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Abstract

Creaky voice is used by speakers for a variety of interactive, ex-
pressive and stylistic reasons. As a result the accurate detection
of creaky regions in speech can yield important information not
captured within the propositional content of spoken utterances.
Hence, we describe a new method for automatically detecting
creaky regions following the observation that secondary peaks
occur in the linear prediction residual signal. The proposed ap-
proach was shown to significantly outperform the state-of-the-
art in an objective evaluation on a range of speech databases.
Index Terms: Voice quality, glottal source, creak, vocal fry

1. Introduction

Creak (as well as other voice quality labels such as: glottal fry,
vocal fry and laryngealisation) refers to a voice quality stem-
ming mainly from a distinctive, non-modal laryngeal articula-
tion. Creak typically involves ventricular incursion [1] which
occurs when the ventricular folds press down and slightly cover
the true vocal folds, resulting in an increased mass which pro-
duces a lower frequency of vibration and can result in vibration
also occurring above the level of the glottis. Creak further in-
volves strong adductive vocal fold tension, weak longitudinal
tension and low levels of subglottal pressure [2]. These settings
can be combined with those used for producing modal voice to
get the compound voice quality creaky voice.

This mode of phonation produces dramatically different
acoustic characteristics than those resulting from modal phona-
tion. The most striking features include: extremely long glot-
tal pulse duration and as a consequence, little or no superpo-
sition of formant oscillations between adjacent glottal pulses,
very long glottal closed phase [3] and the presence of secondary
(and at times even tertiary) excitations [4]. These secondary ex-
citations are likely due to ventricular incursion, and, hence, may
be produced slightly above the level of the glottis.

As a result of these characteristics many standard analysis
methods (including Fp tracking, and spectral analysis) are often
unsuitable. For instance, the very low Fj values in creak (where
pulses can occasionally be as long as 100 ms [4]) may be below
the lower limits of many Fp algorithms. As the standard frame
length for various analysis methods is typically no longer than
32 ms, and as at least two glottal periods are required for peri-
odicity information (resulting in a minimum Fp value of 62.5
Hz), analysis of creak segments may not provide any meaning-
ful information.

Consequently, many speech technology applications (e.g.,
statistical text-to-speech synthesis) tend to discard creak seg-
ments following spurious acoustic values. However, creak is
commonly produced in speech for a variety of interactive, ex-
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pressive and stylistic reasons. It is so often produced in utter-
ance final position in Finnish that listeners preferred synthetic
speech containing creak [5]. The use of creak has been shown
to be an important conversational tool in a range of languages,
particularly in regard to turn-taking [6] and hesitations [7]. It
is also thought to allow insights into speaker’s affective and ex-
pressive states [8, 9].

In order to exploit this source of information one requires
the ability to automatically detect creaky regions in speech sig-
nals. To the best of our knowledge, only two approaches have
been proposed in the literature for such a purpose [10, 11],
though several further methods exist for detecting the broader
class, irregular phonation. These two techniques are described
in Section 3.1 and although they are useful for analysing speech
containing creak, in our experience they can at times lead to
excessive false positives.

In the present work, we describe a Resonator-based Creaky
Voice Detection (RCVD) method which emphasises the pres-
ence of secondary peaks in the linear prediction (LP) residual
signal. We provide a comprehensive description of the method
(Section 2) which is then compared to the state-of-the-art in an
objective evaluation using annotated speech data from a number
of speech databases (Section 3).

2. Proposed technique

The proposed technique, called Resonator-based Creaky Voice
Detection (RCVD), arises from the observation that creaky
voice production results in secondary peaks in the LP-residual
signal. These extra peaks can occur due to secondary laryngeal
excitations and also from sharp discontinuities at glottal open-
ing, following a long glottal closed phase.

