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Summary
In most situations of practical interest, quantum systems are not isolated from their

surroundings but are interacting with an environment. The importance of such situ-

ations has been highlighted, for example, in the fields of quantum optics, interacting

many-body systems, quantum computation and, as will be the focus of this thesis,

thermodynamics of quantum systems. Scientific interest in the fabrication and con-

trol of small devices has fuelled attention to nonequilibrium thermodynamics of open

quantum systems, and in particular, to detailed understanding of heat transfer in or-

der to minimize wasteful dissipation.

In Part I of this thesis the theory of open quantum systems is introduced. Coupling

with an environment leads to the buildup of correlations and as consequence the dy-

namics of the open quantum system can no longer be described with a unitary time

evolution operator. In many cases of interest the presence of strong coupling between

system and environment and the presence of memory effects make the dynamics of

the system non-Markovian. A numerically exact method based on the path integral

formulation, the time-evolving matrix product operator (TEMPO) algorithm, has re-

cently been developed for retrieving the system reduced density matrix in such cases.

In Part II we use the theory presented in Part I to develop a numerically exact

method to compute the full counting statistics of heat transfer in non-Markovian open

quantum systems, based on the TEMPO algorithm. This approach is applied to the

paradigmatic spin-boson model in order to calculate the mean and fluctuations of

the heat transferred to the environment during thermal equilibration. We show that

system-reservoir correlations make a significant contribution to the heat statistics at

low temperature and present a variational theory that quantitatively explains our nu-

merical results. We also demonstrate a fluctuation-dissipation relation connecting the

mean and variance of the heat distribution at high temperature.

Next, we investigate the nonequilibrium thermodynamics of pure decoherence. In

a pure decoherence process, the system Hamiltonian is in a constant of motion and
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there is no direct energy exchange between the system and its surroundings. Never-

theless, we find the presence of nontrivial heat dissipation as a result of decoherence

alone. We show that the heat distribution for a pure decoherence process corresponds

to a mixture of work distributions of cyclical processes, each conditioned on a state of

the open system. Inspired by recent experiments on impurities in ultra-cold gases, we

demonstrate our general results by studying the heat generated by the decoherence

of a qubit immersed within a degenerate Fermi gas in the lowest band of a species-

selective optical lattice. Finally, we discuss the heat dissipation generated by a single

projective measurement performed on the open system during a pure decoherence

process.
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Introduction & motivation
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1 | Introduction

The dynamics of a system interacting with its environment is studied through the the-

ory of open quantum systems [1]. Examples of open quantum systems include atoms

in a solid [2], spins coupled to thermal baths [3, 4], and excitons involved in biological

processes [5]. More broadly, the relevance of this theory reaches the fields of quan-

tum biology, quantum Darwinism, quantum computation, construction of quantum

thermal machines and a variety of other diverse topics [6–8]. What makes the theory

of open quantum systems widely applicable is the fact that in realistic, experimen-

tally relevant settings, no system can truly be isolated from its surroundings. The

total system composed by the quantum system and its environment is a closed one,

as schematically represented in Fig. 1.1, and therefore its evolution can be defined by

means of an unitary time evolution operator. Due to the coupling with its surround-

ings, however, the time evolution of the reduced density matrix of the open system

alone can no longer be described with an unitary time evolution operator. If such

an interaction satisfies the conditions of the weak coupling limit and the Markov ap-

proximation, then the dynamics of the system is referred to as memoryless and can

be described with a Markovian theory. Specifically, the weak coupling approximation

states that the environment is not influenced by its coupling to the system and there-

fore its density matrix is time independent. The Markov approximation states that

the changes in the environmental state are cancelled before influencing the time evo-

lution of the system [1]. In many cases of interest, however, such conditions are not

satisfied and the presence of memory effects makes the dynamics of the system non-

Markovian. There exist in the literature many different definitions of a non-Markovian
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Figure 1.1: Representation of a system interacting with its surrounding environment. The total
system composed by open system and environment is a closed one.

process [9]. A common case is where the degrees of freedom of the environment are

infinite compared with those of the system, and the environment can be described

as a thermal bath of some constant temperature T. This allows for the study of ther-

modynamic properties of open quantum systems. Non-Markovian behaviour is an

important and so far little explored topic in modern thermodynamics. Its character-

istic feature, information back-flow from the environment to the system, or memory

effects, has been studied in the context of different thermodynamic quantities such as

work [10, 11] and entropy production rate [4]. It is therefore of great interest to study

the thermodynamic properties of a quantum system in regimes that can’t be described

by the Markovian theory, or even in the presence of strong system-environment cou-

pling, where few studies have been so far conducted.

There exist several techniques for studying the dynamics of an open quantum sys-

tem weakly coupled to an environment. The spin-boson model can be solved, for

example, through perturbative calculations in the coupling constant, the Heisenberg

approach, or the expansion method [12]. Some of these techniques in principle al-

ready allow for a study of the dynamics beyond the Markovian regime. However,

strong coupling between the system and the environment precludes the application

of perturbative methods and there exists no general method for solving the dynamics.
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In this case, the system’s reduced density matrix can be retrieved, among other tech-

niques, with the path integral method [13, 14]. The path integral formulation has been

the basis for a recently developed exact numerical method for modelling strongly in-

teracting environments [15, 16].

In the following chapters the formalism with which to compute the non-Markovian

dynamics of an open quantum system is introduced, focusing on the path integral for-

mulation and introducing the TEMPO algorithm, on which we will base our method

for calculating the full counting statistics of heat transfer. Quantum thermodynamic

quantities will be outlined starting from a discussion of classical thermodynamics [17–

19].
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2 | Master equations for open systems

The dynamics of an open quantum system coupled to an environment is generally

derived from the dynamics of the overall closed system that is comprised of both the

open system and its surroundings [1]. The Hilbert space of such a composite system

is a tensor product of the two components’ Hilbert spaces, H = HS ⊗ HB, where

with S and B we denote the degrees of freedom of the open system and environment

respectively. Setting ρ̂ to be the density matrix of the composite system, the reduced

density matrix of the open system ρ̂S is obtained by tracing out the environmental

degrees of freedom,

ρ̂S = TrB[ρ̂], (2.1)

and similarly for the reduced density matrix of the environment, ρ̂B = TrS[ρ̂]. The

total Hamiltonian that governs the overall closed system is

Ĥ = ĤS + ĤB + ĤI , (2.2)

where ĤS is the free Hamiltonian of the open quantum system, ĤB is the free Hamil-

tonian of the environment, and ĤI is the Hamiltonian that describes the interaction

between these two components. In general, Ĥ is time dependent. The dynamics of

the overall closed system is governed by a von Neumann equation whose solution

defines a unitary time evolution operator. From this solution, under a specific set of

assumptions and approximations, a Markovian master equation for the density ma-

trix Eq. (2.1) can be obtained, as discussed in the literature [1, 20]. In the following,

this derivation will be reviewed.
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2.1 Dynamics of a closed quantum system

Let Û(t, t0) be the unitary operator that governs the time evolution of the overall

closed system’s states, defined as |ψ⟩. Then for any time t > t0, the system’s state

is given by |ψ(t)⟩ = Û(t, t0)|ψ(t0)⟩. Inserting the expression for |ψ(t)⟩ into the Schrö-

dinger equation, d|ψ(t)⟩/dt = −iĤ|ψ(t)⟩, gives the equation for the unitary time evo-

lution operator

i
dÛ(t, t0)

dt
= ĤÛ(t, t0). (2.3)

Units where h̄ = 1 are used throughout. The solution to Eq. (2.3) is given by

Û(t, t0) =
←−
T exp

[
−i

∫ t

t0

dτĤ (τ)

]
, (2.4)

where
←−
T is the chronological time-ordering operator, so that the products of time

dependent operators are ordered in a way such that the operator’s arguments are

increasing from right to left. In the case of a time independent Hamiltonian, such as

the one that will be the focus of this work, Eq. (2.4) becomes

Û(t, t0) = exp[−iĤ(t− t0)]. (2.5)

The dynamics of the composite closed system density matrix is then

ρ̂(t) = Û(t, t0)ρ̂(t0)Û†(t, t0). (2.6)

The von Neumann equation of motion is then obtained by differentiating with respect

to time,
dρ̂(t)

dt
= −i[Ĥ, ρ̂(t)]. (2.7)

In classical mechanics, the equivalent of the von Neumann equation is the classical

Liouville equation,
dρ (t)

dt
= L (t) ρ (t) , (2.8)
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whereL is the Liouville operator. Defining the dynamics of the system in terms of a Li-

ouville operator will prove particularly useful when laying out the theory for our nu-

merically exact computational method for calculating quantum statistics of heat trans-

fer. In a quantum mechanical context, the Liouville operator corresponds to the com-

mutator between the density matrix ρ̂ and the total Hamiltonian Ĥ, Lρ → −i[Ĥ, ρ̂].

The solution to the classical master equation Eq. (2.8) is given by

ρ (t) =
←−
T exp

[∫ t

t0

dτL (τ)
]

ρ (t0) , (2.9)

which in the case of a time-independent Hamiltonian yields

ρ (t) = exp [(t− t0)L] ρ (t0) . (2.10)

The solution to the overall closed system’s dynamics is obtained from the initial state

of the density matrix and the form of the total Hamiltonian, and it is the starting point

for deriving the dynamics of the open quantum system [1].

2.2 CPT dynamical maps

The building up of correlations, both classical and quantum, between the open quan-

tum system and its environment, leads in general to a non-unitary time evolution of

ρ̂S. The properties of the dynamical map describing the time evolution distinguish

between different possible types of quantum dynamics, namely Markovian or non-

Markovian [1, 20]. A completely positive (CP), trace preserving, and divisible dy-

namical map defines a Markovian time evolution for the open system [1, 21]. In this

section such a dynamical map will be defined and described. The assumption main-

tained throughout this work is the absence of correlations between open system and

surroundings at initial time,

ρ̂(t0) = ρ̂S(t0)⊗ ρ̂B(t0). (2.11)
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If the state of the environment ρ̂B at a given time t is fixed, there exists a correspon-

dence between the time evolution of the open quantum system and a map Λt acting

from the Banach space of trace class operators T (HS) onto itself, Λt : T (HS) →

T (HS), such that

ρ̂S(t) = Λt ρ̂S (t0) ≡ TrB

[
Û (t, t0) [ρ̂S (t0)⊗ ρ̂B (t0)] Û† (t, t0)

]
. (2.12)

Eqs. (2.1) and (2.6) were used in Eq. (2.12). In order to be a CP-divisible dynamical

map describing the Markovian physical time evolution of a system, Λt must satisfy

the following properties [1, 21]:

• Be a linear map, that is, Λt(αρ̂1 + βρ̂2) = αΛtρ̂1 + βΛtρ̂2 for any two operators

ρ̂1 and ρ̂2, where α and β are real numbers.

• Be trace preserving, that is, TrS[ρ̂S(t0)] = TrS[Λt ρ̂S (t0)] = 1.

• Be completely positive.

• Fulfill the composition law Λt,v = Λt,sΛs,v, for t ≥ s ≥ v.

A linear map that is trace preserving and completely positive is a CPT map. Complete

positivity can be described as follows. The map in Eq. (2.12) is completely positive

if ∀n ∈ N, the extended map (Λt ⊗ In) : T (HS ⊗Cn) 7→ T (HS ⊗Cn) sends pos-

itive operators into positive operators, where an operator ρ̂ is defined as positive if

⟨ψ|ρ̂|ψ⟩ > 0 for all vectors |ψ⟩ in the domain of ρ̂. In other words, complete pos-

itivity requires that the map Λt extends to a space of generic dimension, through a

tensor product with the identity, and remains positive. In the context of quantum sys-

tems, the property of positivity is replaced by the stronger requirement of complete

positivity, in order to guarantee the positivity of the density matrix for systems en-

tangled with other systems [21]. By varying the time parameter t of the map Λt, one

obtains a family of dynamical maps {Λt}t≥0 describing the time evolution of the open

quantum system S. If the one-parameter family of dynamical maps {Λt}t≥0 has, in

addition to being a family of CPT maps, the semigroup property Λt1Λt2 = Λt1+t2 for
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any t1, t2 ≥ 0, as well as Λt=0 = I, then it is a quantum dynamical one-parameter

semigroup. If there exist an inverse map Λ−1
t for any t, then the dynamical map can

be extended to a two-parameter family of dynamical maps defined as Λt,s = ΛtΛ−1
s ,

with the condition Λt,0 = Λt. If the family {Λt,s}t,s is a family of linear, CPT maps that

satisfy the composition law Λt,sΛs,v = Λt,v ∀t ≥ s ≥ v, then the dynamics is defined

as a CP-divisible process and it is Markovian [21].

