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Quantum control of excitons for reversible
heat transfer
Conor N. Murphy 1 & Paul R. Eastham1

Lasers, photovoltaics, and thermoelectrically-pumped light emitting diodes are thermo-

dynamic machines which use excitons (electron-hole pairs) as the working medium. The heat

transfers in such devices are highly irreversible, leading to low efficiencies. Here we predict

that reversible heat transfers between a quantum-dot exciton and its phonon environment

can be induced by laser pulses. We calculate the heat transfer when a quantum-dot exciton is

driven by a chirped laser pulse. The reversibility of this heat transfer is quantified by the

efficiency of a heat engine in which it forms the hot stroke, which we predict to reach 95% of

the Carnot limit. This performance is achieved by using the time-dependent laser-dressing of

the exciton to control the heat current and exciton temperature. We conclude that reversible

heat transfers can be achieved in excitonic thermal machines, allowing substantial

improvements in their efficiency.
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E lectron-hole pairs or excitons are essential in many different
devices, forming a working medium that allows for the
conversion between heat, light, and work. Important

examples are photovoltaics1 and photosynthetic reaction cen-
tres2–4, which are thermal machines in which electron-hole pairs
are created from thermal radiation at a high temperature, release
heat to their surroundings at a low temperature, and thereby
generate work. Thermoelectrically pumped light emitting diodes5

and laser cooling6–8 involve similar processes operating in
reverse, with the work done on the electron-hole pairs allowing
them to absorb heat from their surroundings and transfer it to the
electromagnetic field. The key requirements for thermal machines
such as these are high thermodynamic efficiency, η, and high
power, but these requirements conflict and must be balanced
against one another. For a heat engine the ultimate limit is given
by the Carnot efficiency ηc= 1− Tc/Th, corresponding to a
reversible process, but as this implies zero power a more prag-
matic goal is the endoreversible efficiency at maximum power9, or
Chambadal-Novikov efficiency, ηmp ¼ 1� ffiffiffiffiffiffiffiffiffiffiffiffi

Tc=Th

p
< ηc.

The possibility of exploiting quantum effects to enhance the
performance of thermal machines is explored in recent work on
quantum heat engines, covering systems including ion traps10,
electron-tunnelling devices11–15 and micromechanical resona-
tors16–18. For exciton-photon thermal machines, such as reaction
centres, it has been predicted that quantum coherence can lead to
enhanced performance2–4. However, even with such improve-
ments their efficiency would remain well below thermodynamic
limits19. Fundamentally this reflects the absence of methods for
controlling the heat flows between excitons and their surround-
ings. Indeed, to reach the Carnot efficiency these heat flows
should occur reversibly, i.e., over a negligible temperature dif-
ference. This requires not just control of the magnitude of the
heat flows, but also of the exciton temperature.

In this article we show that controlled heat transfers between
excitons and their surroundings can be achieved by driving the
excitons with laser pulses. We consider quantum-dot excitons, for
which quantum control20–22 has been implemented using Rabi
oscillations23–25 and adiabatic rapid passage26–28. These experi-
ments have been modelled by treating the dot as a two-level
system coupled to a phonon bath, within a Born-Markov theory
that accounts for the laser-dressing of the exciton in the Floquet
picture24,29. We combine such a theory with the phase-marker
approach30 to evaluate the heat flow between excitons and pho-
nons, when the former are driven by linearly chirped Gaussian
pulses. We show that heat can be transferred from the phonon
bath to the exciton, and assess the performance of a heat engine
in which this forms the hot stroke. Typical pulses give efficiencies
comparable to the Chambadal-Novikov result. However, for some
pulses we obtain efficiencies up to 95% of the Carnot efficiency,
showing that reversible heat transfers can be achieved. Our work
shows that the amplitude and frequency profile of a driving laser
pulse can be tuned to give complete control of exciton heat flows
and exciton temperatures on picosecond timescales. This opens
up the possibility of reaching thermodynamic efficiency limits in
exciton-photon thermal machines.