The aim is therefore to determine the significance of these
secondary excitation pulses in order to detect creaky regions in
speech. The key idea behind our method is that by passing the
LP residual signal through a resonator, secondary peaks will
perturb its output and cause the appearance of a greater amount
of harmonics. To illustrate this, Figs. 1 and 2 display the res-
onator output (described below) for ‘normal’, voiced phonation
and for creaky voice, respectively. In the first case, it is no-
ticed that the residual excitation exhibits major peaks only at
the Glottal Closure Instants (GCIs, [12]). As a result, pertur-
bations between two major excitation peaks are relatively weak
and the oscillating signal at the output of the resonator will con-
tain a small amount of harmonics. On the other hand, for creaky
voice, secondary pulses significantly re-excite the resonator be-
tween two consecutive GCls, leading to perturbations in its out-
put which will be reflected by a greater richness of harmonics.

The workflow of the proposed approach is shown in Fig. 3.
First the residual signal is obtained by Linear Preditive Coding
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Figure 1: Illustration of the output of a resonator excited by the
residual signal of a voiced segment of regular phonation.
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Figure 2: lllustration of the output of a resonator excited by the
residual signal of creaky voice.

(LPC) inverse filtering, using an order of F, /1000 + 2. This
residual excitation is the input of two resonators used for differ-
ent purposes. Both resonators are set using complex-conjugate
poles. One is used for estimating the Fy contour and the other
for measuring the significance of secondary pulses (as shown in
Figs. 1 and 2). Both resonators are centred on the mean fun-
damental frequency (Fo,mean) but use different bandwidths. In
this work, Fo,mean is estimated via the Summation of Resid-
ual Harmonics (SRH, [13]) algorithm available in the GLOAT
toolbox, although this choice is not critical.

For estimating the Fy contour the bandwidth of Resonator
1 was set to 1100 Hz as it gives a reasonable compromise be-
tween avoiding ambiguity with octave jumps (bandwidth too
high) and capturing the spread of Fp values from the Fo mean
often found in creaky parts (which might not be achieved cor-
rectly if the bandwidth is too low). To estimate the local Fp, a
50 ms-long Hanning window is applied to the resonator output
and the corrected autocorrelation function r'(7) is calculated:

(1) = % - autoCorr(7), (1)
where N is the window length (in samples) and 7 is the number
of autocorrelation lags. As in [8], the correction % compen-
sates the decreasing properties of autocorrelation functions as 7
increases. The local glottal period is then determined by the po-
sition of the maximum in ' () after removing the peak centred
ont = 0.

For highlighting secondary excitations, a more pronounced
resonating character is needed and, hence, the bandwidth of
Resonator 2 is set to 150 Hz. To measure the importance of
secondary pulses, the amplitude difference (in dB) between the
two first harmonics (H2 — H1) is computed on the spectrum of
the autocorrelation function, as it allows to enhance harmonic
peaks. Note that H2 — H1 is then filtered by a 100 ms-long
moving average filter to lessen the impact of outlier values.

Fig. 4 gives an example of creaky voice detection using
the proposed method. It can be noted that H2 — H1 in creaky
regions clearly emerges from its values in regular phonation.
Detected creaky parts are then simply obtained by applying a
threshold to H2 — H1 (setting this threshold is discussed in
Section 3.3). As shown in Fig. 4, the H2 — H 1 contour clearly

increases above 0 dB in the creaky region.

In addition, a module of post-processing has been appended
to the workflow presented in Fig. 3 to remove possible detec-
tions in silent and unvoiced parts. For this, silent regions are
detected based on the signal energy and unvoiced segments re-
lying on the zero-crossing rate. For both, 20 ms-long windows
are considered and thresholds have been carefully set so that no

actual creaky regions are removed.
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Figure 4: lllustration of H2 — H1 contour for detecting creaky
regions.

3. Experiments
3.1. Comparison algorithms

In order to evaluate the performance of the proposed method,
we used the algorithms described respectively in [10] and [11]
as a comparison. To the best of our knowledge, these are the
only two methods available in the literature for creaky voice
detection.

