
 

Tuesday evening lectures

Non equilibrium thermodynamics of quantum systems

1 Classical Thermodymies

Born in the XIX th century thermodynamics was motivated
by the technological progress of the Industrial Revolution

At its center is the invention of the heat engine which
operatesby converting heat energy flow between two system at

temperatures and work energy flow that generates motion

Scientists Sadi Carnot Heat engine James Joule nature of
heat and work Robert Mayer Hermann von Helmholtz
Rudolph Clausis Lord Kelvin Laws of thermodynamics

1 1 The Laws of Thermodynamics

Classical thermodynamics is a theory of energy conversion in

macroscopic systems The prime example is a gas of
particlescharacterized by macroscopic variables called state

variables such as volume pressure temperature or

particlenumber V P T N

State V P T N

V Volume
P Pressure
T Temperature
N Number of particles



The state of the system is changed by changing the state
variables e g compressing expanding the gas with a

pistonheating cooling with a thermal reservoir

The energy E E V P T N and entropy S 5 V P T N
are called state lunctions and depend on the state of
the system They change when the state changes

T T ΔT Reservoir
Y V DV Piston

Ht
ΔE Energy change
US Entropy change

First law of thermodynamics

The change in energy can be written as

ΔE Q W Q Heat
W Work Ed

We use the convention Q W 0 for heat work entening
the system Note that for a eyelie process ΔE 0 since

E is state cunetion but Q W 0 Heat and work are
NOT state functions



It is tempting to interpret the linst law as a simplestatementof energy conservation This is not true because
the physical meaning of heat and work are only complete
through the second law

Second law of thermodynamics

The change in entropy of a system in contact with a

reservoir at temperature T obeys the inequality

ΔS a T Clausius inequality 1865

or equivalently as an equality

Δs I Q T I 0 Entropy production

I is a measure of irreversibility of physical
µgprocesses with E 0 for reversible processes

The entropy flow is usually defined as

ΔSr Q T Entropy change in the reservoir

Therelove heat is that part of the energy associated
with an entropy flow Work is what remains and
has no entropy flow associated



For a eyelie process ΔE ΔS 0 and thus

I a T WIT 0

The system has to expel heat to its exterior in any
eyelie process Moreover it is impossible to extract
work lon such a process

Consider a system connected to multiple reservoirs

Tn Hot reservoir

Te Cold reservoir

First law ΔE Qa De W

Second law DS I of
If the process is eyelie DE ΔS 0 we have

First law Qe W OH

Second law I

a E



Entropy production for a eyelie process
between two reservoirs

I a

This formula has two very important implications

The efficiency of energy conversion

suppose I want to extract an amount of work W
from the heat flowing from the hot reservoir into
system OH 0 I can define the elliciency

n VI Elliciency of heat to work conversion

The entropy production tells me that

E an a 1 w

T.tl
ne n 0 he 1

II
Carnot Elliciency



Thus the efficiency of energy conversion is limited by
Carnot elliciency Entropy production thus has very
practical implications

The flow of heat

In the absence of work W 0 we have

First law An Oe

second law I OH 11 0

It Te TH then OH 0 Qe 0 In other
words heat blows from hot to cold

1 2 statistical Mechanies

Classical thermodynamics makes no reference to the mienosed
pie state of the system which would involve specifying the
energy momenta and positions of the particles that compose it

Statistical mechanies establishes a bridge between classical
mechanics of particles and thermodynamics



The central idea is the statistical ensemble a collection
of identical systems each one representing a different mi
enoseopie state compatible with the macroscopic state Each

microscopic state microstate is assigned a probability

Gibbs Shannon Entropy

Consider a system with N different microstates each
with a given energy Ei in The Gibbs Shannon

entropy of the system is given by

N

S KB Pi log Pi 0

where Pi is the probability of mienostate i and II Pi 1
red

The Gibbs Shannon entropy is at first sight completely
disconnected from the thermodynamic entropy we have seen

belone It says nothing about energy heat or temperature

It is a purely informational quantity representing theignoranceabout the microscopic state or equivalently the

informationgained by knowing the mienostate with certainty



Gibbs Boltzmann distribution

Suppose we know the average energy of the system

E P E Maenoseopie constraint

Then the distribution Pi that maximizes the Gibbs
Shannon entropy under the constraint of average energy is

p Z e
BE

Gibbs Boltzmann distribution

with B 1 KBT and Z e
BE

ee

This distribution represents a system in thermal
equilibriumat temperature T about which we know only its

average energy Since its entropy is maximal we have
maximum ignorance about its microscopic state In
this sense the thermal state is maximally random

So far we have only dealt with system in thermal

equilibrium In order to describe the evolution of
the system dynamics as it exchanges heat and work
we need equations of motion for the system itself
Quantum physics provides these equations allowing us

to non equilibrium thermodynamics



2 Quantum Physies

Quantum physics was developed from 1400 1930s to

explain the properties of energy and matter that cannot
be explained by classical reasoning

At its core is the following idea energy and matter
particles cannot be described by specific mienoseopie
States position energy momentum but instead by a

superpositions of such microstates

Superpositions are physical we have to assume that they
exist in order to explain the properties of matter and

energy However they are never directly observed in

experimentswe always observe a specific microstate This

gives rise to interesting questions in quantum foundations

Quantum entanglement is a specific type of superposition
between two or more quantum systems Its application
lead to quantum information science with Nobel Prizes
awarded in 2022

