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Abstract 
 
 Based on weekly data of the Dow Jones Country Titans, the CBT-municipal bond, 
spot and futures prices of commodities for the period 1992-2005, we analyze the 
implications for portfolio management of accounting for conditional heteroskedasticity and 
structural breaks in long-term volatility. In doing so, we first proceed to utilize the ICSS 
algorithm to detect volatility shifts, and incorporate that information into PGARCH models 
fitted to the returns series. At the next stage, we simulate returns series and compute a 
wavelet-based value at risk, which takes into consideration the investor’s time horizon. We 
repeat the same procedure for artificial data generated from distribution functions fitted to 
the returns by a semi-parametric procedure, which accounts for fat tails. Our estimation 
results show that neglecting GARCH effects and volatility shifts may lead us to 
overestimate financial risk at different time horizons. In addition, we conclude that 
investors benefit from holding commodities as their low or even negative correlation with 
stock indices contribute to portfolio diversification.  
 
Keywords: volatility shifts, wavelets, value at risk.  
 
1. Introduction 
 
 To date, there is an extensive literature on the behavior of volatility of assets 
returns. Indeed, the GARCH model and its numerous extensions have been widely used to 
account for the existence of conditional heteroskedasticity in financial time series (see, for 
instance, the survey by Poon and Granger, 2003)3. However, less attention has been paid to 
the detection of multiple shifts in unconditional variance over time. For example, 
Lamoureux and Lastrapes (1990) conclude that persistence in variance may be overstated 
by not accounting for deterministic structural breakpoints in the variance model.  
 

                                                 
1 Center for Applied Economics (CEA) at the Department of Industrial Engineering of the University of 
Chile. Email: vfernand@dii.uchile.cl. This manuscript was written at the Institute for International Integration 
Studies (IIIS), Trinity College, Dublin, while the author held a Visiting Research Fellowship during January-
March 2006. Financial support from FONDECYT Grant No. 1050486 and from the IIIS is greatly 
acknowledged. 
2 School of Business and Institute for International Integration Studies (IIIS), Trinity College, Dublin. E-mail: 
blucey@tcd.ie.  
3 Conditional heteroskedasticity means that the variance of a return series changes over time, conditional on 
past information. GARCH models are designed to capture the time-series dynamics of returns, in which we 
observe persistence or serial correlation in volatility.  
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 A relatively recent approach to testing for volatility shifts is Inclan and Tiao 
(1994)’s Iterative Cumulative Sums of Squares (ICSS) algorithm. This algorithm allows for 
detecting multiple breakpoints in variance in a time series. Aggarwal, Inclan and Leal 
(1999) present an application of this procedure to emerging markets over 1985-1995. They 
conclude that most events leading to volatility shifts tended to be local (e.g., the Mexican 
peso crisis, periods of hyperinflation in Latin America), and that the only global event over 
the sample period that affected several emerging markets was the October 1987 crash.  
 
 Another subject, which has received attention in recent research and that also has 
important implications for portfolio management, is the existence of heterogeneous 
investors. In a recent article, Connor and Rossiter (2005) point out that, for the specific case 
of commodity markets, long-horizon traders will essentially focus on price fundamentals 
that drive overall trends, whereas short-term traders will primarily react to incoming 
information within a short-term horizon. Hence, market dynamics in the aggregate will be 
the result of the interaction of agents with heterogeneous time horizons. In order to model 
the behavior of financial series at different time spans, researchers have resorted to wavelet 
analysis (e.g., Ramsey and Zang, 1996, 1997; Li and Stevenson, 2001; Gençay, Whitcher, 
and Selçuk 2003, 2005; Hong and Kao, 2004; Whitcher, 2004; Karuppiah and Los, 2005; 
Connor and Rossiter, 2005; Fernandez, 2005, 2006). This is a refinement of Fourier 
analysis that allows for decomposing a time series into its high-frequency or noisy 
components and its low-frequency or trend components, among many other applications.  
 