3.1.1. Ishi’s method for creaky voice detection [10]

The algorithm described in [10] involves processing the speech
signal band-limited to a frequency range of 100-1500 Hz. Part
of the analysis is carried out on a standard frame-synchronised
basis, and the other part is glottal pulse synchronised following
the measurement of peaks in a ‘very short-term’ power con-
tour, which are used to mark the glottal pulses. Glottal pulses
displaying strong Power Peaks (PwP) in the ‘very short-term’
power contour are considered creak candidates. The frame-
synchronised part involves estimation of an Intraframe Period-
icity (IFP) strength contour which is used for differentiating
‘normal voiced” and creaky voiced regions. This is done by
considering multiples of the strongest peak in the normalised
autocorrelation function taken on 32 ms frames. Next, an in-
terpulse similarity (IPS) measure is used to differentiate un-
voiced and creaky regions. This is done by calculating the nor-
malised cross-correlation function for regions around adjacent
creak candidate glottal pulses. The IPS parameter is the max-
imum cross-correlation value when adjacent pulses are below
100 ms apart.

PwP values above or equal to 7 dB are considered candi-
dates and IFP < 0.5 & IPS > 0.5 are the necessary condi-
tions for the glottal pulse to be consider ‘creak’. Adjacent creak
pulses, below 100 ms apart, are merged to construct the creak
region.

3.1.2. Extension of the Aperiodicity, Periodicity and Pitch
(APP) detector [11]

This method has been proposed in [11] for the automatic de-
tection of irregular phonation, including sounds referred to as
creak, vocal fry, diplophonia, glottalization, laryngealization,
pulse register phonation and glottal squeak [11]. In a first



LPC . I
Inverse Re_sadual’ Resonator 1 OSC.H'I'BHHQ FO estimation
Filtering ignal signal
Speech FO contour
signal
Mean FO Oscillatingl H2-H1 .|, Creaky
Estimation| Fo mean|Resonator 2[ signal | calculation |H2-H1 Thresholding . Gision

Figure 3: Workflow of the proposed technique. The creaky voice decision stems from the harmonic structure produced when Resonator
2 is excited by the LP-residual. Resonator 1 is used to estimate the Fy contour, including creaky regions. Both resonators are centred

on Fo mean but have different bandwidths.

step, the algorithm separates irregular frames from periodic
frames using the periodicity measure of the APP detector. In
a second step, irregular phonation is differentiated from aperi-
odic frames, breathy vowels and voiced fricatives using their
‘dip profile’ on the Average Magnitude Difference Function
(AMDF) in various frequency bands. Finally, the potential con-
fusion with some stops is addressed by calculating the spectral
slope. In our evaluation, we used the original implementation
kindly shared by the authors of this method.

3.2. Experimental protocol

The characteristics of creak can differ considerably across
speakers, so in order to properly evaluate the detection algo-
rithms we used different speech databases. The first three con-
tain instances of creak and include text-to-speech corpora of a
Finnish male speaker (MV, as used in [14]), a Finnish female
speaker (HS, as used in [5]) and an American English male
speaker (ARCTIC-BDL [15]). We also included two further
databases which do not have creaky segments; a Scottish male
speaker (ARCTIC-AWB [15]) and an American female speaker
(ARCTIC-SLT [15]). 50 sentences from each database were
used in the evaluation (250 sentences in total). All speech data
were downsampled to a sampling frequency of 16 kHz.

Human annotation of creaky regions was required to evalu-
ate the performance of detection. The first two authors carried
out this annotation using a similar approach to that described in
[10]. To determine the creaky regions an auditory criterion was
used: a rough quality with the additional sensation of repeat-
ing impulses. However, inspection of waveforms, spectrograms
and Fp contours was used to help guide the annotation. Fur-
thermore, sentences for which a possible ambiguity about the
annotation remained were not considered for the evaluation.

The performance of the methods is evaluated at both the
frame and the event levels. For frames, three metrics are em-
ployed: the True Positive Rate (TPR, also called recall), the
False Positive Rate (FPR), and the F1 score. TPR is the pro-
portion of actual creaky frames that are retrieved. FPR is the
proportion of actual non-creaky frames that are erroneously de-
tected as creaky. The F1 score is a single measure (bound be-
tween 0 and 1) computed using precision and recall. The better
the technique, the higher the TPR and F1, and the lower the
FPR. At the event-based level, the metrics used are the number
of hits, misses and false alarms.

Four techniques are compared in our experiments: Ishi’s
method as described in Section 3.1.1, the APP method de-
scribed in Section 3.1.2, the proposed RCVD approach, and
RCVD with the Post-Processing (PP) removing silent and un-
voiced regions (hereafter called RCVD+PP).