Results
Model. We consider an InGaAs/GaAs quantum-dot, driven by
an ultrafast laser pulse with a time-dependent amplitude and
frequency. As illustrated in Fig. 1a, we model the dot as a two-
level system, consisting of the ground state, |0〉, and a single
one-exciton state, |X〉. We consider a low temperature, T= 20
K, and near-resonant excitation, so that other electronic states
may be neglected. Furthermore, we suppose that the driving
pulses are short compared with the radiative lifetime, which is

generally in the nanosecond range31, and so neglect sponta-
neous emission.

In this low-temperature strong-driving regime the dominant
source of dissipation and dephasing is the coupling to acoustic
phonons24,32–35. Including such phonons we have for the
Hamiltonian, in the rotating-wave approximation32,

Ĥ ¼ Ĥs þ Ĥb þ Ĥc

¼ ΔðtÞ̂sz �ΩðtÞ̂sx þ
P
k
ωk b̂

y
k b̂k þ ŝz

P
k
ðgk b̂k þ g�k b̂

y
kÞ:

ð1Þ
Here and in the following we set ħ= 1, and use pseudospin
operators, ŝz ¼ Xj i Xh j � 0j i 0h jð Þ=2 and ŝx ¼ Xj i 0h j þ 0j i Xh jð Þ=2.

The terms involving summations in Eq. (1) correspond to
the energy of the phonon bath, Ĥb, and the exciton-phonon
coupling, Ĥc. The phonon bath is characterised by its spectral
density, JðωÞ ¼ P

k g
2
kδðω� ωkÞ, with the super-Ohmic form

JðωÞ ¼ ð�hA=πkBÞω3e� ω=ωcð Þ2 . We take the value of A= 11.2 fs K−1

measured by Ramsay et al.36, and use a similar value, ħωc= 2meV,
for the cut-off frequency. (The cut-off depends on the geometry of
the dot32. Ramsay et al. report a value of 1.44meV for dots with
height 3–4 nm and base diameter 25–30 nm).

The remaining terms in Eq. (1) form the system Hamilto-
nian, Ĥs, and describe the exciton driven by the laser pulse.
This form is obtained by expressing the electric field of the laser
in terms of its time-dependent amplitude and frequency,
EðtÞ ¼ jEðtÞj cos RωðtÞdt. This leads to a time-dependent Rabi
frequency Ω(t)= d|E(t)|, where d is the transition dipole
moment, and a time-dependent exciton-laser detuning, Δ
(t)= ωx− ω(t). Note that Ĥ is referred to a time-dependent
basis, obtained from the fixed basis (Schrödinger picture) by the

unitary transformation ÛðtÞ ¼ eîsz
R
ωðtÞdt .

As in previous work on adiabatic rapid passage26,27,37,38 we
consider driving by linearly chirped Gaussian pulses, for which
the Rabi splitting Ω(t) is a Gaussian of duration τ,
ΩðtÞ ¼ Ω0e

�t2=2τ2 , and the frequency ω(t) sweeps linearly in
time, ω(t)= (ωx− δ)+ αt. Here α is the temporal chirp, and δ is
the detuning of the pulse centre frequency below the exciton. To
connect with experiments we suppose that the pulse is generated
by applying a spectral chirp a to a bandwidth-limited Gaussian of
pulse area Θ0 and duration τ0, so that29,38–40

τ2 ¼ a2 þ τ40
τ20

; ð2Þ

α ¼ a
a2 þ τ40

; ð3Þ

Ω0 ¼
Θ0ffiffiffiffiffiffiffiffiffiffiffiffi
2πττ0

p :

Controlling heat flows. To explain how exciton-phonon heat
flows can be controlled we recall the mechanism of adiabatic
rapid passage using chirped pulses21, as illustrated in Fig. 1b. This
figure shows a typical example of the evolution of the dressed-
state energies as the driving frequency sweeps through the reso-
nance. These energies are given by the eigenvalues of Ĥs, and are