The Born approximation, the Markov approximation, and the secular approxima-

tion, defined in the next sub-section, are the physical conditions sufficient for the CPT

maps describing the dynamics of the reduced system to form a quantum dynamical

semigroup [1].

2.3 Approximations and Markovian master equation

The assumption of a weak coupling between an open system and its environment is

referred to as the Born approximation [1]. It implies that the environment reduced

density matrix ρ̂B is weakly influenced by its coupling to the open system ρ̂S(t), and

can be approximated to be constant in time, so that the initial condition Eq. (2.11) is

satisfied ∀t. The density matrix of the overall composite system is then always ap-

proximated to a tensor product ρ̂ (t) ≈ ρ̂S (t)⊗ ρ̂B.

In general, the state of the open system S depends upon its past evolution. A

second relevant approximation can be made in weak coupling regime, referred to as

the Markovian approximation [1]. It assumes that the correlation functions of the

environment decay quickly with respect to the time scale over which the open sys-

tem evolves, therefore not retaining memory of the system’s previous states. In other

words, the changes in the environment that are notwithstanding the constant density

matrix ρ̂B are cancelled before influencing the time evolution of the open system. The

open system S loses memory of its previous states and the time evolution is referred

to as a memoryless process. Applying both the Born and the Markov approximation

(jointly referred to as Born-Markov approximation) leads to the Markovian quantum
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master equation for the system’s density matrix [1]. The Markovian master equation

does not yet, however, imply that the dynamics of system S is described by a quantum

dynamical semigroup. In order to guarantee this, a third approximation is necessary.

This last approximation is referred to as the secular approximation. It assumes that

in weak coupling regime, the frequencies in the interaction picture that are much

larger than the frequency scale defined by the coupling strength, give rise to fast os-

cillating terms that decay quickly with respect to the time evolution scale, and can be

discarded [1]. These three approximations, together, define a Markovian process de-

scribed by a quantum dynamical semigroup of CPT maps. Moreover, the Markovian

master equation can be expressed in the well known Lindblad form.

2.3.1 Lindblad form of the Markovian master equation

With the Born, Markov and secular approximations, the one-parameter family of dy-

namical maps {Λt}t≥0 is a quantum dynamical semigroup for which a semigroup gen-

erator K can be found [20]. Then, by definition of a generator of a semigroup,

Λt = exp [(t− t0)K] . (2.13)

Note that Kmust be time-independent by definition. The Markovian master equation

for the reduced system density matrix is obtained by differentiating Eq. (2.12) and

Eq. (2.13) with respect to the parameter t,

dρ̂S(t)
dt

= Kρ̂S(t). (2.14)

By comparison with the Liouville master equation (2.8) for the composite closed sys-

tem, it can be seen that the superoperator K is a generalization of the Liouville opera-

tor L. By taking the spectral decomposition of the initial environment density matrix

ρ̂B (t0) = ∑α λα|ϕα⟩BB⟨ϕα|, the dynamical map can be written in terms of its orthonor-
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mal eigenvectors {|ϕα⟩B} and non-negative real eigenvalues {λα}, as

ρ̂S(t) = Λtρ̂S(t0) = ∑
α,β

Ŵαβ (t, t0) ρ̂S(t0)Ŵ†
αβ (t, t0) , (2.15)

where we define the operators Ŵαβ (t, t0) =
√

λβ ⟨ϕα| Û (t, t0)
∣∣ϕβ

〉
B that satisfy

∑α,β Ŵ†
αβ (t, t0) Ŵαβ (t, t0) = IS. Setting a complete basis of orthonormal operators of

the Liouville space {F̂i}, i = 1, 2, ...N2, where N = dim(HS), such that the scalar

product between two elements of the basis is defined as
〈

F̂i, F̂j
〉
= TrS[F̂i F̂†

j ] = δij,

the operators Ŵαβ (t, t0) can be expanded as Ŵαβ (t, t0) = ∑N2

i=1 F̂i

〈
F̂i, Ŵ†

αβ (t, t0)
〉

. It

follows that the action of the dynamical map Eq. (2.15) is

ρ̂S(t) = Λtρ̂S(t0) =
N2

∑
i,j=1

cij (t, t0) F̂i ρ̂S(t0)F̂†
j , (2.16)

where the coefficients cij are defined as cij (t, t0) = ∑α,β

〈
F̂i, Ŵ†

αβ (t, t0)
〉 〈

F̂j, Ŵ†
αβ (t, t0)

〉∗
,

and form the elements of a positive Hermitian matrix.

As an infinitesimal generator of a semigroup, K is by definition [1]

Kρ̂S = lim
ϵ→0

1
ϵ
[Λϵ ρ̂S − ρ̂S] . (2.17)

By means of Eq. (2.16), the action of the generator K is then

Kρ̂S = −i[ĤS, ρ̂S] +
N2−1

∑
i,j=1

aij(t0)

(
F̂iρ̂S F̂†

j −
1
2

{
F̂†

j F̂i, ρ̂S

})
. (2.18)

Here we have defined the coefficients

aij(t0) = lim
ϵ→0

cij(ϵ, t0)

ϵ
, (2.19)

aiN2(t0) = lim
ϵ→0

ciN2(ϵ, t0)

ϵ
, (2.20)

aN2N2(t0) = lim
ϵ→0

(cN2N2(ϵ, t0)− N)

ϵ
, (2.21)
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for i, j = 1...N2 − 1, and introduced the Hermitian operator ĤS = (F̂† − F̂)/2i, where

F̂ =
(

1/
√

N
)

∑N2−1
i=1 aiN2(t0)F̂i. The coefficients aij(t0) are the elements of a positive

matrix that can be diagonalized by means of an appropriate unitary transformation

u. We define γk(t0) to be the non-negative diagonal elements, k = 1, ..., N2 − 1. Then

Eq. (2.18) leads to the most general form for a generator of a quantum dynamical

semigroup, known as the Lindblad equation,

dρ̂S

dt
= −i[ĤS, ρ̂S] +

N2−1

∑
k=1

γk(t0)

(
Âkρ̂S Â†

k −
1
2

{
Â†

k Âk, ρ̂S

})
. (2.22)

The operators Âk are defined by the unitary transformation F̂j = ∑N2−1
k=1 ukj Âk, and are

referred to as the Lindblad operators. The second term in Eq. (2.22) is the dissipator

operator D(ρ̂S). The terms γk(t0) are relaxation rates for the decay modes of the open

system.

2.4 Definition and relevance of non-Markovianity

It has been discussed how the time evolution of a quantum system defined by a quan-

tum dynamical semigroup of CPT, divisible maps is a Markovian process [21]. The

Gorini-Kossakowski-Sudarshan-Lindblad theorem states that a process is Markovian

if and only if its master equation can be written in the form of Eq. (2.22) [22]. For time-

dependent equations, the terms ĤS(t), Âk(t) and γk(t, t0) are generally time depen-

dent as well. One must then add the condition that, in the Lindblad master equation,

γk(t, t0) ≥ 0 for any time t and every k in order to have a Markovian dynamics [21, 22].

It follows that a non-Markovian dynamics arises every time the relaxation rates be-

come negative at any point during the process. If the Born-Markov approximation is

not satisfied, for example because the environmental correlation times are not small in

comparison with the open system’s relaxation and decoherence times, or because the

coupling between the open system and the environment is strong, the system cannot

be described by a dynamical semigroup.
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The presence of non-Markovianity in a system can be detected through quantities

called witnesses of non-Markovianity [21]. A witness is a quantity that always van-

ishes for a Markovian dynamics, but might or might not vanish for a non-Markovian

one. An example of a witness of non-Markovianity is the trace distance, which mea-

sures how much two states are distinguishable from one another. Non-Markovianity

can be interpreted as a growth of distinguishability [23]. Since the loss of distin-

guishability is caused by a flow of information from the open system to the environ-

ment, its growth can be interpreted as a flow of information from the environment

back to the open system. Quantum relative entropy can also be used as a witness of

non-Markovianity [21].

While the Lindblad theory introduced here has many applications in the field

of open quantum systems, it presents several limitations when applied to quantum

thermodynamics. In some of the more promising experimental realisations of quan-

tum heat engines, heat transfer is accomplished in strong coupling between systems

of spins and reservoirs. An example is provided by the recent experiment consist-

ing of a single spin heat engine coupled to a harmonic oscillator flywheel, where

the spin polarisation is controlled via optical pumping, implying strong incoherent

coupling between spin and reservoirs [24]. Moreover, research has shown that non-

Markovian effects can be used to extract work from a single bath via quantum mea-

surements [25, 26]. Quantum correlations, whose build up can lead to non-unitarity

and to non-Markovian system dynamics, are linked to the enhancement of work ex-

traction and the efficiency of quantum heat engines, as has been studied, for example,

in Otto cycles [27]. Non-Markovian information back-flow has been linked to quan-

tum thermodynamic quantities, for example, it has been shown that memory effects

lead to revivals of extractable work [10]. Due to its experimental importance in the

development of quantum heat engines, the thermodynamics of non-Markovian pro-

cesses will be the main topic of discussion in the following chapters.
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3 | Numerical methods for quantum

dynamical calculations of open

systems

There exist several techniques for calculating the non-Markovian dynamics of an open

system. However, many of these techniques rely on some form of approximation.

These include the expansion method, the projection-operator method, and embed-

ding methods, among others [12]. One of the main limitations of these methods is that

they cease to be valid for strong coupling between open system and environment, or

require a truncation in the expansion of a perturbative parameter to a certain order.

Path integral methods, on the other hand, allow for a framework which does not re-

quire any particular assumptions on the coupling. The only necessary assumptions

are that of a factorized initial state, and that of an initial thermal equilibrium state for

the environment. Path integral methods are the basis of numerical simulations of non-

Markovian quantum dynamics. Here we will focus on one particular exact numerical

method, the TEMPO algorithm.

3.1 Feynman’s path integral formulation

The path integral formalism [28, 29] was first used by Feynman and Vernon to calcu-

late the dynamics of a system coupled to a second external system, such as a measur-

ing apparatus [30]. It is based on the consideration that given two space-time points
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Figure 3.1: Representation of some possible path-integral trajectories between a point A and a
point B.

A = (x0, t0) and B = (x f , t f ), the total transition probability amplitude between a

single system’s states |ψ(A)⟩ and |ψ(B)⟩ is given by the sum of the amplitudes arising

from all the possible trajectories the system can take from point A to point B. This con-

cept is schematically illustrated in Fig. 3.1. For example, a final state |ψ(B)⟩, assumed

to be an eigenstate of the position operator x̂, is then

∣∣ψ(x f , t f )
〉
=
∫ ∞

−∞

∣∣ψ(x′, t f )
〉〈

ψ(x′, t f )
∣∣ψ(x0, t0)⟩dx′. (3.1)

The term
〈
ψ(x′, t f )

∣∣ψ(x0, t0)⟩ is defined to be the propagator of the quantum sys-

tem [28]. Finding the form of this propagator is the crux of the path integral method.

In order to do so, it is useful to start from classical mechanics.

In classical mechanics, the specific path x(t) followed by a system is determined

through the principle of least action, that is, x(t) is the path for which the action is

minimized. In Lagrangian formalism, the action is defined as

S(x) =
∫ t f

t0

L (ẋ, x, t) dt, (3.2)
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where L (ẋ, x, t) is the Lagrangian of the system. The coordinate x can be generic and

does not necessarily represent a space coordinate. Suppose such a coordinate deviates

from the path x(t) by an amount δx(t), with the condition that at initial and final

times the coordinate remains equal to a fixed value and thus δx(t0) = δx(t f ) = 0. The

assumption that x(t) is an extremum of function (3.2) implies that δS = 0, from which

the classical Lagrangian equation of motion is derived,

d
dt

∂L
∂ẋ
− ∂L

∂x
= 0. (3.3)

The followed path x(t) is determined by the solution to Eq. (3.3) [28]. In quantum

mechanics, however, all possible paths contribute to the trajectory at different phases.

Such phases are ϕ(x) = C exp [iS(x)], with C a constant, and thus dependent to the

action Eq. (3.2). The amplitude for the system to go from coordinate x(t0) to coordinate

x(t f ) is defined as the sum over all the possible paths x(t) in coordinate space that start

in x(t0) and end in x(t f ), K(x f , t f ; x0, t0) = ∑x(t) ϕ(x). The probability amplitude for

the system to transition from the state ψ(x0, t0) to the state ψ(x f , t f ) is then given by

P(x f , t f ; x0, t0) =| K(x f , t f ; x0, t0) |2 [28].