 The aim of this article is two fold. First, we analyze whether accounting for 
conditional heteroskedasticity and volatility shifts in asset returns really matters when 
comes to quantifying the potential market risk an investor faces. In doing so, we consider 
different time horizons by resorting a wavelet-based decomposition of Value at Risk (VaR). 
Second, we look at the potential diversification gains involved in investing on commodities 
in terms of a VaR decrease. To our knowledge, no one has conducted similar research.  
 
 This article is organized as follows. Section 2 presents the main methodological 
tools utilized in the empirical section of the article. Section 3 presents some descriptive 
statistics of the data used in the simulations carried out later on. Section 4 presents the 
simulation exercises involving a portfolio primarily composed of stock indices and a 
portfolio that also include spot and futures positions in commodities. We discuss the 
implications of not accounting for correlated volatility and volatility shifts for risk 
quantification. In addition, we focus on the benefits of holding commodities for portfolio 
diversification. Section 5 concludes.  
 
2. Methodology 
 
2.1 The ICSS algorithm 
 

Under Inclan and Tiao (1994)’s ICSS algorithm set-up, a time series of interest has 
a stationary unconditional variance over an initial time period until a sudden break takes 
place. The unconditional variance is then stationary until the next sudden change occurs. 
This process repeats through time, giving a time series of observations with a number of M 
breakpoints in the unconditional variance along the sample: 
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 In order to estimate the number of variance shifts and the point in time at which 

they occur, a cumulative sum of square residuals is computed, ∑
=

ε=
k

1t

2
tkC , k=1, 2, .., n, 

where {εt} is a series of uncorrelated random variables with zero mean and unconditional 
variance 2

tσ , as in (1). Inclan and Tiao define the statistic: 
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 If there are not variance shifts over the whole sample period, Đk will oscillate 
around zero. Otherwise, if there is one or more variance shifts, Đk will departure from zero. 
The ICSS algorithm systematically looks for breakpoints along the sample. A full 
description of the algorithm is given in Inclan and Tiao’s article.  
 
2.2 Wavelet-based betas 
 

Wavelet-variance analysis consists of partitioning the variance of a time series into 
pieces that are associated to different time scales. It tells us what scales are important 
contributors to the overall variability of a series (see Percival and Walden 2000). In 
particular, let x1, x2,..., xn be a time series of interest, which is assumed to be a realization of 
a stationary process with variance 2

Xσ . If )( j
2
X τυ  denotes the wavelet variance for scale 

τj≡2j−1, then the following relationship holds:  
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where the square root of the wavelet variance is expressed in the same units as the original 
data.  
 
 Let ⎣ ⎦jj 2/nn =′  be the number of discrete-wavelet transform (DWT) coefficients at 

level j, where n is the sample size, and let ⎥⎥
⎤
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boundary coefficients4 at level j (provided that jj Ln ′>′ ), where L is the width of the 
wavelet filter. An unbiased estimator of the wavelet variance is defined as 
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 Given that the DWT de-correlates the data, the non-boundary wavelet coefficients at 
a given level (dj) are zero-mean Gaussian white-noise processes.  
 
 Similarly, the unbiased wavelet covariance between time series X and Y, at scale j, 
can be defined as 
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provided that jj Ln ′>′ . 
 
 However, as pointed out by Percival and Walden (2000), the sample properties of 
the DWT variance and covariance estimators are inferior to those of non-decimated discrete 
wavelet transforms, also known as stationary wavelet transforms. The non-decimated DWT 
is a non-orthogonal variant of the DWT, which is time-invariant. That is, unlike the 
classical DWT, the output is not affected by the date at which we start recording a time 
series. In addition, the number of coefficients at each scale equals the number of 
observations in the original time series. A non-decimated form of the DWT is known as the 
maximal overlap DWT (MODWT).5 The unbiased MODWT estimator of the wavelet 
variance is given by 
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where 2

t,jd
~

 is the MODWT-wavelet coefficient at level j and time t, Mj≡n–Lj+1, 

1)1L)(12(L j
j +−−≡  is the width of the MODWT filter for level j, and n is the number of 

observations in the original time series. While there are n MODWT-wavelet coefficients at 
each level j, the first (Lj–1)-boundary coefficients are discarded. (Retaining such boundary 
coefficients leads to a biased estimate).  
 