�hΛðtÞ=2 ¼ ± �h
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ΩðtÞ2 þ ΔðtÞ2

q
=2. Figure 1b shows the situation

for a positively chirped pulse which crosses through the exciton
resonance. In that case the lower energy state at early times in the
rotating frame is the zero exciton state, whereas that at late times
is the one-exciton state. The driving field splits the levels and
generates an avoided crossing at Δ= 0, so that the adiabatic
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evolution takes the dot, initially in its ground state, into the one-
exciton state.

The dressed states are coherent superpositions of the zero and
one-exciton states, and are coupled together by the deformation-
potential interaction with acoustic phonons24,29,32,34,35,39,41,42.
Thus, as illustrated in Fig. 1b, a transition from the lower to the
upper dressed state can occur with the absorption of a phonon of
energy ħΛ, and vice versa with the emission of a phonon39. Such
processes appear in a master equation for the exciton density
matrix, which has been derived using standard techniques29, with
the rates γe= π[nB(Λ)+ 1]J(Λ)A2/2 for emission and γa= πnB(Λ)
J(Λ)A2/2 for absorption. The factor A=Ω/Λ comes from the
mixing of the zero and one-exciton states into the dressed states,
and the phonon occupation function nB and spectral density J are
evaluated at the transition frequency Λ. Note that both A and Λ,
and hence the rates, are time-dependent. Thus, the form of the
driving pulse gives time-dependent control of the phonon
emission and absorption rates. Such control, dubbed dynamic
vibronic coupling43, has been exploited in exciton and biexciton
state preparation making active use of phonons44–48.

To evaluate the heat flows in these processes we have derived
and solved the equation-of-motion for the characteristic function
of the heat distribution30, following the approach used in
Eastham et al.29. This goes beyond previous work on heat
distributions30,49 to allow for the time-dependence of the driving
pulse; more generally, it allows for time-dependent system
Hamiltonians, as is required to model quantum-control
experiments.

Phonon cooling with chirped pulses. Figure 2 shows the pre-
dicted heat transferred from the phonons to the exciton for
driving by a single chirped Gaussian pulse, with the dot starting
in its ground state. The figure shows how the heat depends on the
spectral chirp and pulse area, for τ0= 2 ps, corresponding to a
typical experimental value, and three values of the detuning.

Considering first the resonant case, δ= 0, shown in Fig. 2a, we
see that positively chirped pulses lead to heat transfer from the
phonons to the exciton, i.e., a cooling of the phonon environment
and a heating of the exciton. In contrast, negatively chirped and
unchirped pulses lead to heating of the phonons. This can be
explained in a similar way to the dependence of the exciton
occupation on the sign of chirp39: for positive chirp the ground
state of the dot is continuously connected to the lower-energy
dressed state, so that only phonon absorption is possible, whereas
for negative chirp it is connected to the upper-energy dressed
state, and phonon emission dominates. The implications for heat
transfer follow because, in both cases, the initial density matrix is
thermal in the dressed-state basis. For positive chirp this thermal

state has zero temperature, since only the lower level is populated,
so it absorbs heat from the phonon bath at Tph= 20 K. However,
for negative chirp the initial density matrix has a negative
temperature – it is inverted in the dressed-state basis – and as
such the state emits heat into any positive-temperature
environment50,51.