It is possible to approximate the sum K(x f , t f ; x0, t0) to multiple integrals with the

introduction of a normalizing factor, as argued in reference [28]. The sum over all

paths can then be rewritten as

K(x f , t f ; x0, t0) =
∫

exp [iS(x)]Dx (t), (3.4)

where Dx (t) is a measure of the space of all paths. Eq. (3.4) is called a path integral,

also referred to as a kernel.

The basic concept of Eq. (3.1) can be extended to the theory of open quantum sys-

tems coupled to an external environment. Of course, this adds the complication of a

dynamics where the degrees of freedom of the environment need to be included.
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3.2 Influence functional in quantum mechanics

For an open system coupled to a second system, for example to an environment, the

effects of the interaction are described in the path integral by a functional known as the

influence functional [30]. Let us assume a density matrix ρ̂(t) describing the composite

system, and define s and u the generic coordinates of the open system and environ-

ment respectively. Assuming a total Hamiltonian of the form of Eq. (2.2), the compos-

ite density matrix evolves in time according to Eq. (2.6). The density matrix element

between the coordinate eigenstate
∣∣s f , u f

〉
and the coordinate eigenstate

∣∣∣s′f , u′f
〉

at a

time t f is [1]

〈
s f , u f

∣∣ρ̂(t f )
∣∣∣s′f , u′f

〉
=
∫

ds0

∫
du0

∫
ds′0

∫
du′0

〈
s f , u f

∣∣ e−iĤ(t f−t0) |s0, u0⟩ ×

⟨s0, u0| ρ̂ (t0)
∣∣s′0, u′0

〉 〈
s′0, u′0

∣∣ eiĤ(t f−t0)
∣∣∣s′f , u′f

〉
, (3.5)

where resolutions of the identity operator have been inserted into the time evolution

of ρ̂. The kernel is by definition K(s f , u f , t f ; s0, u0, t0) =
〈
s f , u f

∣∣ e−iĤ(t f−t0) |s0, u0⟩.

In order to retrieve the time evolution of the reduced density matrix elements from

Eq. (2.6), the environmental coordinate u is traced over,

〈
s f
∣∣ρ̂S(t f )

∣∣∣s′f〉 =
∫

du f

∫
ds0

∫
du0

∫
ds′0

∫
du′0K(s f , u f , t f ; s0, u0, t0)×

⟨s0, u0| ρ̂ (t0)
∣∣s′0, u′0

〉
K∗(s′f , u f , t f ; s′0, u′0, t0). (3.6)

The Lagrangian can be separated into an open system, an environment and an in-

teraction contribution. By virtue of Eq. (3.2), the action can also be separated as

S(s, u) = SS(s) + SB(u) + SI(s, u). Consequently, the kernel can be written as

K(s f , u f , t f ; s0, u0, t0) =
∫

exp [iSS (s) + iSB (u) + iSI(s, u)]Ds (t) (3.7)
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from Eq. (3.4). With the assumption of a factorized initial state as in Eq. (2.6), the

environmental coordinates can be separated from the system ones,

〈
s f
∣∣ρ̂S(t f )

∣∣∣s′f〉 =
∫
Ds (t)

∫
Ds′ (t)

∫
ds0

∫
ds′0 (3.8)

I(s, s′) exp[iSS(s)− iSS(s′)] ⟨s0| ρ̂S (t0)
∣∣s′0〉 ,

where the influence functional is defined to be [30]

I(s, s′) =
∫
Du (t)

∫
Du′ (t)

∫
du0

∫
du′0

∫
du f

∫
du′f δ(u f − u′f )×

exp[iSB(u) + iSI(s, u)− iSB(u′)− iSI(s′, u′)] ⟨u0| ρ̂B (t0)
∣∣u′0〉 . (3.9)

The coordinates of the environment are enclosed into I(s, s′), therefore the influence

functional describes the environmental effects on the open system. It can in general

be written as I(s, s′) = exp[iΦ(s, s′)], where Φ(s, s′) is an influence phase [30]. This

Feynman-Vernon influence functional is well suited to numerically discretized ap-

proaches such as QuAPI [13, 14], upon which the TEMPO algorithm is built [16].

3.3 Quasiadiabatic propagator path integral (QuAPI)

discretization

The QuAPI approach allows for the time evolution of the reduced density matrix to be

calculated through iterative tensor propagation [13, 14]. The construction of a reduced

density tensor starts with the discretization of the path integral. The total time t f − t0

of the quantum dynamics is divided into a number N of time-steps of equal length ∆,

such that t f − t0 = N∆. The unitary time evolution operator in Eq. (2.5) is expressed

in terms of the time-step ∆ as Û(N∆) = exp[−iĤ∆]N. In order to obtain the QuAPI

scheme, the degrees of freedom of the open system need to be separated from those

of its surroundings and the coupled degrees of freedom, by defining a Hamiltonian

Ĥenv = Ĥ − ĤS that includes all of the environmental degrees of freedom. The opera-
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tor exp[−iĤ∆] can be expanded in terms of the Hamiltonians ĤS and Ĥenv according

to the Baker-Campbell-Hausdorff formula [31]. Taking the Taylor expansion of the

terms up to an order of ∆2, it is easy to see that the resulting terms are expansions

of exponential functions truncated at order ∆2. This leads to a symmetrized Trotter

splitting, where the error caused by the approximation is of the order O
(
∆3),

e−iĤ∆ = e−iĤenv∆/2e−iĤS∆e−iĤenv∆/2+O
(

∆3
)

. (3.10)

The Trotter splitting described in Eq. (3.10) is the first of the approximations made

in the QuAPI method. A few assumptions on the initial state of the system are of-

ten added. The first is that of a factorized initial condition. Secondly, as the QuAPI

method is primarily used to describe the dynamics of finite-level systems coupled to

bosonic reservoirs [15], the environment is assumed to be a bosonic bath of harmonic

oscillators of some inverse temperature β. Thus the initial state of the bath is taken to

be the thermal equilibrium state ρ̂B(0) = e−βĤB /ZB, with ZB = TrB[e−βĤB ].

3.3.1 Discretization of the propagators

The discretization of the propagators previously defined as K(s f , u f , t f ; s0, u0, t0) =〈
s f , u f

∣∣ e−iĤ(t f−t0) |s0, u0⟩ follows from the time discretization and the symmetrized

Trotter splitting described in Eq. (3.10). Let us define |sk⟩ the open system coordinate

eigenstate at time tk − t0 = k∆, such that |sk⟩ = |s (tk)⟩ , with k = 0, 1...N. Similarly

we can define the eigenstates of the environment |uk⟩ for any time tk − t0. It follows

that the quasiadiabatic propagator in the time interval tk − tk−1 is

⟨sk, uk|e−iĤ∆|sk−1, uk−1⟩ = (3.11)

⟨sk|e−iĤS∆|sk−1⟩⟨uk|e−iĤenv(sk)∆/2e−iĤenv(sk−1)∆/2|uk−1⟩.

Here we have defined Ĥenv|s, u⟩ = Ĥenv(s)|u⟩. The coordinates of the open system

can then be separated from the coordinates of the environment in the expression for
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the total propagator over the time interval t f − t0,

K(s f , u f , t f ; s0, u0, t0) =
∫

ds1

∫
ds2...

∫
dsN−1

∫
du1

∫
du2...

∫
duN−1

N

∏
k=1
⟨sk|e−iĤS∆|sk−1⟩⟨uk|e−iĤenv(sk)∆/2e−iĤenv(sk−1)∆/2|uk−1⟩. (3.12)

A similar expression can be found for the complex conjugate propagator K∗(s′f , u f , t f ;

s′0, u′0, t0) in Eq. (3.6). We will adopt the convention, used in the literature, to label

s+ the coordinates appearing in the forward-in-time propagator K(s+f , u f , t f ; s+0 , u′0, t0)

and s− the coordinates appearing in its complex conjugate [13, 14].

3.3.2 Discretized influence functional

Following Eq. (3.9), the environmental coordinates from the propagators in the QuAPI

formalism are enclosed into an influence functional. From Eq. (3.6) and the discretiza-

tion obtained in Eq. (3.12), it follows that such Feynman influence functional is [13]

I(s+0 ...s+N; s−0 ...s−N) =TrB[e−iĤenv(s+N)∆/2e−iĤenv(s+N−1)∆...e−iĤenv(s+0 )∆/2

ρ̂B(0)eiĤenv(s−0 )∆/2...eiĤenv(s−N−1)∆eiĤenv(s−N)∆/2]. (3.13)

The discretized form of Eq. (3.13) can be equivalently written as the exponential of an

influence phase [13, 15], under the assumption of ρ̂B(0) being a thermal equilibrium

state,

I(s+0 ...s+N; s−0 ...s−N) = exp

[
−

N

∑
k=0

k

∑
k′=0

(s+k − s−k )(ηk−k′s+k′ − η∗k−k′s
−
k′ )

]
, (3.14)

where the coefficients ηk−k′ depend on the bath autocorrelation function and describe

the non-Markovian effects in the open system between time-steps k and k′. These
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coefficients are defined as

ηk−k′ =



∫ tk
tk−1

∫ tk′
tk′−1

C (t′ − t′′) dt′′dt′ k ̸= k′

∫ tk
tk−1

∫ t′

tk−1
C (t′ − t′′) dt′′dt′ k = k′,

(3.15)

where C (t) is the bath autocorrelation function

C (t) =
∫ ∞

0
dω J (ω)

(
coth

( ω

2T

)
cos (ωt)− i sin (ωt)

)
. (3.16)

Here J (ω) is the spectral density function characterizing the bath [13], defined as

J (ω) = ∑
j

g2
j δ
(
ω−ωj

)
, (3.17)

where gj is a constant associated with the coupling between the system and the j-th

bath mode, and ωj the mode’s angular frequency.

3.3.3 Augmented reduced density tensor (ADT) iterative

propagation

For a bosonic bath of harmonic oscillators, non-local interactions contained in the in-

fluence functional Eq. (3.14) have a finite temporal range for any temperature [13].

Indeed, even in the presence of a non-Markovian dynamics, dissipative effects tend to

erase quantum coherence and correlations decay in finite time. It follows that mem-

ory effects are erased over a long enough time period. This means that long time-

distant interactions can be neglected, and in the discretized form of Eq. (3.14) one can

introduce a maximum number of steps |k− k′| beyond which the coefficients ηk−k′ de-

fined in Eq. (3.15) decrease rapidly, rendering I(s+0 ...s+N; s−0 ...s−N) effectively equal to an

identity operator [13, 14]. Such maximum number of steps, which is defined as the

memory cutoff K, is roughly equivalent to τC/∆, where τC is the bath correlation time

cutoff. Therefore ηk−k′ can be neglected for any |k− k′| > K.
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It follows that the QuAPI method introduces, along with a Trotter splitting error of

the order of O
(
∆3), a finite memory approximation. Such an approximation allows

for a description of the quantum system by means of an augmented density tensor

(ADT), and for a description of its dynamics as an iterative tensor contraction with a

propagator tensor derived from the non-local influence functional in Eq. (3.14) [13, 14].

The use of a propagator tensor resolves the issue of simulating a non-Markovian and

non-unitary dynamics. Furthermore, scaling the ADT with a finite memory cutoff K

allows for high numerical efficiency in the tensor multiplication scheme [15, 16].

The discretized influence functional subjected to the memory cutoff can be written as

I
(
s+0 , ...s+N; s−0 , ...s−N

)
= ∏K

∆k=0 ∏N−∆k
k=0 I∆k

(
s±k , s±k+∆k

)
, with ∆k = k− k′ and

I∆k

(
s±k , s±k+∆k

)
= exp

[
−
(

s+k+∆k − s−k+∆k

) (
η∆ks+k − η∗∆ks−k

)]
. (3.18)

The ADT at time tk is constructed by building a rank-K tensor whose elements are

the vectorized reduced density matrices ρ̂S at time tk and at the previous K− 1 times.

We will refer to such an ADT as A(K), with initial condition A(K) (s±0 , s±1 ...s±K−1; 0
)
=〈

s+0
∣∣ ρ̂S (0)

∣∣s−0 〉 at t0 = 0. A rank-2K propagator tensor B(2K) is then constructed as [13,

14, 16]

B(2K)
(

s±k , s±k+1...s±k+2K−1

)
=

k+K−1

∏
n=k

(
G
(
s±n , s±n+1

) K

∏
∆k=0

I∆k

(
s±n , s±n+∆k

))
, (3.19)

where the free propagators for the open system are

G
(
s±n , s±n+1

)
=
〈
s+n+1

∣∣ e−iĤS∆ ∣∣s+n 〉 〈s−n ∣∣ eiĤS∆ ∣∣s−n+1
〉

. (3.20)
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The time evolution of the reduced tensor A(K) up to a time tk = k∆, constructed

through time increments of K∆, is

A(K)(s±k+K, s±k+K+1...s±k+2K−1; (k + K)∆) = (3.21)

∑
s±k ,s±k+1...s±k+K−1

B(2K)
(

s±k , ..s±k+2K−1

)
A(K)

(
s±k , ...s±k+K−1, k∆

)
.

