Tuberculosis in humans and cattle in Ethiopia: Implications for public health

Stephen Gordon
UCD College of Life Sciences
Aim

- Tuberculosis

 - How can we apply advances in molecular biology to inform disease control?
Historical overview

- Robert Koch, 1882
 - *Mycobacterium tuberculosis*

- Ireland
 - Geary (1930)
 - Seminal review of TB death rates
2008 Deaths: 1.8 million; New cases: 9.4 million
Leading killer of people with HIV
Extrapulmonary TB

Main sites of Extra pulmonary tuberculosis

Central nervous system
- Meningitis

Lymphatics
- Scrofula (of the neck)

Pleura
- Tuberculosis pleurisy

Disseminated
- Miliary tuberculosis

Bones and joints of spine
- Pott's disease

Genito-urinary
- Urogenital tuberculosis
Drug treatment

• Limited drugs for treatment
• Prolonged drug course
 – 6 months, 3 drugs
• Emergence of drug resistance
 – Multi- and Extensively drug resistant (MDR-, XDR-TB)
• Directly Observed Therapy, Short course (DOTS)
Vaccine

- Bacille Calmette et Guérin (BCG)
- Most widely used vaccine in the world
- Protection against pulmonary TB: 0-80%
Ethiopia

- Pop 83 million
- High TB burden
 - 378 new cases/100,000
- 36% extrapulmonary TB
- eTB: Kenya: 17%; Nigeria: 5%; South Africa: 16%
- Why is extrapulmonary TB so high in Ethiopia?
 - HIV co-infection?
Bovine Tuberculosis

• Lung disease
 – caused by *Mycobacterium bovis*

• Infects a range of domestic animals, wildlife and man
 – Transmission to man through drinking infected milk, eating infected raw meat
 – *M. bovis usually linked to extrapulmonary disease*

• Developed countries: disease controlled to protect public health
 – Identify and slaughter infected cattle; compensate farmers
 • Rep. Ireland: €35 million
 • UK £100 million
Ethiopia and bovine TB

• Ethiopia
 – Largest cattle population in Africa

• Move to import “exotic” cattle breeds
 – Improved productivity
 – >Susceptibility to bTB

• Impact on human health?
 – Unpasteurised milk, raw meat
 – Urban areas: 82% of the milk is supplied unpasteurised to consumers

• What is the burden of zoonotic transmission?
• Burden of *M. bovis* infection is unknown
 – Inform public health
• Requires accurate diagnosis
 – Culture
 – Strain differentiation
• Current methods
 – Minimal culture
 – Old biochemical tests
 – Simple molecular test to tell the difference between *M. tuberculosis* and *M. bovis*
• Some data to suggest that ~18% of eTB in Ethiopia due to *M. bovis*
The *M. tuberculosis* complex
M. tuberculosis complex genomics

- Genome: all the DNA in an organism
- *M. tuberculosis* and *M. bovis* highly genetically related
Deleted regions from *M. bovis*

- Comparative genomics
- Identified DNA regions that were
 - deleted from *M. bovis*
 - but present in *M. tuberculosis*
- Regions of difference (RD loci)
- So given an isolate from a TB patient, can now easily tell if it is *M. tuberculosis*, or *M. bovis*.
Loss of DNA through evolution...

<table>
<thead>
<tr>
<th>Hosts</th>
<th>Human</th>
<th>Human?</th>
<th>Human?</th>
<th>Antelope</th>
<th>Seal</th>
<th>Vole</th>
<th>Goat</th>
<th>Cow</th>
</tr>
</thead>
<tbody>
<tr>
<td>Species</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M. tuberculosis</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M. africana subtype 1, clade 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M. africana subtype 1, clade 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M. bovis (Antelope)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M. pinnipedii</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M. microti</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M. caprae</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M. bovis</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
An evolutionary aside...
“For instance, measles and tuberculosis arose from diseases of cattle…”

The research approach

• Determine the extent of bovine TB
 – “Skin-testing” cattle

• Isolate bacteria causing TB in cattle
 – Culture bacteria from lesions identified in cattle carcasses in abattoirs

• Isolate bacteria causing TB in humans
 – Fine needle aspirates from neck lymph nodes from patients with suspected TB lymphadenitis

• Molecular methods
 – What are the strains causing eTB in humans?
 – Same as those causing bTB in cattle?
Abattoirs: Stefan Berg/AHRI
FNAs of patients: Abraham Asseffa
Bovine TB in Ethiopia

• Prevalence survey
 – Extensively raised: 3% of animals have bTB
 • Zebu
 – Intensively raised: 13.5% (some dairy farms ~50%)
 • “Exotics”

• Abattoir samples
 – 32,800 cattle examined
 – ~4% lesions, with 11% of these lesions positive for mycobacteria
 – 50% of culture positives were *M. bovis*
 – ~6% *M. tuberculosis* (!)
Host preference

Diagram showing the evolutionary relationships among different species, with labels for each species at the bottom: Human, Human?, Human?, Antelope, Seal, Vole, Goat, Cow. The diagram includes illustrations of these species.
M. tuberculosis transmission to cattle?
M. tuberculosis transmission to cattle?

Gobena Ameni
Addis Ababa University
Results: FNA samples

- Prior data had suggested ~18% of eTB cases due to *M. bovis*
- *But...*
- Human FNAs
 - >1000 samples; 33% culture positive
 - no *M. bovis*; all *M. tuberculosis*
- Unexpected
 - Humans can be infected with *M. bovis*
Cause of eTB in Ethiopia?

• HIV co-infection?
• Reporting bias?
• New type of *M. tuberculosis*?
 – Molecular characterisation
 – Predilection for extrapulmonary sites?
Economic impact

- Prevalence of bovine TB is relatively low
 - High in dairy farms
 - Vaccination of elite dairy herds?
 - Pasteurisation
 - 82% of the milk is supplied unpasteurised to consumers

- Evidence for transmission of bovine TB to humans lacking

- Public health standpoint, no economic justification for control of bTB
• Human TB
 – High rates of extrapulmonary TB not caused by *M. bovis*

• Bovine TB
 – Greatest impact in intensive farms

• Transmission of human TB to cattle
 – Mode of transmission?
 – Reservoir of human infection?

• Economic impact
Acknowledgements

“Bovine Tuberculosis in the Developing World”

Armauer Hansen Research Institute, Addis Ababa
Addis Ababa University

Veterinary Laboratories Agency, Weybridge

Swiss Tropical Institute, Basel

Trinity College Dublin

International Livestock Research Institute, Nairobi

Imperial College London

Principal Investigator: Douglas Young

Project period: 2005-10
Acknowledgements

• VLA Weybridge, UK
 – Glyn Hewinson
 – Stefan Berg
 – Noel Smith
 – Martin Vordermeier

• Sanger Institute, UK
 – Julian Parkhill
 – Bart Barrell

• Institute Pasteur, Paris
 – Stewart Cole (EPFL)
 – Roland Brosch
 – Thierry Garnier