Figure 2 also shows results for pulses that are detuned from the
exciton transition, such that the frequency at the peak of the pulse
lies either above the exciton (negative detuning, Fig. 2b) or below
it (positive detuning, Fig. 2c). For these parameters the sign of the
heat flow becomes independent of the sign of the chirp. With
positive detuning the heat flow is from the phonon bath to the
exciton, giving a cooling of the phonon environment, whereas for
negative detuning heat flows in the opposite direction. This is
because the parameters are such that the field is not significant
when the frequency sweeps through the exciton, and there is no
avoided crossing. Instead the sign of the detuning determines
which dressed-state has the greatest overlap with the initial
(ground) state, and hence has the largest occupation in the initial
density matrix. This then leads to the observed directions of heat
flow. Phonon absorption by laser-dressed excitons has previously
been predicted by Gauger and Wabnig49. However, these authors
investigated continuous-wave excitation, and did not address the
capabilities of pulsed excitation in time-dependent thermody-
namic processes as evaluated here.

Figure 2 indicates that chirping offers a significant enhance-
ment of heat absorption. For example, for the positively detuned
case shown in Fig. 2c the maximum heat for a= 0 is Q/ħ= 0.63
ps−1, at Θ0= 5.3π, but maximum over the full region shown is
one-and-a-half times bigger, Q/ħ= 0.95 ps−1. This is achieved at
the boundary of the plot, a= 40 ps2, Θ0= 9π.

The transfer of heat from phonons to excitons which occurs
over parts of Fig. 2 could be used to implement a chiller, following
the thermodynamic cycle depicted in Fig. 3a. The first stroke of
this cycle, shown by the solid line, is the heat absorption process
discussed above. This stroke begins with the dot in its ground
state, and ends in a high entropy state with temperature close to
that of the phonon reservoir. This heat-absorption stroke is
assumed to be short, τ � τsp, so that spontaneous emission can
be neglected. However, the dot would then be left undriven for a
time sufficient for spontaneous emission to return it to its ground
state. This second process closes the cycle, which can then be
repeated. The overall effect of the cycle is to extract heat from the
phonon reservoir and deposit it, along with the work done by the
driving laser, in the electromagnetic environment.

The focus of the present work is on the exciton-phonon heat
transfer, and a detailed analysis and optimisation of the
performance of the full cooling cycle has not been undertaken.
However, it is interesting to estimate the cooling power. For our
calculations to be valid we require τsp � τ, so the time for the
cycle envisaged in Fig. 3a is approximately τsp. Thus the cooling
power is Q/τsp (and is maximised by maximising the heat
absorbed by the driving stroke, Q). The specific heat-absorption
stroke depicted corresponds to a pulse with a= 10 ps2, Θ0= 9π,
and τ0= 0.5 ps; we refer to this pulse as the Carnot pulse, and
discuss its properties further below. It gives a heat absorption of
Q/ħ= 1.3 ps−1, which is 72% of the maximum heat that could be
absorbed by the two-level system, kBTph ln 2. Taking τsp= 1 ns
leads to an estimated cooling power of 140 fW. We note that this
is much lower than the estimate of 3 pW given by Gauger and
Wabnig for their steady-state approach49, but that should be
expected because they take a much smaller τsp= 10 ps.

The energy of the Carnot pulse would be 8 pJ for a dot with a
transition dipole moment52 d= 7 × 10−29 Cm at the centre of a
Gaussian beam of waist 1 μm. This is much greater than the

t

ba

Fig. 1 Model and heat transfer mechanism. a Illustration of the system,
consisting of a quantum-dot exciton transition driven by a laser field, and
interacting with a heat bath of phonons. b The mechanism of heat transfer,
in which phonons from the heat bath are absorbed or emitted in transitions
between the laser-dressed exciton states. The graph illustrates the
evolution of the dressed-state energies in a typical adiabatic rapid passage
process
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exciton or photon energy, and therefore also the heat absorption.
The work done by the driving, which is the energy absorbed from
the laser pulse, is W= ħωxpx−Q ≈ ħωxpx, where px is the
probability the dot is left in the excited state. For the Carnot pulse
we find px= 0.63, so the cooling efficiency would be Q/W ≈ 0.1%
with ħωx= 1.5 eV. This is very low because the energy transferred
to the electromagnetic field by the spontaneous emission is
wasted53.