The reduced density matrix element at a final time t f = N∆ is retrieved from the

propagated ADT, by tracing out the s±k system coordinates for k > N,

〈
s+N
∣∣ ρ̂S (t)

∣∣s−N〉 = I0
(
s±N, s±N

)
∑

s±N+1,...,s±N+K−1

A(K) (s±N, s±N+1, ..., s±N+K−1; t f
)

. (3.22)

If the dimension of the system Hilbert space is d, the dimension of the ADT is d2K and

that of the propagator tensor is d4K.

3.4 Time-evolving matrix product operator (TEMPO)

algorithm

Starting from the ADT iterative propagation scheme of the QuAPI method, Strathearn

et al. developed a numerically exact technique to model non-Markovian dynamics of

open quantum systems coupled to harmonic baths, and demonstrated the efficiency of

the approach with an application to the spin-boson model [16]. The algorithm, called

TEMPO, represents a significant improvement to the ADT propagation scheme. The

limiting factor for QuAPI is the computational resources needed to store and perform

contractions on K-index tensors. TEMPO circumvents this limitation by representing

the ADT and the propagators as tensor networks, which can be stored and contracted

with drastically reduced resources, enabling very large values of K to be reached. The

tensor-network representation is efficient due to the finite range of temporal corre-

lations contained in the ADT. This is analogous to the well-known ability of tensor

networks to represent many-body quantum states exhibiting short-ranged spatial cor-
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relations [32]. In the present case, the bond dimension, i.e. the number of singular

values retained during the construction of the tensor network, quantifies correlations

between different time points induced by the non-Markovian environment. The bond

dimension is controlled by retaining only those singular values λ greater than a cut-

off λC. The cutoff is defined as λC = λmax10−p/10, with λmax the highest singular

value. The accuracy of the TEMPO algorithm is therefore controlled by the exponent

p as well as the memory depth K and the numerical time step ∆. In the following,

we explain more in detail the construction of the ADT propagation scheme in TEMPO

and its parameters. This approach will be the basis for our modified quantum heat

statistics calculations.

3.4.1 Superoperator algebra

The correlation functions in the influence functional Eq. (3.14) are easily calculated

with superoperator algebra formalism. Let K̂ be a superoperator acting on the space

of bounded operators B (H) on a Hilbert space H. Then two superoperators labelled

left, K̂L, and right, K̂R, can be defined by their actions on a density matrix operator ρ

∈ B (H):

K̂Lρ = K̂ρ, (3.23)

K̂Rρ = ρK̂. (3.24)

Similarly, the superoperators K̂+ and K̂− can be defined as

K̂+ρ = K̂Lρ + K̂Rρ =
{

K̂, ρ
}

, (3.25)

K̂−ρ = K̂Lρ− K̂Rρ =
[
K̂, ρ

]
, (3.26)
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with inverse transformations

K̂Lρ =
1
2
(
K̂+ + K̂−

)
ρ =

1
2
[
K̂, ρ

]
+

1
2
{

K̂, ρ
}

, (3.27)

K̂Rρ =
1
2
(
K̂+ − K̂−

)
ρ =

1
2
{

K̂, ρ
}
− 1

2
[
K̂, ρ

]
. (3.28)

3.4.2 Time evolution of the reduced density matrix in superoperator

formalism

With the superoperator formalism, it is possible to express the solution to the Liovil-

lian equation Eq. (2.8) in terms of bath autocorrelation functions that can in turn easily

be applied into the influence functional and discretized [15]. From Eq. (2.9), the time

evolution of the total density matrix in the interaction picture ˜̂ρ(t) = ei(ĤS+ĤB)tρ̂(t)

e−i(ĤS+ĤB)t is

˜̂ρ(t) =
←−
T exp

[∫ t

t0

dt′LI
(
t′
)] ˜̂ρ (t0) , (3.29)

where LI is the interaction part of the Liouvillian operator. With the assumption of a

factorized initial condition Eq. (2.11), the time evolution of the reduced density matrix

can be written in the convenient notation ˜̂ρS (t) =
←−
T S

〈
exp

[∫ t
t0

dt′LI (t′)
]〉

B
˜̂ρS (t0),

where the trace over the bath degrees of freedom is in the average defined as
〈
Ô
〉

B =

TrB

[←−
T BÔ ˜̂ρB (t0)

]
for a generic operator Ô. In this notation we have chosen the time

ordering
←−
T =

←−
T S
←−
T B. For a bath of harmonic modes, the environmental coordinates

are Gaussian variables [13, 14], that is, variables with normal probability distribution.

The average value of the exponential function exp X = exp
[∫ t

t0
dt′LI (t′)

]
can be writ-

ten as an exponential of the cumulants of X, ⟨exp X⟩ = exp
[
∑j

1
j! ⟨X j⟩

]
[33]. In particu-

lar, for Gaussian variables with normal distribution, cumulants with order higher than

second (j > 2) are zero. It follows the identity ⟨exp X⟩ = exp[⟨X⟩+ 1
2

〈
X2〉] [33]. Since

it is possible to shift the Gaussian variable function mean value to centre ⟨X⟩ = 0, it

follows that

˜̂ρS (t) =
←−
T S exp

[∫ t

t0

dt′
∫ t

t0

dt′′
〈
LI
(
t′
)
LI
(
t′′
)〉

B

]
˜̂ρS (t0) . (3.30)
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The exponential function term in Eq. (3.30) is the continuous equivalent of the in-

fluence functional described in Eq. (3.14). The terms ⟨LI (t′)LI (t′′)⟩B are the bath

autocorrelation functions, which in the case of a bosonic bath are given by Eq. (3.16).

Indeed C(t) can be calculated by noticing that LI = ĤL
I − ĤR

I and applying the super-

operator algebra to the operators of the interaction Hamiltonian.

3.4.3 ADT propagation scheme in the TEMPO algorithm

The memory depth of the environmental effects that can be stored during the calcula-

tion is improved by representing Eq. (3.21) through matrix product states (MPS) [15,

16]. Matrix product states are states whose probability amplitude is defined in terms

of the trace of a product of N square matrices, where N is the number of particles in

the system [34]. In reference [16], the procedure through which the ADT is then de-

composed through singular value decomposition (SVD) and truncated is discussed.

The ADT propagation scheme applied in the TEMPO algorithm is described in ref-

erences [15] and [16], and is here summarized. Consider Aσnσn−1...σ0 the ADT written

in the MPS representation and to which the SVD cutoff λC has been applied. Here

the "superindex" σk = {s+k , s−k } takes d2 possible values, where d is the dimension

of the system. The time evolution is given by successive contractions with a propa-

gation tensor, followed by an SVD and the application of the cutoff λC at each step.

The propagator tensor is represented as a matrix product operator (MPO) and is con-

structed from the QuAPI theory tensor Eq. (3.19) as

Bσn···σ0
µn−1···µ0 =

(
n

∏
k=1

δ
σn−k
µn−k

)
G(s±n , s±n−1)

n

∏
∆k=0

I∆k(s±n , s±n−∆k), (3.31)

with δσ
µ the Kronecker delta symbol. The ADT at the nth time step is given by the

contraction Aσn···σ0 = Bσn···σ0
µn−1···µ0 Aµn−1···µ0 , with the Einstein summation convention as-

sumed, and is built iteratively starting from the initial condition Aσ0 = I0(s±0 , s±0 )〈
s+0
∣∣ρ̂S(0)

∣∣s−0 〉. The reduced density matrix is found by summing over all but the fi-

nal index, i.e.,
〈
s+N
∣∣ρ̂S(t)

∣∣s−N〉 = ∑σ0,··· ,σN−1
AσN ···σ0 . Due to the finite memory depth
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K, the propagator (3.31) acts non-trivially on at most K indices of the ADT, since

I∆k(s±n , s±n−∆k) ≈ 1 for ∆k > K. At the n-th time step, therefore, when n > K one needs

only to store the object Aσn···σn−K , with the remaining indices summed over. (For the

first K time steps one stores the full ADT).
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4 | Classical and quantum

thermodynamics

The main topic of research in this thesis is the thermodynamics of open systems, with

a particular focus on the statistics of thermodynamic quantities. Classical thermody-

namics describes the average properties of a macroscopic system derived from the

statistical mechanics of its microscopic components. A macroscopic system is a sys-

tem with a large enough number of particles, in general defined by a finite number

of parameters, or state variables. Some examples of state variables are the system’s

particle number, its pressure, its volume and its temperature. Equations of state relate

these quantities to one another. A macroscopic system’s state is defined by a set {Xj}

of extensive state variables, each being a function of the points of the system’s phase

space (for example, momentum and position coordinates). These state variables com-

pletely define the region of phase space in which the time evolution takes place. For

a fixed macroscopic state, we can define Ω as the number of microscopic configura-

tions accessible to the system, each characterized by a probability p. The volume of

the relevant region in phase space then corresponds to the measure of the ensemble of

Ω microscopic states.

Thermodynamic definitions can only be applied to systems in equilibrium, that

is, systems in which the state variables are constant in time. In this case the system

transforms infinitesimally close to its thermal equilibrium state. These transforma-

tions are reversible, as the system can always be reversed to its previous state without

changing the thermodynamic state of the rest of the universe. Nonequilibrium ther-
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modynamics, on the other hand, is characterized by irreversible transformations. The

system changes from one equilibrium state to another, and cannot be brought back to

the previous state without causing a change to the thermodynamic state of the uni-

verse. Fluctuations theorems give an insight into the behaviour of nonequilibrium

thermodynamic quantities [35].

4.1 Entropy, work and heat and the laws of

thermodynamics

Thermodynamic state functions are defined through the laws of thermodynamics and

connected to thermodynamic variables. The zero-th law of thermodynamics states that

equilibrium is a transitive property. The first law of thermodynamics is the conservation

of energy law, and defines the change of the state function of internal energy ∆U. It

states that the change in the system’s internal energy is given by the work W per-

formed on the system minus the heat energy Q absorbed by the environment during

the process. W and Q are thermodynamic variables. In differential form,

dU = δW − δQ, (4.1)

where δW and δQ are infinitesimal changes.

In classical thermodynamics, entropy is an extensive state function conjugate to

the temperature T that defines the spontaneous evolution of a system. For an open

system interacting with an environment, its variation is given by two contributions,

∆S = ∆Se + ∆Si. ∆Se is the external entropy variation cause by entropy flow due to

the interaction with the system’s surroundings. ∆Si is the internal entropy variation,

caused by changes inside the system [36]. To define these two quantities and the

second law of thermodynamics, consider a system in contact with a bath at inverse

temperature β = 1/T undergoing a closed reversible cyclic process. By approximat-

ing the process as a series of adjacent isoentropic and isothermal transformations, each
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characterized by an infinitesimal exchange in heat −δQ taken in by the system from

the bath at temperature T, the total heat exchanged in the process must be null. For

every transformation corresponds, due to reversibility, a transformation with oppo-

site sign. This is true whatever the reversible transformation that occurs, that is, the

value of the cyclic integral of the exchanged heat over bath temperature
∮

rev βδQ = 0

is path independent [37]. The inverse temperature β is the integrating factor which

transforms the inexact differential δQ into an exact differential [38]. It follows that

the integrand function βδQ is an exact differential, which can be defined as the in-

finitesimal entropy variation of the system. Because such entropy depends only on

the interaction of the system with its external environment, it can be identified with

the external entropy infinitesimal variation, dSe = −βδQ. It follows that

∆Se = −
∫

rev
βδQ. (4.2)

For an isolated system, ∆Se = 0. The external entropy variation is clearly associated

with reversible entropy production. On the other hand, ∆Si is associated with irre-

versible entropy production [39], which we define as

δΣ ≡ δSi = dS + βδQ. (4.3)

The second law of thermodynamics states that the irreversible entropy production of a

system, or equivalently the entropy production in an isolated system, is always non-

negative,

∆Si ≥ 0, (4.4)

where equality holds for reversible processes. Lastly, the third law of thermodynamics

states that it is impossible to reach absolute zero temperature via a finite number of

reversible processes.
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4.1.1 Classical ensemble averages