                                                 
4 The ⎣ ⎦x  and ⎡ ⎤x  terms represent the greatest integer ≤x and the smallest integer ≥x, respectively. 
Boundary coefficients are those that are formed by combining together some values from the beginning and 
the end of the time series.  
5 The scaling )l

~
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 Likewise, the unbiased MODWT estimator of the wavelet covariance can be 
obtained as  
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 In the CAPM model, as proposed by Gençay, Whitcher and Selçuk (2003), the 
wavelet-beta estimator for asset i, at scale j, is defined as 
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where )(ˆ j
2

RR mi
τυ  is the wavelet covariance of asset i and the market portfolio at scale j, and 
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τυ  is the wavelet variance of the market portfolio at scale j.  
 

An R2 for each scale can be computed as follows 
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2.3 Wavelet-based value at risk 
 
 From the empirical representation of the CAPM, we have 
 
 ifmiifi )RR(RR ε+−β+α=− .   k=1, 2,...,k.  (10) 
 
From equation (10), the variance of excess return i and the covariance of excess returns i 
and j are given, respectively, by 
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 The (1–α) %-Value at Risk (VaR) of a portfolio of k assets is then 
 
 ωEββω )'(')(lV)(VaR 2

m0 +σα=α      (12) 
 
where ω is a k x 1 vector of portfolio weights, V0 is the initial value of the portfolio, and 
l(α)≡Φ−1(1−α), where Φ(.) is the cumulative distribution function of the standard normal.  
 
 For an equally-weighted portfolio, such that ωi=1/k ∀ i, the VaR boils down to 
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. That is, for a well-

diversified portfolio, all that matters is systematic risk.  
 
 We use equation (13) to compute the value at risk at different time-scales. In 
particular, the VaR at scale j can be obtained by evaluating equation (13) at the j-scale 
components of the variance of the market portfolio return, the betas of the k stocks, and of 
the variances of the error terms that capture non-systematic risk:  
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The variance of stock i at scale j, )( j

2
i τσ , the beta of stock i return at scale j, )( ji τβ , and 

the variance of the market portfolio at scale j, )( j
2
m τσ , can be computed using equations 

(6) and (8).  
 
2.4 Long-memory processes 
 
 Connor and Rossiter (2005) discuss how to obtain the long-memory parameter of a 
time series from wavelet analysis. Specifically, a time series yt is said to be a long-memory 
process if its autocovariance sequence decays at a slower rate than that of an ARMA 
process. Mathematically, if λs=cov(yt,yt+s), s=−1,0,1, and there exist constants C and β, 

such that 1
Cs

lim s
s =

λ
β∞→ , then yt is long memory process. Furthermore, 1

Cs
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and only if 1
|f|K
)f(Slim 0f =α→ , where α+β=−1, K is a constant, |f|<1/2, and S(f) is the 

spectral density function of the process.  
 
 The exponent α is called the spectral exponent, and it has been shown to equal −2d, 
where d represents the long-memory parameter, as usually referred to in time series 
analysis. Connor and Rossiter point out that d can be estimated from a regression of the 
logarithm of the wavelet variance on the logarithm of the scale. If 0<d<1, yt is a long 
memory process. In particular, if 0<d<0.5, yt is stationary but shocks decay at a hyperbolic 
rate, while if 0.5≤d<1, yt is non-stationary. On the other hand, if −0.5<yt<0 is stationary and 
has short memory. 
 
3. The data 
 
 Our sample consists of weakly returns on the Dow Jones Country Titans (Australia, 
Canada, Germany, Hong Kong, Italy, Japan, The Netherlands, Spain, Sweden, Switzerland, 
and The United Kingdom), the Dow Jones Global 50,6 the Dow Jones Industrial, Moody's 
commodities index7, CBT-municipal bond, CBT-10 year US T-note, LME-spots prices of 
copper, nickel and zinc, and futures prices of corn and wheat. All indices and prices are 
expressed in US dollars and span the period 1992-2005. The data sources are Datastream 
and Ecowin.  
 