Heat engines and thermodynamic efficiency. We now consider
the thermodynamics of the exciton-phonon heat transfer process
in the context of a heat engine. This will allow us to evaluate the
thermodynamic performance achievable, in a machine using such
a process, in comparison to the fundamental Carnot limit. To do
this we consider the thermodynamic cycle illustrated in Fig. 3b, in
which heat is absorbed from the phonon reservoir at a tem-
perature Tph. For a heat engine the absorbed heat must be
transferred to a reservoir at a lower temperature Tc < Tph. We
suppose that this is done by a reversible process, so that the dot
returns to its original state along the parts of the Carnot cycle
shown by the dotted lines. Since the cycle is closed by a reversible
process any departure from the Carnot efficiency can be attrib-
uted to irreversibility in the exciton-phonon heat transfer. In
principle the cold stroke could be implemented using resonant
electron-hole tunnelling into leads that are colder than the dot; a
similar process (resonant electron tunnelling) has recently been
used to implement an electronic quantum-dot heat engine11.

Our theory allows us to calculate both the heat absorbed from
the hot phonon reservoir, Q, and the entropy of the dot after the
hot stroke, S. Since the initial state for the hot stroke is presumed
to be the dot ground-state, with zero entropy, the cold stroke
must increase the entropy of the cold reservoir by S. The heat
supplied to the cold reservoir is thus TcS, implying the work
done by the cycle will be Q− TcS, and the efficiency η= 1−
TcS/Q. In the following we will take the cold reservoir
temperature Tc= 2.7 K.

Figure 4 shows the dependence of the efficiency on the pulse
area and spectral chirp, for two different unchirped pulse
durations, and two different detunings. The efficiency is shown
as a fraction of the Carnot efficiency at these temperatures, ηc= 1
− Tc/Tph= 0.87. Figure 4a gives the results for zero detuning, as
is usual in an adiabatic rapid passage experiment, and τ0= 2 ps.
In this case we find a peak efficiency of 0.61ηc, at a pulse area Θ0

= 6.3π and spectral chirp a= 8.0 ps2. Although some way below
the Carnot limit this is nonetheless 80% of the Chambadal-

Novikov efficiency at these temperatures, ηmp= 0.63. Figure 4b
shows the effect of introducing a positive detuning. As can be
seen, this leads to considerably higher efficiencies. We note that as
the chirp increases from zero to positive values the efficiency first
rapidly increases, before approaching a limit. A similar behaviour
is seen in the heat transfer (Fig. 2c). We believe this saturation
can be attributed to the way the temporal chirp, α, and pulse
duration, τ, depend on the spectral chirp, as given by Eqs. (2) and
(3). In particular, for large a the temporal chirp α decreases with
a, while τ increases, such that the product ατ asymptotes to 1=τ0.

Figure 4c, d show the corresponding results for a smaller value
of τ0, i.e., a higher bandwidth driving pulse. This leads to higher
efficiencies which, for the positively-detuned case shown in
Fig. 4d, reach 0.95ηc. This maximum is achieved at the upper
boundary of the plot Θ0= 9π, in the region of positive chirp a≳
5 ps2. Thus we conclude that such pulses lead to reversible
exciton-phonon heat transfers.

The reversibility of the heat transfer process can also be
quantified by the entropy generation. Figure 5 shows the
entropy of the dot for two choices of pulse parameters. One of
these, which we refer to as the Carnot pulse, corresponds to a
point in Fig. 4d in the maximum efficiency region, Θ0= 9π, a
= 10 ps2. The other, which we choose for comparison with the
chirped case, is the point of maximum efficiency in Fig. 4b
along the line of zero chirp (Θ0= 6.0π, η= 0.84ηc, Q/ħ= 0.62
ps−1). We also plot, as the dashed line, the corresponding
entropy decrease of the phonon reservoir, Q/Tph, so that the
gap between the two curves is the overall entropy generation.
As one would expect from the difference in efficiencies, the
entropy generation in the Carnot pulse is lower than that in the
unchirped comparator.