In the continuous limit, rather than a discrete set of probabilities associated with the

system’s microscopic states, the relevant volume in phase space that the system can

occupy is weighted by a probability density ρ(q, p, t), where (q, p) are the position

and momentum coordinates. For a system of N particles, the probability of finding

the microscopic state of the system in a volume d3Nq d3N p around the point (q, p) at

time t is ρ (q, p, t) d3Nq d3N p. The average of any quantity f (q, p, t) is given by the

ensemble average

⟨ f ⟩ (t) =
∫

f (q, p) ρ (q, p, t) d3Nq d3N p∫
ρ (q, p, t) d3Nq d3N p

, (4.5)

where the integration is taken over all the phase space. In nonequilibrium processes,

thermodynamic variables like exchanged heat and work are in fact averages over an

ensemble of measurements of stochastic variables Q and W, expressed by Eq. (4.5). In

Eq. (4.1) we have given the differential form of the first law of thermodynamics. In

terms of average quantities over the total process, the first law is

∆U = ⟨W⟩ − ⟨Q⟩. (4.6)

Similarly, the average irreversible entropy production is, from Eq. (4.3),

⟨Σ⟩ = ∆S + β⟨Q⟩. (4.7)

Given the inequality in (4.4), the second law can be written as ⟨Σ⟩ ≥ 0, where ∆Si =

⟨Σ⟩ and ∆Se = −β⟨Q⟩. The probability density ρ(q, p, t) depends on the nature of the

ensemble of microscopic states Ω. In the study of open systems coupled to thermal

baths, the relevant one is most often the canonical ensemble. The canonical ensemble

is an ensemble at thermal equilibrium with bath of temperature T, whose number

of particles N and volume V are constant. The energy probability distribution of its

microscopic states is given by the Boltzmann distribution.
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4.2 Thermodynamic equilibrium

Canonical ensembles describe by definition systems in thermal equilibrium (at con-

stant temperature). On the other hand, definitions of thermodynamic variables are

only applicable to systems in equilibrium, where conserved quantities define the macr-

oscopic state of the system. The equilibrium state of an isolated system is defined as

the state of maximum entropy [35]. If the Ω microscopic states of the system have a

discrete set of probabilities {pk}Ω
k=1, the associated entropy is the Gibbs entropy

S = −kB

Ω

∑
i=1

pi ln pi, (4.8)

which quantifies the amount of information needed to define the microscopic state

of the system. Here kB = 1.3807 · 10−23 J/K is Boltzmann’s constant. Starting from

the fixed average energy of the system, ⟨E⟩ = ∑Ω
n=1 pnEn, where En is the energy

of the n-th microscopic state, and the normalization ∑Ω
n=1 pn = 1, the equilibrium

probability distribution of the energy microscopic states is calculated by maximizing

Eq. (4.8) using Lagrange multipliers. The result is Boltzmann’s probability distribution

for every microscopic state,

peq
n =

exp (−βEn)

Z
, (4.9)

where Z = ∑Ω
n=1 exp(−βEn) is the partition function.

4.3 Nonequilibrium thermodynamics

Nonequilibrium thermodynamics is defined by irreversible transformations. For open

systems coupled to a thermal bath, such transformations are characterized by heat

dissipation into the environment. The main feature of nonequilibrium dissipation is

the production of positive irreversible entropy, as defined by Eq. (4.7). This entropy

production is associated with irreversible work, ⟨Σ⟩ = β⟨Wirr⟩ [39, 40], defined as the

difference between the total work ⟨W⟩ performed on the system during the process
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and the change in free energy ∆F,

⟨Wirr⟩ = ⟨W⟩ − ∆F. (4.10)

From Eq. (4.10) and the second law of thermodynamics Eq. (4.4), it follows that ⟨W⟩ ≥

∆F. The time evolution of the nonequilibrium total entropy production is governed

by a local entropy balance equation, which relates the total entropy rate to an "inter-

nal" entropy production rate and the divergence of an "external" entropy flow vec-

tor [36],
dS
dt

= σ−∇ · −→JS . (4.11)

Here σ = dSi/dt is the internal entropy production per unit time, and ∇ · −→JS =

−dSe/dt is the divergence of entropy flow vector field.

4.3.1 Fluctuation-dissipation relations

Nonequilibrium processes at the nanoscale feature significant and measurable fluctu-

ations. Therefore, thermodynamic process variables such as work, W, and heat, Q,

must be promoted to stochastic quantities described by the corresponding probabil-

ity distributions, P(W) and P(Q). In thermodynamic equilibrium, the fluctuation-

dissipation theorem (FDT) relates fluctuations of thermodynamic observables to the

system’s response to external perturbations, for example dissipative effects [41]. This

theorem is derived from linear response theory. However, extensive work is being

done to extend the FDT to nonequilibrium thermodynamics and beyond linear re-

sponse regime, through fluctuation-dissipation relations (FDRs) [42, 43]. FDRs are

generically derived in statistical mechanics, but have validity for quantum systems

and quantum thermodynamics. At equilibrium, given a linear perturbation of the

system’s Hamiltonian h(τ) at time τ, and an observable O, the FDT states that

dC(s)
ds

= −TR(s), (4.12)
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where C(t, τ) = ⟨O(t)O(τ)⟩ is the autocorrelation function of the observable, s =

t− τ, and R(t, τ) = ∂⟨O(t)⟩/∂h(τ)|h=0 is the linear response function. In the work of

this thesis the nonequilibrium FDR

⟨W⟩ − ∆F =
β⟨⟨W2⟩⟩

2
(4.13)

will be of interest, where ⟨⟨W2⟩⟩ = ⟨W2⟩ − ⟨W⟩2 is the variance of the work variable

W. Eq. (4.13) is derived from the Jarzynski equality ⟨exp(−βW)⟩ = exp(−β∆F) for

Gaussian distributions of work [44].

4.4 Thermodynamics of open quantum systems

The importance of heat management at the nanoscale has grown in tandem with ad-

vances in the fabrication and control of small devices, motivating increasing interest in

the nonequilibrium thermodynamics of open quantum systems [35, 45–47]. For exam-

ple, quantum thermal machines have been studied in such diverse experimental plat-

forms as single-electron transistors [48–50], trapped ions [8, 24, 51], superconducting

circuits [52], and spin ensembles [53, 54]. Numerous technologically or biologically

important systems are also naturally described as quantum heat engines, including

lasers [55], light-emitting diodes [56], and light-harvesting complexes [57–60]. These

minuscule machines all operate far from equilibrium and are significantly affected by

quantum and thermal noise. Strong coupling may blur the boundary between system

and environment [61, 62], potentially leading to non-Markovian effects [20, 21] with

interesting thermodynamic consequences [4, 10, 11, 63, 64]. In addition, the impor-

tance of fluctuations at small scales means that the statistical character of thermody-

namic quantities such as work and heat cannot be ignored [65, 66]. These features

together give rise to a rich and varied phenomenology with important ramifications

for emerging quantum technologies.

The concepts introduced at the beginning of this chapter for classical systems can

be translated in the framework of quantum physics. In analogy to classical nonequi-
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Figure 4.1: Schematic representation of a two-level open quantum system S interacting with a
bath B through an interaction Hamiltonian ĤI .

librium thermodynamics, when quantum fluctuations dominate and quantum corre-

lations build up, thermodynamic variables are promoted to stochastic variables de-

scribed by corresponding probability distributions. Instead of being defined by an en-

semble average Eq. (4.5), the mean value at time t is defined as ⟨•⟩t ≡ Tr[•ρ̂(t)]. The

system density matrix ρ̂ replaces the classical probability density of the microscopic

states. For an open quantum system interacting with a thermal bath at temperature T,

thermodynamic quantities like work and exchanged heat are defined in terms of the

total system Hamiltonian Eq. (2.2) [17],

⟨W⟩(t) =
t∫

0

TrS

[
ρ̂S (τ)

dĤ (τ)

dτ

]
dτ, (4.14)

⟨Q⟩(t) =
t∫

0

TrS

[
dρ̂S (τ)

dτ
Ĥ (τ)

]
dτ. (4.15)

Eqs. (4.14)-(4.15) are defined for a generic dynamical process. Fig. 4.1 illustrates a

set-up in which work and exchanged heat are measured at equilibrium. Here ther-

modynamic work is associated with changes in the external conditions defining the

Hamiltonian, while heat is defined to be the change in energy of the bath. Opera-
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tionally, each of these quantities can be extracted from a two-point measurement of

Ĥ (work) or ĤB (heat) at the beginning and end of the evolution, either with direct

projective measurements [67] or via ancillary probes [68–71]. Therefore, under strong-

coupling conditions where the commutator [ĤB, ĤI ] is non-negligible, work and heat

are simultaneously measurable only if the system-bath interaction vanishes at the be-

ginning and end of the evolution [62]. This is the relevant scenario for cyclic thermal

machines, for example. Considering a relaxation dynamics in which the initial and

final states of the system are in thermal equilibrium, the internal energy change of the

system is

∆U = ⟨ĤS⟩t − ⟨ĤS⟩0. (4.16)

For a Hamiltonian that is time independent during the relaxation process, all energy

transferred during the evolution is in the form of heat exchanged with the bath. The

mean heat absorbed by the bath is given by

⟨Q⟩ = ⟨ĤB⟩t − ⟨ĤB⟩0. (4.17)

From the conservation of the total energy ⟨Ĥ⟩t = ⟨Ĥ⟩0 and the first law of thermo-

dynamics Eq. (4.6), it follows that ⟨W⟩ is the average work performed on the entire

system by switching the system-bath interaction on and off at the endpoints of the

evolution,

⟨W⟩ = ⟨ĤI⟩0 − ⟨ĤI⟩t. (4.18)

The average heat dissipated into the bath therefore comprises two contributions: the

change in the system’s internal energy and the system-bath interaction energy devel-

oped throughout the relaxation process.
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4.4.1 Entropy production in a system interacting with a bath

For a protocol where the initial and final states of the system are equilibrium states,

the total change in entropy of the open system is given by

∆S = S[ρ̂S(t)]− S[ρ̂S(0)], (4.19)

where S[ρ̂] = −Tr[ρ̂ ln ρ̂] is the von Neumann entropy of state ρ̂. For quantum systems,

the positivity of the entropy production ⟨Σ⟩ characterizing irreversible processes is

due to the entropy contribution arising from correlations between system and bath

[17]. It was shown that the irreversible entropy production can be written as the sum

[72]

⟨Σ⟩ = ISB + D(ρ̂B(t)||ρ̂B(0)) (4.20)

with ρ̂B(0) a thermal state in Gibbs form. Here ISB = S[ρ̂S] + S[ρ̂B] − S[ρ̂] is the

mutual information between system and bath, and D(ρ̂B(t)||ρ̂B(0)) the relative en-

tropy between the bath state at time t and its initial state, defined as D(ρ̂||σ̂) =

Tr[ρ̂(ln ρ̂− ln σ̂)], which is always a non-negative quantity. It has been shown that in

open quantum systems with small Hilbert space dimension, such as a qubit, the dis-

placement of the environment from equilibrium D(ρ̂B(t)||ρ̂B(0)) dominates the irre-

versible entropy production [72]. Furthermore, the relative entropy of the bath can be

divided into two terms, D(ρ̂B(t)||ρ̂B(0)) = Denv + Ienv, where Denv is a sum of relative

entropies of the modes or levels composing the bath, and Ienv is the mutual informa-

tion between the degrees of freedom of the bath, arising from the building of inter-bath

correlations. For large baths, it has been shown that Ienv is the dominant contribution

to the relative entropy of the environment. Therefore, even in non-dissipative proto-

cols, it is possible to have a significative contribution to the irreversible entropy pro-

duction due to the building of correlations between the bath degrees of freedom.
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4.4.2 Thermalization of an open quantum system

The thermal equilibrium discrete Boltzmann probabilities Eq. (4.9) corresponds in

quantum mechanics to a thermal equilibrium density matrix in Gibbs form,

ρ̂eq =
exp(−βĤ)

Z
, (4.21)

where Z = Tr[exp(−βĤ)] is the partition function and Ĥ the system Hamiltonian.

Due to the coupling with the bath, the equilibrium state of an open quantum system,

if a state towards which the system evolves to and remains in exists, is not necessarily a

thermal state in the form of Eq. (4.21). More generally, the equilibrium state of the open

system is given by ˆ̄ρS = TrB[ ˆ̄ρ], where ˆ̄ρ = limT→∞
1
T

∫ T
0 ρ̂ (t) dt [35]. The total system

equilibrium state is by definition a steady state, that is, a state that is unchanged by

the time evolution

L ˆ̄ρ = 0, (4.22)

from the quantum equivalent of the Liouville equation Eq. (2.8).

4.4.3 Decoherence

In open quantum systems, the interaction between system and environment leads to

the phenomenon of decoherence [7, 73], which destroys the relative phase between

quantum states in superposition so that they can no longer be observed to interfere.