 Table 1 presents some descriptive statistics of the data. The returns on the nickel 
spot price and the wheat futures price stand out for their high volatility, measured by the 
interquartile range, followed by the DJ Hong Kong Titan. The least volatile return series are 
those on the Moody’s commodity index, the CBT-municipal bond and the CBT-10 year US 
note. As usual, all return series strongly reject the assumption of normality, according to the 
Shapiro-Wilk and Jarque-Bera tests.  
 
 Given that we are ultimately interested in quantifying systematic risk, we compute 
the beta of each return series for different time horizons (scales). The proxies for the market 
portfolio and the risk-free asset are the DJ Titans Global and the CBT-10 year US note, 
respectively. As Table 2 shows, returns on metals and grains futures display little market 
risk as compared with those on the DJ Country Titans (e.g., Australia and the UK). This is 
particularly so for grains futures, whose betas are close to zero, and sometimes even 
negative, at different time horizon. In general, we observe that for the DJ Country Titans, 
beta tends to increase as the time horizon increases. In other words, the CAPM has greater 
predictive power in the long than in the short run, as Gençay, Whitcher and Selçuk (2003) 
conclude.  
 

                                                 
6 The Dow Jones Global Titans is made up by fifty internationally based and globally oriented companies, 
such as Microsoft, Nestle, Toyota Motor Corp., Time Warner Inc., and Coca-Cola. The Dow Jones Country 
Titans in turn generally represent the biggest and most liquid stocks traded in individual countries.  
7 Moody´s commodity index is an average of eighteen leading commodities, including corn, soybeans, wheat, 
coffee, hogs, steers, sugar, cotton, wool, aluminum, copper scrap, lead, steel scrap, zinc, rubber, hides and 
silver. The index is based on daily closing spot prices.  
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 Recent literature has shown that volatility may exhibit long memory. In order to 
asses whether that is the case for our returns series, we follow Connor and Rossiter’s 
procedure to compute the long-memory parameter. Table 2 presents our results. There is 
some evidence of long memory, particularly in the squared returns on the DJ Titans 
Netherlands, DJ Titans Switzerland and the wheat futures. In addition, for all the absolute 
and squared return series, the estimate of d is less than 1, which suggests that all volatility 
series are stationary.  
 
4. Portfolio simulations 
 

We follow two procedures to quantify the portfolio risk. One consists of fitting a 
generalization of a GARCH model to the individual return series, after accounting for 
structural breaks in volatility. In order to determine such breaks, we utilize the ICSS 
algorithm. The output obtained from the ICSS algorithm is used to construct dummy 
variables, which are incorporated into the variance equation of each return series. Table 4 
reports the volatility shifts detected in the weekly returns. Most series exhibit structural 
breaks around the Asian crisis and at the beginning of the Iraq invasion. Three series do not 
present any shifts at all: the DJ Titan Australia index, the copper spot price, and the wheat 
futures price.  
 

Given that we previously found some evidence of long memory in the returns 
volatility, a standard GARCH model may be inadequate. A possibility would be to utilize a 
fractionally integrated GARCH model. Alternatively, a generalization of the GARCH 
model, which allows for longer memory in the conditional variance than a standard 
GARCH model, may prove suitable. In particularly, we resort to a Power GARCH model 
(PGARCH):  
 
 rt=δ′xt+εt ,  εt=σtzt, zt~IID (0,1), t=1, 2..., T   (16) 

where  

 δ
−

=

δ
−−

=

δ σβ+εγ+εα+α=σ ∑∑ it

q

1j
jitiit

p

1t
i0t )|(| , 

and α0>0, δ>0, αi≥0, i=1,..., p, βj≥0, j=1,..., q and |γi|<1, i=1,..., p.  

