

Module co-ordinators	Dr Craig Meskell, School of Engineering
What will you learn from this elective	The detailed syllabus is: 1. Introduction to energy supply. Energy flow from raw resource to end use. Variations of energy demand in different countries and correlation with wellbeing. 2. Energy Trilemma: Security of supply, cost, and environmental impact. 3. Units of energy and power 4. Physical principles underlying turbines and heat engines 5. Wind power. Physics of raw resource; physics of conversion to electricity; impact of intermittency. 6. Storage technologies. 7. Tidal power: tidal barrage; tidal streams. 8. Solar power: Photovoltaic; concentrating solar power; biomass. 9. Nuclear power: basic nuclear physics, nature of a
	nuclear power plant, nuclear waste. Energy end use – opportunity for energy reduction.
Student Workload	100-110 hours
Assessment Components	2 hour in person exam plus 3 assignments
Indicative Reading List	David J.C. MacKay, Sustainable Energy – without the hot air. ISBN 978-0-9544529-3-3. Tom Murphy Energy and Human Ambitions on a Finite Planet ISBN 978-0-578-86717-5 Clack, C.T.M., et al., Evaluation of a proposal for reliable low-cost grid power with 100% wind, water, and solar. Proceedings of the National Academy of Sciences of the United States of America, 2017. 114(26): p. 6722-6727. Jacobson, M.Z., et al., Low-cost solution to the grid reliability problem with 100% penetration of intermittent wind, water, and solar for all purposes. Proceedings of the National Academy of Sciences of the United States of America, 2015. 112(49): p.15060- 15065.
Learning Outcomes	 At the end of this module you will be able: to quantify the scale of the energy supply and demand task in Ireland and globally; to state the conflicting drivers of energy policy (i.e. the energy trilemma); to appreciate the significance of energy and power units; to describe and compare various electrical power generation technologies;

•	to estimate the potential contribution of a
	particular technology.

 to think critically about the necessary trade-offs when choosing one technology or another.