Effective temperature and reversibility. To understand why
some pulses induce nearly reversible heat transfers, and others do
not, we consider the temperature of the dot. In general a driven
system such as the dot will not be in a thermal state and, as such,
will not have a well-defined temperature. Indeed in our case the
exciton density matrix is not thermal in the energy eigenbasis.
However, the dressed-state populations do reach thermal equili-
brium with the phonons in the steady-state, because the transi-
tion rates in the dissipator obey detailed balance
γa=γe ¼ e��hΛ=kBTph . This relation holds more generally, suggesting
that in the context of the phonon dissipation we should take the
dressed-state populations, p+ and p−, to define the dot
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temperature, Teff, by equating them to thermal populations,

pþ=p� ¼ e��hΛ=kBTeff : ð4Þ

This definition of temperature is consistent with the form of the
dissipator, and will allow us to interpret the entropy generation in
the dissipative coupling.

Figure 6a shows the temperature of the dot, as a function of
time, for the chirped Carnot pulse and the unchirped comparator
pulse. We also show, in Fig. 6b, the corresponding heat currents
from the phonon bath to the exciton. For the unchirped pulse the
temperature of the dot, which varies during the pulse, is
significantly different from that of the bath while the heat is
flowing. Thus there is entropy generated throughout the process.
For the chirped Carnot pulse, however, there is an interval of time
during which heat flows and the temperature is constant. This is
clearly an isothermal process, but it is also one in which the dot
and bath temperatures are very close. It thus produces very little
entropy, and is nearly reversible. This isothermal part of the heat
absorption process can also be seen on the temperature-entropy

plots in Fig. 3, where the solid lines are results obtained for the
chirped Carnot pulse.

It may be noted that the duration of the chirped Carnot pulse,
τ= 20 ps, is significantly greater than that of the unchirped
comparator, τ= 2 ps. However, we have calculated the maximum
efficiency for an unchirped pulse of these two durations, and find
in both cases the same value (0.82ηc). Thus the increased duration
associated with the chirping does not account for the change in
efficiency.

The reversible isothermal part of the heat absorption process is
made possible by the time-dependence of the dressed-state
energies, which are shown for both pulses in Fig. 6c. For the
chirped Carnot pulse the energy splitting is reducing during the
heat transfer. This would, for an adiabatic process, reduce the
temperature in line with Eq. (4). Here it compensates for the
increase in temperature that would be expected as heat flows from
the phonons to the exciton. The result is an isothermal heat
transfer, which can occur at the bath temperature and hence be
reversible. An alternative view is in terms of the scattering rates:
reducing the splitting increases the ratio between phonon
absorption and emission, moving the detailed-balance equili-
brium for the dressed-state populations, and driving a heat flow
over a negligible temperature difference.

Discussion
In this article we have shown that a theory of open quantum
systems29 can be extended to allow the calculation of quantum
thermodynamic quantities. Unlike previous work30 our theory
applies to time-dependent Hamiltonians and, therefore,
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quantum-control experiments. Using this approach we have
studied the thermodynamics of a quantum-dot exciton driven by
a chirped laser pulse, and evaluated the exciton-phonon heat flow,
entropy generation, and effective exciton temperature during the
pulse. We have predicted that certain pulses, which are readily
accessible experimentally, induce heat transfers from the phonons
to the excitons, and that, in some cases, this heat transfer
approaches the ideal reversible limit. In the context of a heat
engine such a process gives an efficiency close to the Carnot limit.

