

Sectoral Impacts on Biodiversity

and Ecosystem Services

The impacts of non-indigenous oysters on biodiversity and ecosystem functioning

Dannielle Green

Supervisor: Tasman Crowe (UCD) Collaborators: Carlos Rocha (TCD), Bas Boots (UCD)

Potential impacts of invasive species

Physical structure of oysters

Hard substratum \rightarrow new habitat for colonisation

Complex shell stru

Biological activities of oysters

Environmental context

My objectives

 Characterise potential impacts of Pacific oysters on:
 (a) Biodiversity
 (b) Ecosystem functioning

2. Test whether impacts vary under different environmental contexts and at different oyster abundances

Experiments

Objectives have been addressed using field experiments:

 Expt. 1: Biodiversity and the establishment of a protected biogenic habitat in boulder-fields.

• Expt. 2: Biodiversity and ecosystem functioning of mud-flat and mussel bed habitats.

 Expt. 3: Microbial diversity and functioning in mud-flat habitats.

Experiment 1

• Effects of oysters on boulder-field communities especially the honeycomb worm, Sabellaria alveolata

Experiment 1

 Increasing cover of alive and dead oysters were added onto boulders

n = 7

Reduction of *S. alveolata* with oysters on boulders

Impacts on biodiversity in boulder-fields

Key impacts on boulder-field biota

- The honeycomb worm, Sabellaria alveolata was negatively impacted by oysters.
 <u>– Not due to competition for space</u>
- Biodiversity was enhanced at the lowest cover of living oysters but peaked at greater cover.
- Fucus vesiculosus and Littorina littorea were facilitated by oysters and may have indirectly reduced *S. alveolata* establishment.
- Effects were due to both the physical structure and the biological activities of oysters.

Experiment 2

• Effects of oysters were also assessed in mudflat and mussel beds habitats

Measures of biodiversity

• Epifauna

• Infauna

Measures of ecosystem functioning

Functional measures:

- Porewater nutrient profiles
 - Sediment water interface flux
 - Nutrient turnover rates
- Gas

 Flux rates of CO₂, CH₄ and N₂O

Impacts on biodiversity at L. Swilly

Consistent facilitation of an invasive barnacle, macroalgae and a key grazer in all habitats

Impacts on pore-water ammonium fluxes

Impacts on community respiration

Summary of impacts

- Biodiversity generally increased.
 - but in some cases peaked or declined at greater cover
 - Several taxa were consistently facilitated in all habitats
- Physical structure decreased establishment of a protected biogenic habitat.
- Pore-water nutrient fluxes were altered.
- Community respiration increased with the greatest cover of oysters.

- Likely due to microbial activity (Expt. 3)

Conclusions

- Alteration of nutrient cycling and decomposition rates may lead to nutrient retention and changes in primary productivity.
- These changes may have consequences for ecosystem services, e.g. reduced carrying capacity for aquaculture.
- Some impacts were context dependent.
- Further research is needed to accurately scale these impacts up and predict their effects on ecosystems.

Acknowledgements

HELP and ADVICE

- Ciarán McGonigle, Loughs Agency
- Carlos Rocha, TCD
- Bas Boots, UCD

FIELD and LAB WORK

 Bas Boots, Mark Browne, Amy Haughton, Robert Fitzpatrick, Laila Higgins, Erin Gleeson, Kelly Dunagan, Eoin O'Gorman, Juan Severino, Julien Chopelet, Myriam Callier, Paul Brooks, Angela Gallagher, Jesko Zimmermann, David Blockley, Ciarán McGonigle & colleagues, Francis O'Beirn

FUNDING AGENCIES and SIMBIOSYS coordinators

- Environmental Protection Agency, NDP, SSTI, IRCSET & IRCHSS (via UCD Graduate Research Education Programme in Sustainable Development)
- Jane Stout, Jens Dauber and David Bourke TCD

Funded as part of the Strategy for Science, Technology and Innovation

Any questions?