 Many GARCH variants can be nested in the PGARCH model. For instance, if δ=2 
and γi=0 ∀i, we have a GARCH model; if δ=1, we have the threshold GARCH model, 
etcetera. For some of our return series, the estimated δ is close to 2, indicating that a 
GARCH model seems satisfactory.8 Given the existence of structural breaks in 
unconditional variance in most return series, we consider a more general function for the 

                                                 
8 We fitted FIGARCH(1,1) models to the return series, but in some cases the sum of the ARCH and GARCH 
coefficients was greater than 1, giving rise to a non-stationary process.  
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conditional variance equation, k

1m

1k
kit

q

1j
jitiit
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1t
i0t d)|(| ∑∑∑

−

=

δ
−

=

δ
−−

=

δ ϖ+σβ+εγ+εα+α=σ , where 

dk is a dummy variable that takes on the value of 1 between dates of breakpoints and zero 
otherwise. If there are m structural breakpoints, m−1 dummy variables are included in the 
conditional variance equation.  
 

The second approach we use to model the behavior of returns consists of a semi-
parametric procedure, which is discussed in Carmona, 2004. Specifically, the tails of the 
distribution can be modeled by means of the generalized Pareto distribution, while the 
empirical distribution can be used to model the center of the distribution. That is, 
parametric and non-parametric approaches are used to model the tails and the center of the 
distribution, respectively.  
 

In order to carry out the simulation exercises, we first form an equally-weighted 
portfolio made up by nineteen assets⎯the DJ Country Titans, The Dow Jones Industrial, 
Moody´s commodity index, the municipal bond, the three metals (copper, nickel, zinc), and 
the grains futures (corn and wheat). The first simulation exercise consists of fitting 
PGARCH models to the returns on the nineteen portfolio assets and simulating returns data 
from the fitted models.9 The simulated data is used at the next stage to compute the 
portfolio Value at Risk for the raw data and the five wavelet scales, as described in Section 
2.3. The same procedure is repeated one hundred times. The second simulation exercise is 
meant to quantify the diversification loss incurred by not investing on the metals and the 
grains. The third and fourth simulation exercises are in the same vein, but they are based on 
the semi-parametric procedure referred to above. The computer code involved in the 
estimation process was written in S-Plus 7.0.  

 
 The simulation results are reported in Table 5. If we look at Panels (a) and (b), 
where the PGARCH models are reported, we see that there is a clear diversification benefit 
from investing on metals and grains. Indeed, for the raw data, the 95-percent weekly VaR 
for a USD 1000-investment on the portfolio made up by the nineteen assets (base portfolio) 
is USD 9.73, whereas for the portfolio excluding the metals and grains the weekly 95-
percent VaR increases to USD 13.21. Now, if we look at different time horizons, we see 
that short-term investors are subject to greater potential losses than long-term investors. For 
instance, for a 8-16 week horizon (scale 3), the 95-percent weekly VaR of the base 
portfolio is USD 3.48, whereas this amounts to only USD 1.69 for a 32-64 week horizon 
(scale 5).  
 
 On the other hand, our simulations based on the semi-parametric procedure show 
that neglecting conditional heteroskedasticity and volatility shifts can lead us to 
overestimate market risk substantially. Indeed, as Panels (c) and (d) of Table 5 show, the 
semi-parametric method yields VaR estimates that are twice as large as those reported in 
Panels (a) and (b), respectively.  
 

                                                 
9 We also fit PGARCH models to our proxies of the market portfolio and the risk-free rate in order to simulate 
returns series for the two of them.  
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5. Conclusions 
 

In this study, we quantify the extent to which modeling conditional 
heteroskedasticity and structural breaks in long-term volatility matters to determine 
systematic risk. In doing so, we compute a wavelet-based measure of value at risk, which 
makes it possible to take account of investors´ heterogeneous time horizons.  

 
Our simulation results, based on weekly data of the Dow Jones Country Titans and 

spot and futures prices of commodities for the period 1992-2005, show that neglecting 
GARCH effects and volatility shifts may lead us to overestimate financial risk 
considerably, at various investment horizons. In addition, we conclude that investors 
benefit from holding commodities—particularly futures⎯as their low or even negative 
correlation with stock indices contribute to portfolio diversification.  