2 1 Quantum statistical Mechanies

Density operator

We consider a complex Hilbert space H and linear
operators acting on that space The quantum state
is generally described by a density operator

M M

e Pa 1 2 44 1 Pa 1
α n 2 1



The density operator is the quantum generalization of
the classical ensemble quantum statistical ensemble
where M is the dimension of the ensemble

The set 14 7 21 are called projectors They simply
mean this each state vector 142 E H sometimes called
the wavefunction occurs with probability Pa

e 0 Positive eigenvalues Density operator is
a quantum proba

Tr e 1 Sum of eigenvalues is 1 bility distribution

Tr e 1 The equality holds it and only it
e 1 71 1 pure state Otherwise
the state is called a mixed state

Observables

An observable is a linear operator A obeying At A
i e with real eigenvalues They represent the physical
properties of a quantum system

A Tr AC Average value of A
in the quantum state e

Energy operator Hamiltonian

H i Eili li energy eigenstates microstates

Ei n energies of each state



Dynamies von Neumann equation

The time evolution of the density operator is given by
the von Neumann equation

Von Neumann equation

An isolated closed quantum system evolves according to

df if H t ft von Neumann equation

where H t is the Hamiltonian of the system at time
t and is the commutator The solution is

ect U tito to Ut tito Unitary evolution

U tito T exp act at

where U tito is the unitary evolution operator obeying
U tito Ut tito Ut tito U tito 11 and T is the
time ordering operator

no



Example

Consider a time independent Hamiltonian H and an
initial state given by

e to Ʃ Px 142 to ta to 1
α

We expand 1 ta to in the eigenbasis of H

lta to Ʃ c to i where c to E are
i

complex coefficients Each state vector is therefore a

superposition of energy eigenstates microstates The
density operator is then

ecto ei e Pa listil

et e Pa listil

ei to i il where
iii

Matrix elements of thee to e e Pa
density operatorα

The evolution can then be computed by using

U tito i e
t to

it e
Eilt to



it Cii t li Lil where

ei t e
Ei E t to

e to

The diagonal elements i i represent probabilities to
find the system in a given energy mienostate They
do not evolve in time

The off diagonal elements i i represent superpositions
and have no classical analog they are purely quantum
in nature and evolve in time a K.a coherences

von Neumann entropy

The only ingredient left is a notion of entropy for quantum
States This is achieved through the von Neumann entropy

Entropy of a quantum state

The generalization of the Gibbs Shannon entropy to
quantum systems is given by the von Neumann entropy

See KB Ta e log e 0

1 S e is invariant under unitary evolution
2 S e 0 it e is a pure state
3 S e is equivalent to G S entropy if C is

diagonal in the energy eigenbasis Ea



Just like the Gibbs Shannon entropy the von Neumann

entropy is a purely informational quantity it represents
the lack of knowledge about the actual quantum state

The entropy of a quantum system does not change under

unitary evolution which is totally reversible This does
not mean however that there are no irreversible

processeshappening

Quantum Relative Entropy

Consider the difference between the von Neumann entropy
of two density operators E and F

S e S o KB Tr e loge KB Tr o logo

KB Tr eloge reogs 9ps
KB Tr e loge logo r e logo

O Clr KB Tr e o logo Thus

SEC S 0

O Clo KB Tr e o logo where

Quantum relative entropy

Clr KB Tr e loge logo 0



The relative entropy can be shown to always be
non negative and vanishes it e 5 It is a good
candidate for entropy production as we will see

Driving a thermal system out of equilibrium

Suppose we prepare a quantum system at time to in
a thermal state given by

e to Z e
B

where It is the Hamiltonian

This Hamiltonian is then changed in time according to

H t to 2

Hct arbitrary totz to a Driving
period

H to

Thing
Thermal Non equilibrium

elto ones ect

The change in eveng of the system after the driving
period 2 is given by

ΔE Tr H Ect Tr H ecto



Tr H ect e to

The change in von Neumann entropy is 0 because
the evolution is unitary

Δs S ect S ecto 0

However

Δs O ect to KB Tr ect ecto log ecto

Noting that

log ecto log log e
3H 1092

BH log Z we have

Tr ect ecto log ecto

log Z Tr ect e to B Tr H eat ecto

B Δ E There one

ΔS O ect lecto DE 0

ΔE T O ect to

KBT Tr ect log t log ecto 0



It is impossible to extract energy from a closed
thermal state using a finite driving

A linite driving where the initial and final Hamiltonian
are the same is the quantum equivalent of a eyelie
process There is however a crucial distinction the

final state of the system e t is a non equilibrium
state

The energy change ΔE induced by time dependent driving
is associated with work since there is no reservoir

present during the evolution no entropy flow

W Δ E 0 Impossible to extract work from a

thermal state in a eyelie process

2 2 Open Quantum Systems

A quantum system is in practice open to its environment
The environment is usually too complicated to describe
microscopically and we are only interested in the system

The theory of open quantum system describes how a

quantum system evolves when it interacts w the
environmentThe evolution is not unitary but is given by

a quantum dynamical map