Decoherence is not only a major limiting factor for entanglement-enhanced metrol-

ogy [74] and scalable quantum computation [75, 76], but is also fundamental for the

quantum measurement process and the emergence of classical reality [77, 78]. More-

over, the dynamics of decoherence can now be studied in carefully controlled ex-

periments [79–84] and harnessed for nondestructive measurements using auxiliary

probes [68, 69, 85–90].

Decoherence frequently occurs as a byproduct of thermalization, where an open

system equilibrates by exchanging energy with its environment. Even for small quan-
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tum systems initially far from equilibrium, it is well known that thermalization dy-

namics is tightly constrained by the laws of thermodynamics [17, 91]. Pure decoher-

ence occurs when the energy of the open quantum system is strictly conserved and

thermalization is inhibited. It arises when [ĤI , ĤS] = 0, so that the system Hamil-

tonian ĤS is a constant of motion. The most general interaction that satisfies this

constraint is

ĤI = ∑
n

gnΠ̂n ⊗ V̂n (4.23)

where Π̂n = |n⟩⟨n| is a projector onto the eigenstate of ĤS with eigenvalue εn, V̂n is

a generic operator acting on the bath, and gn is a coupling constant. In the eigenbasis

of ĤS, the reduced state ρ̂S(t) = TrB[ρ̂(t)] has matrix elements ρ̂mn
S (t) = ⟨m|ρ̂S(t)|n⟩

given by [92]

ρ̂mn
S (t) = e−i(εm−εn)t

〈
eiĤnte−iĤmt

〉
B

ρ̂mn
S (0). (4.24)

We defined

Ĥn = ĤB + gnV̂n, (4.25)

which describes the bath dynamics conditioned on state |n⟩. Eq. (4.24) states that

the diagonal matrix elements (m = n) are constant, while the off-diagonal elements

(m ̸= n) are proportional to the overlap ⟨eiĤnte−iĤmt⟩B, which decays in time whenever

Ĥm ̸= Ĥn so that the bath carries information on the open system’s state.

4.4.4 Distributions of heat and work

As discussed in Sec. 4.3, nonequilibrium dynamics in the quantum regime can give

rise to significant fluctuations of thermodynamic quantities. It is therefore crucial to go

beyond average values and consider the full probability distribution of the absorbed

heat and work. By definition, the heat transfer is the energy change that would be

registered by projective energy measurements on the bath at the beginning and end of

the process. We denote by Π̂B
n = |En⟩⟨En| the projector onto the eigenstate |En⟩ of ĤB
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with eigenvalue En. The heat distribution is then defined by

P(Q) = ∑
m,n

pn pn→mδ(Q + En − Em), (4.26)

where pn = Tr[(I⊗ Π̂B
n)ρ̂(0)] is the probability of measuring initial energy En, and

pn→m = Tr[Π̂B
mÛ(t)(ρ̂S(0)⊗ Π̂B

n)Û†(t)] is the conditional probability for the transition

En → Em [93]. A time evolution as in Eq. (2.6) is here assumed. The fluctuating heat

exchange can be characterised by the statistical moments

⟨Qn⟩ =
∫ ∞

−∞
dQ P(Q)Qn (4.27)

= (−i)n dn

dun χ(u)
∣∣∣∣
u=0

. (4.28)

The characteristic function χ(u) is defined as

χ(u) =
∫ ∞

−∞
dQ P(Q)eiuQ, (4.29)

where u is referred to as the counting field parameter. On the other hand, the work

distribution P(W) has the same form as the distribution in Eq. (4.26), where the work

variable W replaces the heat variable Q. If one considers the work distribution of the

bath independently of the open system, the conditional probability of the transition

En → Em is in this case given by pn→m = Tr[Π̂B
m(I⊗ ÛB(t))(ρ̂S(0)⊗ Π̂B

n)(I⊗ Û†
B(t))],

where by ÛB (t) we denote the time evolution operator of the bath density matrix,

ρ̂B(t) = ÛB (t) ρ̂B(0)Û†
B (t) [67].

It is possible to experimentally measure the probability distributions of thermo-

dynamic quantities. The probability distribution of work performed on a system has

been experimentally measured, for example, for the case of a two-dimension quantum

harmonic oscillator with angular momentum [94].
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Part II

Quantum heat statistics

41



5 | Introduction

Part I of this thesis introduced the TEMPO algorithm as a method to solve non-Marko-

vian dynamics, and discussed the importance of non-Markovianity in the context of

irreversible thermodynamic processes that involve heat dissipation. The question that

remains unanswered is then: how do we model heat transfer, when analytical so-

lutions are not available? This question has experimental and practical importance.

A crucial limiting factor for the performance of quantum devices is the transfer of

heat to and from their surroundings. A detailed understanding of heat transfer is

therefore essential to optimise control protocols while minimising wasteful dissipa-

tion [95–97]. More generally, heat flux is a fundamental source of irreversibility and

entropy production in open quantum systems [17, 40]. Entropy production limits the

efficiency of heat engines and refrigerators [98], determines the energy cost of informa-

tion erasure [99] and feedback control [100], constrains current fluctuations far from

equilibrium [101–105], and can be directly measured in well controlled quantum set-

tings [106–108]. However, modelling heat transfer in strongly coupled systems is a

difficult theoretical problem because it requires access to the energetics of the bath. On

the contrary, the majority of techniques for describing open quantum systems either

neglect the environment’s dynamics completely or treat it via an effective or approxi-

mate description [12]. An accurate, tractable method to predict the fluctuations of heat

transfer in generic open quantum systems is still lacking.

The main research work of this thesis, which will be introduced now in Part II, fo-

cuses on this problem. Here, we find a solution by developing an efficient numerical

method to compute heat statistics using the path integral formulation of dissipative
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quantum mechanics [30]. Previous research has shown that the probability distribu-

tions of heat and work can be formally derived within this framework [93, 109, 110].

However, a direct evaluation of the corresponding path integral is only possible for a

few exactly solvable models, while numerical approaches based on the quasi-adiabatic

path integral (QuAPI) method [13, 14] require careful fine-tuning to avoid error accu-

mulation [15, 111]. We solve this problem by generalising the TEMPO algorithm [16]

to calculate the characteristic function of energy changes in the bath, equivalent to

the Fourier transform of the heat probability distribution. This algorithm exploits a

tensor-network representation of the QuAPI propagator to describe complicated non-

Markovian evolutions efficiently [112]. As a result, we obtain a flexible and accurate

tool to describe fluctuating heat transfer in generic, strongly coupled open quantum

systems, which can be extended to deal with time-dependent Hamiltonians [113] or

multiple baths [111]. The code we developed as an extension of the existing algorithm

[114] is applied to the simulation of the spin-boson model, which describes quantum

dots [115], ultracold atomic impurities [116] and superconducting circuits [117], to

name just a few examples.

We demonstrate our approach by applying it to the non-equilibrium quantum ther-

modynamics of this important model. We first verify the accuracy of our method by

comparison with the exact solution in the limit of the independent boson model. Then

we compute the time-dependent heat transfer and its fluctuations across a range of pa-

rameters in the unbiased spin-boson model, including the challenging low-temperatu-

re and strong-coupling regimes. We interpret our results using the notion of gener-

alised equilibration in strong-coupling thermodynamics [62], and develop analytical

models that quantitatively explain the mean heat exchange in the high-temperature

and low-temperature limits. We also show numerically that the heat distribution

obeys a fluctuation-dissipation relation (FDR) in the high-temperature limit, which

is similar to the well-known FDR of the work distribution [44].

The second research project presented in this thesis is a study of heat dissipation in

pure decoherence [92]. Following the full counting statistics approach developed for
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the extension of the TEMPO algorithm, we apply it to a model consisting of a single

qubit coupled to a fermionic bath, undergoing a pure decoherence process. At first

glance, the lack of direct energy exchange between system and heat bath seems to

render the thermodynamics of pure decoherence trivial, even meaningless. We will

show that this is not the case: quantum dephasing noise generated by a thermal en-

vironment is generally accompanied by nontrivial heat dissipation. Indeed, we prove

under generic conditions that decoherence without dissipation is equivalent to static,

classical phase noise: a highly restrictive situation that does not describe most realistic

environments. We also demonstrate that the corresponding heat probability distribu-

tion obeys an integral fluctuation relation, and is entirely distinct from the work dis-

tribution associated with the initial system-bath interaction quench [118–120].
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6 | Full counting statistics approach to

heat transfer

This chapter introduces the full counting statistics approach and derives a modified

discretized influence functional, equivalent in the absence of a counting field u to the

one in Eq. (3.14). This result is derived for an open quantum system interacting with

a bath modelled by an infinite collection of harmonic oscillators and coupled linearly

to the system, with generic total Hamiltonian given by

Ĥ =
p̂2

s
2ms

+ V̂ (S) + ∑
j

 P̂2
j

2mj
+

1
2

mjω
2
j

(
Q̂j −

cjŜ
mjω

2
j

)2
 . (6.1)

Here S is the eigenvalue of a quantum particle’s coordinate operator Ŝ, V̂ (S) a generic

nonlinear potential that depends on the particle coordinate only, p̂s the particle mo-

mentum operator and ms its mass. The momentum and position operators for the

bath are P̂j and Q̂j respectively, for each mode j. cj is the coupling constant between

the system and the bath mode j, ωj is the mode’s angular frequency and mj the mass

of the j-th bath particle. The coordinate and momentum operators of the bath can

be written in terms of creation and annihilation operators, â†
j and âj respectively, as

P̂j = i
√

mjωj/2
(

â†
j − âj

)
and Q̂j =

√
2mjωj

−1
(

âj + â†
j

)
. The interaction Hamilto-

nian ĤI = Ŝ ∑j cjQ̂j and the free bath Hamiltonian can be then written as
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ĤB = ∑
j

ωj â†
j âj, (6.2)

ĤI = Ŝ⊗∑
j

gj

(
âj + â†

j

)
, (6.3)

where gj =
(√

2mjωj
)−1 cj. The bath is characterized by its spectral density function,

defined in Eq. (3.17). The overall Hamiltonian is given by Eq. (2.2). The total den-

sity matrix evolves in time through the time evolution operators in Eq. (2.6), and we

assume the open system and the bath to be initially uncorrelated at the start of the

process t0 = 0, where the initial state of the bath is a Gibbs state.

6.1 Characteristic function of heat and work

The characteristic function of heat is defined by Eq. (4.29) and introduced in Sec. 4.4.4

as the Fourier transform of the probability distribution of heat P(Q). In quantum me-

chanics, from the definition of the probability distribution Eq. (4.26) one obtains [65]

χ(u) = Tr
[
eiuĤBÛ(t)e−iuĤB ρ̂(0)Û†(t)

]
. (6.4)

It is convenient to define a modified time evolution operator as

V̂u(t) = eiĤBu/2Û(t)e−iĤBu/2. (6.5)

This allows the rewriting of Eq. (6.4) as χ(u) = Tr [ρ̂(t, u)], with the modified density

matrix

ρ̂(t, u) = V̂u(t)ρ̂(0)V̂†
−u(t). (6.6)
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The initial condition we assume is ρ̂(0, u) = ρ̂(0). Defining ρ̂S(t, u) = TrB [ρ̂(t, u)] as

the reduced modified system density matrix, we have

χ(u) = TrS [ρ̂S(t, u)] . (6.7)

The form in Eq. (6.7) facilitates the calculation of the heat statistics by means of path-

integral techniques. The characteristic function of work done on the overall system,

on the other hand, is given by [67]

ϑ (v) = Tr
[
eivĤ(t)Û (t) e−ivĤ(0)ρ̂(0)Û† (t)

]
, (6.8)

where we have defined v as the work counting field.

6.1.1 Properties of the characteristic function

We can see that the characteristic function of heat presents symmetries that will prove

useful in our numerical calculations. Specifically, from the definition in Eq. (4.29), it is

clear that

χ∗(u) = χ(−u). (6.9)

since the probability distribution P(Q) is a real function. This implies that the real and

imaginary parts of χ(u) have the symmetries

Re(χ(u)) = Re(χ(−u)),

Im(χ(u)) = −Im(χ(−u)). (6.10)

It is also clear from Eq. (6.4) that χ(0) = 1.
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6.1.2 First and second moments of the fluctuating heat exchange

From Eq. (4.28), the first moment of exchanged heat is given by

⟨Q⟩ = −i
d

du
χ(u)

∣∣∣∣
u=0

. (6.11)

In our method we perform a numerical differentiation in order to calculate the first

and second moments of the heat distribution. In order to do that, we have to choose

a suitable small value of u which we define to be uϵ. Note however that the count-

ing field is not a numerical parameter of the TEMPO algorithm, but a variable of the

characteristic function. Then the average heat can be calculated numerically as

⟨Q⟩ = −i
χ(uϵ)− χ(0)

uϵ
+O(uϵ). (6.12)

with an error of the order O(uϵ). From the symmetries in Eq. (6.10), it is clear that

dRe(χ(u))/du|u=0 = 0 and Im(χ(0)) = 0. Thus the mean heat depends only on

the imaginary part of the characteristic function and is given by its linear slope in an

interval [uϵ, 0],

⟨Q⟩ = Im(χ(uϵ))

uϵ
+O(uϵ). (6.13)

Similarly, we can calculate numerically the second moment of heat as

⟨Q2⟩ = −2
Re(χ(uϵ))− 1

u2
ϵ

+O(u2
ϵ). (6.14)

The variance of the heat is ⟨⟨Q2⟩⟩ = ⟨Q2⟩ − ⟨Q⟩2.