 
A potential extension of this research would be to simulate returns from a 

multivariate distribution rather than from marginal distributions, as assets returns will 
generally exhibit some correlation. Most likely, a smaller number of assets should be 
considered in order to make the estimation process computationally tractable.  
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Appendix: Data description 
 

Abbreviation Description 
DJTIAU DOW JONES AUSTRALIA TITANS 30, USD 
DJTICA DOW JONES CANADA TITANS 40 ,USD 
DJTIBD DOW JONES GERMANY TITANS 30, USD 
DJTIHK DOW JONES HONG KONG TITANS 30, USD  
DJTIIT DOW JONES ITALY TITANS 30, USD 
DJTIJP DOW JONES JAPAN TITANS 100, USD  
DJTINL DOW JONES NETHERLAND TITANS 30, USD 
DJTISP DOW JONES SPAIN TITANS 30, USD 
DJTISW DOW JONES SWEDEN TITANS 30, USD 
DJTICH DOW JONES SWISS TITANS 30, USD 
DJTIUK DOW JONES UK TITANS 50, USD  

DJINDUS DOW JONES INDUSTRIALS 
DJTITAN DOW JONES GLOBAL TITANS 50, USD 
CMDTY MOODY'S COMMODITIES INDEX 

CMB CBT-MUNICIPAL BOND 
T-BILL CBT-10 YEAR US T-NOTE 

COPPER COPPER, SPOT, LME, USD 
NICKEL NICKEL, SPOT, LME, ASK, SETTLEMENT, USD 

ZINC ZINC, SPOT, LME, ASK, SETTLEMENT, USD 
CORN CORN, FUTURES 1-POS, CBT, CLOSE, USD 

WHEAT WHEAT, FUTURES 1-POS, CBT, CLOSE, USD 
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Table 1 Some descriptive statistics of the return series 
 

 DJTIAU DJTICA DJTIBD DJTIHK DJTIIT DJTIJP DJTINL DJTISP DJTISW DJTICH DJTIUK
Min -0.102 -0.131 -0.133 -0.149 -0.131 -0.100 -0.181 -0.119 -0.199 -0.180 -0.107 

1st. Qu. -0.014 -0.011 -0.013 -0.018 -0.017 -0.020 -0.013 -0.013 -0.017 -0.012 -0.012 
Median 0.003 0.003 0.002 0.003 0.003 -0.001 0.002 0.002 0.003 0.002 0.001 
Mean 0.002 0.002 0.001 0.002 0.001 0.000 0.002 0.002 0.002 0.002 0.001 

3rd. Qu. 0.017 0.017 0.019 0.024 0.020 0.018 0.018 0.019 0.022 0.017 0.015 
Max 0.073 0.098 0.138 0.134 0.117 0.150 0.156 0.080 0.142 0.128 0.117 

Interq. range 0.032 0.028 0.033 0.042 0.037 0.038 0.030 0.031 0.039 0.029 0.027 
 

 DJINDUS CMDTY CMB T-BILL DJTITAN COPPER NICKEL ZINC CORN WHEAT
Min -0.092 -0.054 -0.050 -0.029 -0.122 -0.123 -0.192 -0.223 -0.312 -0.245 

1st. Qu. -0.011 -0.006 -0.006 -0.005 -0.011 -0.015 -0.022 -0.013 -0.018 -0.023 
Median 0.002 0.001 0.001 0.000 0.002 0.001 -0.001 0.000 0.000 -0.001 
Mean 0.002 0.001 0.000 0.000 0.001 0.001 0.001 0.001 0.000 0.000 

3rd. Qu. 0.014 0.009 0.007 0.006 0.013 0.017 0.025 0.016 0.016 0.024 
Max 0.098 0.077 0.175 0.029 0.127 0.135 0.254 0.118 0.138 0.216 

Interq. range 0.025 0.015 0.013 0.011 0.024 0.032 0.047 0.030 0.034 0.047 
 

Table 2 Wavelet-based betas of the return series 
 

 Betas R2 
 Raw Scale 1 Scale 2 Scale 3 Scale 4 Scale 5 Raw Scale 1 Scale 2 Scale 3 Scale 4 Scale 5