More generally, our results show that shaped laser pulses can
be used to implement controlled thermodynamic processes for a
single exciton transition interacting with the heat bath of pho-
nons. The laser pulse amplitude allows for modulation of the heat
flow, a feature which is essential for the implementation of
thermodynamic cycles, yet is lacking in physical implementations
of quantum thermodynamic machines. The pulse profile also
allows simultaneous, yet independent, control over the effective
temperature of the dressed-exciton system. Together, these effects
allow for the implementation of any thermodynamic process in
the single-qubit single-reservoir system. For example, adiabatic
heating or cooling could be implemented using weak chirped
pulses, for which the small pulse amplitude implies a small heat
flow. These processes may be useful for high-efficiency photo-
voltaics, by allowing the hot excitons created by light to be cooled
before they release heat. Another application of our work would
be for optical cooling at low temperatures, where the freezing out
of the optic phonons makes anti-Stokes cooling impossible.
However, the heat absorbed in our simulations is approaching the
maximum achievable for a two-level emitter, of order kBTph per
cycle, and the cooling power is limited by the use of a single
transition and the need for the exciton to subsequently decay,
rather than by the exciton-phonon coupling. As such it would be
necessary to scale to an ensemble of emitters to reach a useful
cooling power, and also to reduce the radiative lifetime. This
would be challenging in quantum dots, but could be explored in
other optically addressable solid-state systems, such as colour
centres54.

Photon counting of exciton luminescence under pulsed
excitation25,27, or nanoscale current measurements23,26, provides
direct access to the probability distribution of the exciton occu-
pation, and hence thermodynamic quantities such as entropy.
Our theory could be tested by comparison against such experi-
ments. Some additional thermodynamic information could be

obtained optically: spectrally-resolved luminescence, for example,
could give the dressed-state occupations, and hence the effective
temperature. A direct measurement of the heat based on thermal
effects would not be possible due to their small size. One
approach could be to determine the work done by the driving
pulse from its absorption, and use the first law of thermo-
dynamics to calculate the heat. Another would be to obtain the
heat from theory, fitted and validated using its predictions for
quantities such as luminescence. Overall, however, the quantum-
dot exciton transition seems to be a promising system in which to
study thermodynamic processes at the quantum scale – given the
possibility, predicted here, of using laser pulses to implement and
control thermodynamic processes.

Methods
Generalised Lindblad equation. The Hamiltonian Ĥs may be diagonalized by
introducing rotated spin operators br ¼ Rbs, where R is a rotation by an angle
tan�1 ΩðtÞ=ΔðtÞ about the y-axis. Thus Ĥs ¼ ΛðtÞ̂rz, implying the dressed-state
energies ±Λ(t)/2. This rotation leads to terms in the exciton-phonon coupling, Ĥc,
in which phonon emission or absorption is accompanied by transitions between
the dressed states, since we have

ŝz ¼
Δ

Λ
r̂z þ

Ω

2Λ
r̂þ þ r̂�
� �

:

A master equation with a dissipator corresponding to such processes has been
obtained29 by transforming to the interaction picture with respect to Ĥs þ Ĥb, and
applying the Born-Markov approximation to obtain a time-local equation for the
reduced density matrix of the dot. Undoing the transformation to the interaction
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picture, and discarding rapidly oscillating terms in the result (secularisation) gives a
generalised Lindblad form, with transition operators r̂þ and r̂� , and phonon
absorption and emission rates γa and γe. The coupling to r̂z implies that there can
be pure dephasing terms in the dressed-state basis, however, the corresponding rate
is proportional to the spectral-density at zero frequency, which vanishes in
this case.

Evolution of the heat distribution. To compute thermodynamic quantities, in
particular the heat transferred between the phonons and the exciton, we use the
generating-function or counting-field approach55. This approach has been pre-
viously used30 to obtain heat and work within a Lindblad master equation, for the
case of a time-independent Ĥs. It has also been used to calculate the phonon
counting statistics for an exciton with continuous-wave driving49. We consider the
characteristic function of the heat distribution, which is a two-time correlation
function of the bath energy,

Gðu; tÞ ¼ Tr eiuĤb Ûðt; t0Þe�iuĤb ρ̂ðt0ÞÛyðt; t0Þ
h i

¼ Trρ̂ðu; tÞ:
ð5Þ

Here ρ̂ðu; tÞ is an annotated density matrix, whose time evolution is

ρ̂ðu; tÞ ¼ Ûu=2ðt; t0Þρ̂ðu; t0ÞÛy
�u=2ðt; t0Þ; ð6Þ

with the modified time-evolution operator Ûuðt; t0Þ ¼ eiuĤb Ûðt; t0Þe�iuĤb , and
ρ̂ðu; t0Þ ¼ ρ̂ðt0Þ.