6.2 Reduced modified system density matrix time

evolution

In the following, we construct the time evolution of an open system reduced den-

sity matrix ρ̂S(t, u), modified with the counting field. In the interaction picture, the
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modified density matrix Eq. (6.6) is ˆ̃ρ(t, u) = ei(ĤS+ĤB)tρ̂(t, u)e−i(ĤS+ĤB)t. Writing

explicitly the form of the time evolution operators V̂u(t) in Eq. (6.5), and having that

[ĤS, ĤB] = 0, we can see the only term transformed by the operators e±iĤBu/2 is e−iĤI t.

We can then define a modified interaction Hamiltonian as ĤI(u) = eiĤBu/2ĤIe−iĤBu/2.

For an interaction of the form defined by Eq. (6.3), the annihilation operators âj trans-

form more explicitly as eiĤBu/2 âje−iĤBu/2 = âj + i u
2

[
ĤB, âj

]
+O

(
u2), where we have

expanded the operators up to the second order in the counting field u. In order to

calculate the commutator [ĤB, âj], we notice that the bosonic bath free Hamiltonian

Eq. (6.2) can be written as ĤB = ∑j ωj(â†
j âj + âj â†

j )/2. It is then easy to see that the

commutator is [ĤB, âj] = ∑n ωn
([

â†
n ân, âj

]
+
[
ân â†

n, âj
])

/2. Applying the commuta-

tion rule
[
ÂB̂, Ĉ

]
= Â

[
B̂, Ĉ

]
+
[
Â, Ĉ

]
B̂, it follows that

[
ĤB, âj

]
= −ωj âj and, similarly,[

ĤB, â†
j

]
= ωj â†

j . In conclusion, we can identify the transformations of the bath oper-

ators âj and â†
j as, respectively, eiĤBu/2 âje−iĤBu/2 = âje−i u

2 ωj and eiĤBu/2 â†
j e−iĤBu/2 =

â†
j ei u

2 ωj . It follows that the explicit form of the modified interaction Hamiltonian is,

ĤI (u) = Ŝ⊗∑
j

gj

(
âje−i u

2 ωj + â†
j ei u

2 ωj
)

. (6.15)

Eq. (6.15), in the interaction picture ˆ̃HI (t, u) = ei(ĤS+ĤB)tĤI(u)e−i(ĤS+ĤB)t, becomes

ˆ̃HI (t, u) = Ŝ (t)⊗∑
j

gj

(
âje−iωjte−i u

2 ωj + â†
j eiωjtei u

2 ωj
)

. (6.16)

On the other hand, the master equation for the modified density matrix in the in-

teraction picture is (d/dt) ˆ̃ρ(t, u) = LI(t, u) ˆ̃ρ(t, u), similarly to what we discussed

in Sec. 3.4.2. Considering that the time evolution operator Vu(t) can be written in

terms of Eq. (6.15) as Vu(t) = exp[−i
(

ĤS + ĤB + ĤI (u)
)

t], it follows from Eq. (6.6)

that

ˆ̃ρ(t, u) = e−i
(

ˆ̃HL
I (t,u)−

ˆ̃HR
I (t,−u)

)
t ˆ̃ρ(0, u), (6.17)
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where we have used the superoperator formalism from Eqs. (3.23)-(3.24). We find that

the interaction Liouvillian superoperator in the presence of counting field is

LI(t, u) = −i
(

ˆ̃HL
I (t, u)− ˆ̃HR

I (t,−u)
)

. (6.18)

As for the unmodified reduced density matrix ρ̂S(t), the solution for the modified

reduced density matrix is

ˆ̃ρS(t, u) = I(t, u)ρ̂S(0), (6.19)

where I(t, u) is the modified influence functional

I(t, u) =
〈
←−
T
[∫ t

0
dt′LI

(
t′, u

)]〉
B

. (6.20)

The time-ordering symbol
←−
T reorders superoperators such that time increases from

right to left. Since the interaction Hamiltonian ĤI in Eq. (6.3) is linear and the assumed

thermal state of the bath is Gaussian, analogously to Eq. (3.30) for the unmodified

reduced density matrix, we can write

I(t, u) =
←−
T exp

[∫ t

0
dt′
∫ t′

0
dt′′
〈
LI(t′, u)LI(t′′, u)

〉
B

]
, (6.21)

using a time-ordered cumulant expansion up to second order [33].

The modified influence functional determines the time evolution of ρ̂S(t, u). In the

following we will focus on the calculation of the correlation function in Eq. (6.21),

using the interaction Liouvillian operator we derived in Eq. (6.18).

6.3 Modified influence functional for a bosonic bath

We analytically evaluate the term ⟨LI(t′, u)LI(t′′, u)⟩B in Eq. (6.21). The discretized

form of this correlation function is coded in our extension of the TEMPO algorithm in

order to implement simulations of heat statistics. We notice that the modified interac-
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tion Hamiltonian ˆ̃HI(t, u) in Eq. (6.16) can be written as the sum of two terms,

ˆ̃HI(t, u) = Ŝ (t)∑
j

gj cos
(u

2
ωj

) (
âje−iωjt + â†

j eiωjt
)

− iŜ (t)∑
j

gj sin
(u

2
ωj

) (
âje−iωjt − â†

j eiωjt
)

. (6.22)

We define

B1 (t, u) = ∑
j

gj cos
(u

2
ωj

) (
âje−iωjt + â†

j eiωjt
)

, (6.23)

B2 (t, u) = −i ∑
j

gj sin
(u

2
ωj

) (
âje−iωjt − â†

j eiωjt
)

, (6.24)

so that the modified interaction Hamiltonian can be compactly written as

ˆ̃HI(t, u) = Ŝ (t) B1 (t, u) + Ŝ (t) B2 (t, u) . (6.25)

The interaction Hamiltonian has thus been divided into the sum of the two Hamilto-

nians

HI,1 (t, u) = ŜzB1 (t, u) , (6.26)

HI,2 (t, u) = ŜzB2 (t, u) . (6.27)

We note that, given the cosine and sine functions in the interaction parts dependent

on the counting field, Eqs. (6.23) and (6.24), it holds that HI,1 (t,−u) = HI,1 (t, u) and

HI,2 (t,−u) = −HI,2 (t, u). In light of this new notation, the Liouvillian operator de-

fined in Eq. (6.18) is

LI (t, u) = −i
(

H−I,1 (t, u) + H+
I,2 (t, u)

)
, (6.28)
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where we have used Eq. (3.25) and Eq. (3.26). The exponent of the modified influence

functional in Eq. (6.21) can then be written as

〈
LI
(
t′, u

)
LI
(
t′′, u

)〉
B =

−
〈

H−I,1
(
t′, u

)
H−I,1

(
t′′, u

)〉
B
−
〈

H+
I,2
(
t′, u

)
H+

I,2
(
t′′, u

)〉
B

−
〈

H−I,1
(
t′, u

)
H+

I,2
(
t′′, u

)〉
B
−
〈

H+
I,2
(
t′, u

)
H−I,1

(
t′′, u

)〉
B

. (6.29)

Using the decomposition defined in Eq. (6.26) and Eq. (6.27), and rules (3.25 - 3.28),

we can write H±I,j (t, u) = (Ŝ(t)Bj (t, u))L ± (Ŝ(t)Bj (t, u))R, with j = 1, 2. Applying

the properties (AB)L = ALBL and (AB)R = ARBR, it is possible to separate the super-

operator acting on the system operators from those acting on the reservoir operators.

Each term in Eq. (6.29) can then be calculated explicitly:

〈
H−I,1

(
t′, u

)
H+

I,2
(
t′′, u

)〉
B
=

1
4

Ŝ−(t)
(
Ŝ+(t)

〈
B+

1
(
t′, u

)
B+

2
(
t′′, u

)〉
B

+Ŝ−(t)
〈

B+
1
(
t′, u

)
B−2
(
t′′, u

)〉
B

)
, (6.30)〈

H+
I,2
(
t′, u

)
H−I,1

(
t′′, u

)〉
B
=

1
4

Ŝ+(t)
(
Ŝ+(t)

〈
B+

2
(
t′, u

)
B−1
(
t′′, u

)〉
B

+Ŝ−(t)
〈

B+
2
(
t′, u

)
B+

1
(
t′′, u

)〉
B

)
, (6.31)〈

H−I,1
(
t′, u

)
H−I,1

(
t′′, u

)〉
B
=

1
4

Ŝ−(t)
(
Ŝ+(t)

〈
B+

1
(
t′, u

)
B−1
(
t′′, u

)〉
B

+Ŝ−(t)
〈

B+
1
(
t′, u

)
B+

1
(
t′′, u

)〉
B

)
, (6.32)〈

H+
I,2
(
t′, u

)
H+

I,2
(
t′′, u

)〉
B
=

1
4

Ŝ+(t)
(
Ŝ+(t)

〈
B+

2
(
t′, u

)
B+

2
(
t′′, u

)〉
B

+Ŝ−(t)
〈

B+
2
(
t′, u

)
B−2
(
t′′, u

)〉
B

)
. (6.33)

Through the rules in Eqs. (3.25 - 3.26) we can calculate all the bath correlation func-

tions appearing in Eqs. (6.30 - 6.33). It can be noted that given the definition ⟨•⟩B ≡

Tr[• ˆ̃ρB(0)] in interaction picture, for any two superoperators α and β, it holds that

⟨α−β±⟩B = TrB
[[

α, β± ˆ̃ρB (0)
]]

= 0. Therefore the superoperators B−1 (t′, u) and

B−2 (t′, u) in Eqs. (6.30 - 6.33) produce null terms, B (t, u) being the only operator that

contains degrees of freedom of the bath B. We then only need to evaluate the non-null
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correlations ⟨B+
m (t′, u) B+

n (t′′, u)⟩B and ⟨B+
m (t′, u) B−n (t′′, u)⟩B, with m, n = 1, 2,

〈
B+

m
(
t′, u

)
B±n
(
t′′, u

)〉
B = 2

〈
Bm
(
t′, u

)
Bn
(
t′′, u

)〉
B± 2

〈
Bn
(
t′′, u

)
Bm
(
t′, u

)〉
B . (6.34)

Since ⟨Bn (t′′, u) Bm (t′, u)⟩B = ⟨Bm (t′, u) Bn (t′′, u)⟩∗B, we have that

〈
B+

m
(
t′, u

)
B+

n
(
t′′, u

)〉
B = 4Re

[
TrB

[
Bm
(
t′, u

)
Bn
(
t′′, u

)
ˆ̃ρB (0)

]]
, (6.35)〈

B+
m
(
t′, u

)
B−n
(
t′′, u

)〉
B = 4iIm

[
TrB

[
Bm
(
t′, u

)
Bn
(
t′′, u

)
ˆ̃ρB (0)

]]
. (6.36)

With the definitions of functions B1(t, u) and B2(t, u) in Eqs. (6.23 - 6.24), we can ex-

plicitly calculate the functions in Eqs. (6.35 - 6.36) using the properties of the bosonic

operators. Specifically, we know that TrB
[
â†

k âj ˆ̃ρB (0)
]
=
〈

N̂j
〉

t=0 δkj, where N̂j = â†
k âj

is the bosonic number operator of mode j, whose average at time t = 0, for a Planck

distribution of bosons occupying the energy level h̄ωj, is

〈
N̂j
〉

t=0 =
1

exp
[
β0ωj

]
− 1

=
exp

[
−β0ωj/2

]
2 sinh

[
β0ωj/2

] , (6.37)

where β0 is the inverse temperature of the bath at initial time t = 0.