DJTIAU 0.540 0.518 0.522 0.638 0.612 0.767 0.312 0.263 0.314 0.470 0.528 0.628 
DJTICA 0.533 0.536 0.518 0.659 0.525 0.521 0.352 0.311 0.388 0.450 0.470 0.638 
DJTIBD 0.509 0.493 0.528 0.582 0.482 0.583 0.458 0.424 0.491 0.556 0.485 0.666 
DJTIHK 0.330 0.345 0.350 0.340 0.259 0.264 0.245 0.230 0.299 0.284 0.220 0.286 
DJTIIT 0.366 0.386 0.382 0.263 0.321 0.446 0.274 0.287 0.285 0.166 0.290 0.517 
DJTIJP 0.386 0.368 0.373 0.517 0.406 0.365 0.291 0.244 0.300 0.465 0.318 0.296 
DJTINL 0.559 0.527 0.582 0.645 0.606 0.654 0.508 0.471 0.504 0.609 0.649 0.790 
DJTISP 0.481 0.474 0.469 0.502 0.552 0.552 0.326 0.305 0.312 0.354 0.530 0.561 
DJTISW 0.446 0.437 0.445 0.494 0.551 0.520 0.443 0.421 0.429 0.504 0.646 0.662 
DJTICH 0.574 0.566 0.555 0.660 0.557 0.597 0.472 0.449 0.438 0.572 0.653 0.588 
DJTIUK 0.677 0.644 0.659 0.845 0.905 0.948 0.488 0.473 0.454 0.563 0.709 0.724 

DJINDUS 0.757 0.741 0.710 0.875 0.843 0.807 0.526 0.461 0.543 0.727 0.800 0.837 
CMDTY 0.402 0.408 0.426 0.406 0.436 0.673 0.072 0.067 0.091 0.069 0.067 0.274 

CMB 0.192 0.198 0.282 0.080 -0.040 0.336 0.005 0.005 0.012 0.001 0.000 0.013 
COPPER 0.214 0.253 0.217 0.148 0.119 0.354 0.071 0.082 0.091 0.036 0.027 0.214 
NICKEL 0.143 0.164 0.122 0.158 0.074 0.195 0.064 0.072 0.058 0.078 0.020 0.153 

ZINC 0.207 0.222 0.198 0.159 0.200 0.413 0.062 0.061 0.063 0.036 0.060 0.302 
CORN 0.045 0.034 0.068 0.069 0.010 -0.035 0.004 0.002 0.012 0.011 0.000 0.004 

WHEAT 0.050 0.058 0.082 0.014 -0.044 -0.054 0.006 0.008 0.021 0.000 0.005 0.007 
 
Notes: (1) Scale 1: 2-4 weeks, scale 2: 4-8 weeks scale 3: 8-16 weeks, scale 4: 16-32 weeks, and scale 5: 32-

64 weeks. (2) The wavelet-beta estimate for asset i, at scale j, is computed as 
)(ˆ
)(ˆ

)(ˆ
j
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j
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ji τυ
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Table 3 Long-memory in volatility 
 

 Absolute returns Squared returns 
Series d s.e. d s.e. 

DJTIAU −0.02 0.03 0.04 0.03 
DJTICA 0.08 0.03 0.08 0.03 
DJTIBD 0.08 0.03 0.15 0.03 
DJTIHK 0.05 0.03 0.10 0.03 
DJTIIT 0.07 0.03 0.08 0.03 
DJTIJP 0.06 0.03 0.05 0.03 
DJTINL 0.18 0.03 0.23 0.03 
DJTISP 0.08 0.03 0.12 0.03 
DJTISW 0.11 0.03 0.12 0.03 
DJTICH 0.12 0.03 0.18 0.03 
DJTIUK 0.17 0.03 0.22 0.03 

DJINDUS 0.10 0.03 0.13 0.03 
CMDTY 0.04 0.03 0.07 0.03 

CMB −0.01 0.03 −0.13 0.02 
T-BILL −0.03 0.03 0.00 0.03 

DJTITAN 0.14 0.03 0.22 0.02 
COPPER 0.10 0.03 0.16 0.03 
NICKEL 0.03 0.03 0.07 0.03 

ZINC 0.06 0.03 0.08 0.03 
CORN 0.08 0.03 0.09 0.02 

WHEAT 0.12 0.03 0.21 0.02 
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Table 4 ICSS-volatility breakpoints 

