testing for contemporaneous correlation  

Country 
Contemporaneous 

correlation 
qxy 

t-stat 
Ho: qxy =0 

Canada 0.103  1.947 
France 0.099                      1.877 
Germany 0.005                      0.095 
Italy 0.039    0.734 
Japan 0.041  0.774 
UK 0.059  1.128 
US  -0.017                -0.317 

 
            Notes: qxy denotes the Anderson (1971) test; see section 2 for details.  
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Figure 1
CANADA: Decomposed long-run correlation coefficient between output growth and stock price changes
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FRANCE: Decomposed long-run correlation coefficient between output growth and stock price changes
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GERMANY: Decomposed long-run correlation coefficient between output growth and stock price changes
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Figure 4
ITALY: Decomposed long-run correlation coefficient between output growth and stock price changes
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Figure 5
JAPAN: Decomposed long-run correlation coefficient between output growth and stock price changes
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Figure 6
UK: Decomposed long-run correlation coefficient between output growth and stock price changes
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Figure 7
US: Decomposed long-run correlation coefficient between output growth and stock price changes
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