Replacing the standard time-evolution operator with the modified form in the
derivation of the Lindblad master equation29 gives the equation-of-motion for the
annotated reduced density-matrix of the dot, ρ̂sðu; tÞ,

∂

∂t
ρ̂sðu; tÞ ¼ � i ĤsðtÞ; ρ̂sðu; tÞ

� �
� γe r̂þ r̂�; ρ̂sðu; tÞ

� �
þ � 2eþiuΛðtÞ r̂�ρ̂sðu; tÞr̂þ

	 


� γa r̂� r̂þ; ρ̂sðu; tÞ
� �

þ � 2e�iuΛðtÞ r̂þρ̂sðu; tÞr̂�
	 


:

ð7Þ

This is a generalisation of a time-dependent Lindblad form29 to include phase
markers in the dissipator, which account in the expected way for the heat
transferred in the transitions. (We drop terms corresponding to the Lamb shift, as
they would have a negligible effect on our results.) It extends the result of Silaev
et al.30 to allow for time-dependence of Ĥs, which means that the phase markers (as
well as the jump operators and rates) become time-dependent due to the variation
of Λ(t).

Equation (7) is derived using the Born-Markov approximation, so that its
validity requires both weak system-bath coupling, and that the bath memory time
is short compared with certain timescales of the system evolution. For a time-
independent Ĥs these timescales are the inverses of the decay rates, while the bath
memory time is 1/ωc, so that the approach is self-consistent when γa;e � ωc. A

time-dependent Ĥs introduces additional relevant timescales, Hs= _Hs, so that the
validity of the approach additionally requires _Hs=Hs � ωc. Technically this
requirement reflects an approximation in the derivation of the dissipator, in which
the full time-evolution operator, which is a time-ordered exponential, is replaced
by a simpler time-local form. In addition it is necessary, in order to obtain a
Lindblad form, to make the secular approximation in the dissipator, which is valid
where the dynamics induced by the dissipator are slow compared with the inverse
level spacing of Ĥs . All these conditions are well satisfied in our simulations for the
parameters considered here.

We have solved Eq. (7) numerically, and taken Fourier transforms of G with
respect to the counting field u, to obtain the heat distributions. The results in the main
text refer to the mean heat transfer, which can be computed more straightforwardly.

Since the moments of the heat distribution are hQni ¼ 1
in
∂nGðu;tÞ

∂un

���
u¼0

we find from Eq.

(7) that

dhQi
dt

¼ ΛðtÞ γeðtÞρ"ðtÞ � γaðtÞρ#ðtÞ
h i

; ð8Þ

where ρ↑/↓(t) are the occupations of the dressed-states, i.e., the diagonal elements of
the reduced density matrix ρ̂sðtÞ ¼ ρ̂sðu ¼ 0; tÞ in the dressed-state basis. We
calculate the mean heat transferred under the driving pulse by solving Eq. (7) with u
= 0 to obtain the occupations, and then use Eq. (8) to compute the heat. The entropy
of the dot, shown in Fig. 5 and used to compute the efficiency shown in Fig. 4, is
calculated from S ¼ �kB Trρ̂sðtÞ ln ρ̂sðtÞ.

Data availability
The data generated or analysed in this work are included in this published article.

Code availability
The code which generated the data used in this work is available from https://doi.org/
10.5281/zenodo.326482.
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