 
DJTIAU DJTICA DJTIBD DJTIHK DJTIIT DJTIJP DJTINL DJTISP 

-- 22-Jul-98  22-Jul-98  29-Sep-93 5-Oct-94  7-Apr-93  12-Feb-97  17-May-95  
 20-Jun-01  23-Apr-03  15-Mar-95 19-Mar-03 10-Sep-97 1-Apr-98  10-Sep-97  
 27-Nov-02  19-May-04  24-Sep-97 19-May-04 17-Mar-99 24-Mar-99  18-Feb-98  
   21-Oct-98  10-Dec-03 10-Jul-02  19-Mar-03  
   10-Oct-01   19-Mar-03   
   5-Dec-01    19-May-04   

 
DJTISW DJTICH DJTIUK DJINDUS CMDTY CMB 

24-Aug-94  7-Jan-98  14-Apr-93  13-Dec-95  6-Jul-94  1-Dec-93  
20-Mar-96  5-Aug-98  7-May-97  26-Mar-97  20-Jul-94  31-May-95  
12-Mar-97  10-Jul-02  8-Jul-98  13-Sep-00  3-Jun-98  7-Jun-95  
29-Jul-98  19-Mar-03  28-Apr-99  19-Mar-03   4-Sep-96  
17-Jul-02  16-Apr-03  10-Jul-02    29-Aug-01  
6-Nov-02   19-Mar-03    9-Oct-02  

19-May-04      4-Dec-02  
          14-Apr-04  

 
T-BILL DJTITAN COPPER NICKEL ZINC CORN WHEAT 

29-Aug-01 9-Feb-94 -- 24-May-00 21-Apr-93 27-Mar-96 -- 
14-Apr-04 1-Oct-97   13-Oct-93 2-Oct-96  

 29-Jul-98   5-Feb-97   
 

Table 5 Value at Risk (VaR) of an equally-weighted portfolio: simulation results 
 

(a) PGARCH(1,1) model accounting for volatility breakpoints (base portfolio)
 Raw data Scale 1 Scale 2 Scale 3 Scale 4 Scale 5 
Average 95%-VaR (USD) 9.73 7.28 4.61 3.48 2.21 1.69 

Std (USD) 0.35 0.24 0.21 0.16 0.13 0.18 
(b) PGARCH(1,1) model accounting for volatility breakpoints, excluding metals and grains 

 Raw data Scale 1 Scale 2 Scale 3 Scale 4 Scale 5 
Average 95%-VaR (USD) 13.21 9.88 6.26 4.72 3.00 2.30 

Std (USD) 0.47 0.32 0.29 0.22 0.18 0.24 
(c) Semi-parametric procedure (base portfolio) 

 Raw data Scale 1 Scale 2 Scale 3 Scale 4 Scale 5 
Average 95%-VaR (USD) 17.42 12.18 8.60 7.16 4.64 3.45 

Std (USD) 0.18 0.14 0.16 0.19 0.17 0.19 
(d) Semi-parametric procedure, excluding metals and grains 

 Raw data Scale 1 Scale 2 Scale 3 Scale 4 Scale 5 
Average 95%-VaR (USD) 23.65 16.53 11.68 9.71 6.30 4.68 

Std (USD) 0.25 0.19 0.21 0.26 0.22 0.26 
 
Notes: (1) In Panels (a) and (c), the equally-weighted portfolio (base portfolio) is made up by the DJ Country 
Titans, The Dow Jones Industrial, Moody´s commodity index, the municipal bond, the three metals (copper, 
nickel, zinc), and the grains futures (corn and wheat). In Panels (b) and (d), the metals and grain are excluded. 
(2) The portfolio investment is USD 1,000 and the VaR is expressed on a weekly basis. (3) The number of 
simulation is 100 in each case. (3) Scale 1: 2-4 weeks, scale 2: 4-8 weeks scale 3: 8-16 weeks, scale 4: 16-32 
weeks, and scale 5: 32-64 weeks. 
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