3.3. Results

As a reminder, the proposed RCVD approach makes use of a
threshold applied to H2 — H1 to detect creaky regions. The
influence of this threshold on the F1 score is presented in Fig.
5. Clearly, a threshold of 0 dB gives consistent performance
for all databases, therefore this setting was used throughout the
evaluation. However, to fully explore the optimal setting of this
threshold, further analysis on larger amounts of data is required.
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Figure 5: Impact of the threshold on the creaky voice detection.

The results in terms of the frame level evaluation metrics
are presented for the speech databases containing creak in Fig.
6. Interestingly the RCVD method clearly outperforms the two
comparison algorithms, leading to a significant increase in both
TPR and F1 score, across all databases. Notably for the MV
dataset, Ishis method displayed a surprisingly high level of false
positives. We further examined these false positives and found
that in a large number of instances, the F{ value of the detected
segment was very low (speaker MV has a generally low Fj fre-
quently around 80 Hz), but not low enough for the individual
glottal pulses to be perceived. In these cases the IFP (Section
3.1.1) contour fell below the threshold, leading to creak being
incorrectly detected. In contrast, this was not the case for the HS
database where Ishi’s algorithm and RCVD+PP provide very
low FPR values. Overall, the RCVD+PP technique produced
the lowest level of false positives and the APP-based detection
exhibited the lowest F1 score, mainly due to the low level of true
positives. This can be explained by the fact that this method
detects very short segments of irregular phonation. And even
though these detections are in the middle of a creaky part, most
of it is missed by the algorithm.

Results in terms of event detection are displayed in Table 1.
Considering voices containing creak (BLD, HS and MV), it can
be seen that APP and Ishi’s method produced a high number of
false alarms (except for the female speaker with Ishi’s method),
for the reasons explained above. Although the false alarms for
APP correspond to very short detected segments, this was also
true for its hits and our attempts to apply a post-processing to
remove its FAs while keeping a similar hit rate failed. It is also
worth mentioning that the original implementation of the APP-
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Figure 6: TPR (left), FPR (middle) and F1 scores (right) for the creak detection algorithms on the three databases containing creak.

Table 1: Summary of event level evaluation metrics for the four
algorithms across the 5 databases. Best performance is high-
lighted in bold.

Database | Metric | APP Ishi RCVD RCVD +PP

Misses 22 8 3 3

BDL FAs 215 93 37 27
Hits 47 61 66 66

Misses 59 12 12 15

HS FAs 301 38 89 37
Hits 46 93 93 90

Misses 44 2 7 7

MV FAs 353 920 49 14
Hits 31 73 68 68

AWB \ FAs \ 371 76 33 12
SLT \ FAs \ 122 6 19 4

based technique was designed to detect ‘irregular phonation’
(and not only creaky voice), which can also partially explain its
high proportion of FAs.

Overall, RCVD+PP achieved the best results. The advan-
tage of applying the post-processing (PP) is clearly noted: ex-
cept for three extra missed events on the HS dataset, there were
no additional missed detections, however there was a consider-
able reduction of false alarms. This was also reflected in Fig.
6: at the expense of a minor reduction of TPR, applying PP led
to a clear improvement in the FPR and F1 scores. As shown at
the end of Table 1, the same conclusions hold for voices with no
creak (AWB and SLT). RCVD+PP is clearly the most success-
ful method with only a small number of false alarms. Strikingly,
APP generated a prohibitively high number of false alarms as
did Ishi’s method on AWB (male speaker).

4. Conclusion

This paper presents a Resonator-based Creaky Voice Detec-
tion (RCVD) technique, which focuses on the characteristics of
the secondary excitations typically occurring in creaky speech.
This technique is aimed at characterising the secondary excita-
tion pulses typically occurring in creaky speech, through the use
of a resonator and subsequent harmonic measurement. Com-
pared to the state-of-the-art, the RCVD method consistently
produced better results for the five voices tested with partic-
ularly notable reductions in false alarms (especially for male
speakers) and missed detections.
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