We find that, for m ̸= n, m, n = 1, 2,

〈
B+

1
(
t′, u

)
B+

2
(
t′′, u

)〉
B = −

〈
B+

2
(
t′, u

)
B+

1
(
t′′, u

)〉
B = −4Re

[
C
(
t′, t′′, u

)]
, (6.38)〈

B+
1
(
t′, u

)
B−2
(
t′′, u

)〉
B = −

〈
B+

2
(
t′, u

)
B−1
(
t′′, u

)〉
B = −4iIm

[
C
(
t′, t′′, u

)]
, (6.39)

where

C
(
t′, t′′, u

)
= i ∑

j
g2

j cos
(u

2
ωj

)
sin
(u

2
ωj

) sinh
[
iωj (t′ − t′′)− β0ωj/2

]
sinh

[
β0ωj/2

] . (6.40)
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Similarly, for m = n, m, n = 1, 2, the calculation of Eqs. (6.35 - 6.36) leads to

〈
B+

1
(
t′, u

)
B+

1
(
t′′, u

)〉
B = 4Re

[
A1
(
t′, t′′, u

)]
, (6.41)〈

B+
2
(
t′, u

)
B+

2
(
t′′, u

)〉
B = 4Re

[
A2
(
t′, t′′, u

)]
, (6.42)〈

B+
1
(
t′, u

)
B−1
(
t′′, u

)〉
B = 4iIm

[
A1
(
t′, t′′, u

)]
, (6.43)〈

B+
2
(
t′, u

)
B−2
(
t′′, u

)〉
B = 4iIm

[
A2
(
t′, t′′, u

)]
, (6.44)

where

A1
(
t′, t′′, u

)
= ∑

j
g2

j cos2
(u

2
ωj

) cosh
[
iωj (t′ − t′′)− β0ωj/2

]
sinh

[
β0ωj/2

] , (6.45)

A2
(
t′, t′′, u

)
= ∑

j
g2

j sin2
(u

2
ωj

) cosh
[
iωj (t′ − t′′)− β0ωj/2

]
sinh

[
β0ωj/2

] . (6.46)

In terms of the spectral density function J(w) defined in Eq. (3.17), functions C(t′, t′′, u),

A1(t′, t′′, u) and A2(t′, t′′, u) can be written as

C
(
t′, t′′, u

)
= i

∫ ∞

0
dω J (ω) cos

(u
2

ω
)

sin
(u

2
ω
) sinh [iω (t′ − t′′)− β0ω/2]

sinh [β0ω/2]
, (6.47)

A1
(
t′, t′′, u

)
=
∫ ∞

0
dω J (ω) cos2

(u
2

ω
) cosh [iω (t′ − t′′)− β0ω/2]

sinh [β0ω/2]
, (6.48)

A2
(
t′, t′′, u

)
=
∫ ∞

0
dω J (ω) sin2

(u
2

ω
) cosh [iω (t′ − t′′)− β0ω/2]

sinh [β0ω/2]
. (6.49)

Eqs. (6.47 - 6.48) allow for the calculation of the bath correlation terms appearing in

⟨LI (t′, u)LI (t′′, u)⟩B in Eq. (6.29). The full exponent of the modified influence func-

tional Eq. (6.21), is then calculated by integrating Eqs. (6.47 - 6.48) and defining the

correlation functions

ηα(t, u) =
∫ t

0
dt′
∫ t′

0
dt′′α

(
t′, t′′, u

)
, (6.50)
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where α = C,A1,A2. The three resulting correlation functions are

ηC(t, u) =
∫ ∞

0
dω

J(ω)

2ω2 sin(uω) (6.51)

×
[
coth

( ω

2T

)
[sin(ωt)−ωt]− i [1− cos(ωt)]

]
,

ηA1(t, u) =
∫ ∞

0
dω

J(ω)

ω2 cos2
(uω

2

)
(6.52)

×
[
coth

( ω

2T

)
[1− cos(ωt)] + i [sin(ωt)−ωt]

]
,

ηA2(t, u) =
∫ ∞

0
dω

J(ω)

ω2 sin2
(uω

2

)
(6.53)

×
[
coth

( ω

2T

)
[1− cos(ωt)] + i [sin(ωt)−ωt]

]
.

In order to obtain a discretized modified influence functional in the form of Eq. (3.14)

for the original TEMPO algorithm, we discretize the correlation functions Eqs. (6.51 -

6.53), and define, equivalently to Eq. (3.15),

ηα
k−k′(u) =



∫ tk
tk−1

∫ tk′
tk′−1

α (t′ − t′′, u) dt′′dt′ k ̸= k′

∫ tk
tk−1

∫ t′

tk−1
α (t′ − t′′, u) dt′′dt′ k = k′,

(6.54)

where ηα
k−k′(u) = ηα(tk − tk′ , u), and ηα (t, u) = ∑N

k=0 ∑k
k′=0 ηα

k−k′ (u). Following the

method illustrated in Sec. 3.3 and developed in Ref. [15], we simply discretize time in

N intervals of equal length ∆, so that tk = k∆. We again use the notation
∣∣s±k 〉 for the

eigenstates of Ŝ, where the superscript +(−) is used to label eigenvectors inserted on

the left (right) of the reduced system density matrix.

The path integral for ρ̂S(t, u) is constructed by inserting resolutions of the iden-

tity Î = ∑s±k

∣∣s±k 〉〈s±k ∣∣ in the eigenbasis of the system operator Ŝ at each time step in

Eq. (6.19). In the interaction picture, the free propagators do not appear and we obtain
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the modified influence functional in the form

I
({

s±k
}

, u
)
=

N

∏
k=0

k

∏
k′=0

I∆k(s±k , s±k′ , u), (6.55)

I∆k
(
s±k , s±k′ , u

)
= exp

[
− ∑

q,q′=±
sq

kη
qq′

k−k′(u)s
q′

k′

]
. (6.56)

Here, ∆k = k− k′ and η
qq′

k−k′(u) are the discretized correlation functions

η++
k−k′(u) = ηA1

k−k′(u) + ηA2
k−k′(u) =

[
η−−k−k′(u)

]∗
(6.57)

η−+k−k′(u) = ηA2
k−k′(u)− ηA1

k−k′(u) + 2ηCk−k′(u) (6.58)

η+−
k−k′(u) =

[
ηA2

k−k′(u)− ηA1
k−k′(u)− 2ηCk−k′(u)

]∗
. (6.59)

Our expression for I
({

s±k
}

, u
)

matches the one recently derived in Ref. [111] and it is

straightforward to verify that, for u = 0, it reduces to the original influence functional

described in Ref. [13]. From Eq. (3.22), the reduced modified density matrix element

at final time tN is

〈
s+N
∣∣ ρ̂S(t, u)

∣∣s−N〉 = ∑
s±0 ,s±1 ...s±N−1

F
({

s±k
})

I
({

s±k
}

, u
) 〈

s+0
∣∣ρ̂′S(0)∣∣s−0 〉. (6.60)

Here, ρ̂′S(0) = e−iĤS∆/2ρ̂S(0)eiĤS∆/2 is a modified initial condition, and

F
({

s±k
})

=
N

∏
k=1

G(s±k , s±k−1) (6.61)

is a product of free propagators for the system, with

G(s±k , s±k−1) =
〈
s+k
∣∣e−iĤS∆k

∣∣∣s+k−1

〉〈
s−k−1

∣∣∣eiĤS∆k
∣∣s−k 〉, (6.62)

where ∆k = ∆ for k < N and ∆N = ∆/2.

The form of Eq. (6.55) emphasises that the environment introduces memory into

the evolution by coupling the system coordinate to itself at different times. Cru-
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cially, however, the correlation functions ηα(t, u) decay to zero for sufficiently large

t and therefore the memory time of the environment is finite. We are therefore able

to implement the modified influence functional Eq. (6.56) into TEMPO, and calculate

the time evolution of ρ̂S(t, u) for any given time t in the presence of counting field.

Through Eq. (6.7) our modified algorithm is able to numerically calculate the charac-

teristic function of heat. The ADT iterative propagation scheme described in Sec. 3.3.3

remains unchanged, with the essential replacement of the original influence functional

with the modified one in the propagator tensor Eq. (3.19).
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7 | Simulation of the non-Markovian

spin-boson model dynamics

In the original work by Strathearn et al. in Ref. [16], the TEMPO algorithm is ap-

plied to the paradigmatic spin-boson model. Aside from setting the environmental

parameters, the TEMPO algorithm requires the input of three additional parameters:

the discretization time-step ∆, the memory cutoff length K, and the precision param-

eter p for performing singular value decompositions of the system’s ADT, such that

λC = λmax10−p/10 is the cut-off value (see Sec. 3.4). For the spin-boson model, Ref. [16]

finds that it is sufficient to set ∆ = 0.06, K = 200, and p = 60 in the original TEMPO

algorithm in order to achieve convergence in the dynamics of a single spin-1/2 cou-

pled to a bosonic bath with Ohmic spectral density, at temperature T = 0 and up

to the strong coupling regime. When setting the counting field parameter u = 0 in

the modified influence functional we derived in Eq. (6.56), it is easy to verify from

Eqs. (6.51 - 6.53) that ηC(t, 0) = 0, ηA2(t, 0) = 0 and ηA1(t, 0) is equal to the autocor-

relation function C(t) in Eq. (3.16) for the unmodified TEMPO. The first step in our

analysis of the heat statistics of the spin-boson model is to verify that our modified

code reproduces the results shown in Ref. [16], as a general check, when we set u = 0.

Since we will be simulating heat statistics for a bath with temperatures up to T = 5Ω,

where Ω is a unit we will define in terms of the parameters of the system Hamiltonian,

we verify the TEMPO parameter ranges that allow for the convergence of the system

observables for temperatures T > 0.
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7.1 The spin-boson model

In the spin-boson model, the terms in the total Hamiltonian Ĥ Eq. (2.2) take the

form

ĤS = ω0Ŝz + ΩŜx, (7.1)

ĤB = ∑
j

ωj â†
j âj, (7.2)

ĤI = Ŝz ∑
j

gj

(
âj + â†

j

)
. (7.3)

Above, Ŝz and Ŝx are the spin operators for the system. We focus on an Ohmic spectral

density function of the form

J (ω) = 2αωe−ω/ωC , (7.4)

where α is a dimensionless system-environment coupling constant and ωC is a cutoff

frequency. The bath is characterised by a correlation time τC = 2π/ωC. The frequency

and temperature are both defined in units of Ω, which for simplicity we will here set

to Ω = 1. This model presents a quantum phase transition at zero bath temperature

at the critical value of the coupling constant αcritical. As in Ref. [16], in the following

we set the initial state of the spin to be the eigenstate |↑⟩ of the spin operator Ŝz, such

that Ŝz|↑⟩ = 1/2|↑⟩, and ρ̂S(0) = |↑⟩⟨↑|. Fig. 7.1 and Fig. 7.2 show the Ohmic

spectral density in Eq. (7.4) for fixed frequency cutoff ωC = 5 and fixed coupling

strength α = 1 respectively. From Fig. 7.1 it is clear that the frequency at which J(ω)

presents a peak remains unchanged by the coupling strength, while the magnitude

of the peak is proportional to α. Changing the cutoff frequency, on the other hand,

affects the frequency range at which J(ω) becomes negligible, which happens at lower

ω for smaller ωC. This means the correlation functions Eqs. (6.51 - 6.53) decay after a

timescale set by 1/ωC, and the bath no longer affects the dynamics of the spin. The

spectral density function has in all cases a peak at ω = ωC.
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Figure 7.1: Ohmic spectral density function of the bath J(ω) for fixed frequency cutoff ωC = 5,
and three different values of the coupling strength α.
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Figure 7.2: Ohmic spectral density function of the bath J(ω) for fixed coupling strength α = 1,
and three different values of frequency cutoff ωC.
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7.2 Correlation function and memory depth

In order to fix the correct memory length that has to be taken into account during the

unmodified system dynamics, it is important to evaluate at what time the correlation

function decays and the effects of the environment are no longer relevant and can be

ignored. We rewrite the correlation function A1(t′, t′′, , 0) as a function of the mem-

ory depth time K∆, by setting (t′ − t′′) = K∆ in Eq. (6.48). Separating the real and

imaginary part of the correlation function, we have

Re[A1](K∆) =


2α
∫ ∞

0 ωe−
ω

ωC coth
(

β0ω
2

)
cos (K∆ω) T ̸= 0

2α
∫ ∞

0 ωe−
ω

ωC cos (K∆ω) T = 0,

(7.5)

where we have used limβ0→∞ coth(β0ω/2) = 1, and

Im[A1](K∆) = −2α
∫ ∞

0
ωe−

ω
ωC sin (K∆ω), (7.6)

independent of temperature. Figs. (7.3-7.4) show the real part of A1, for fixed system-

environment coupling strength and for fixed bath temperature respectively. It can be

noted that the memory depth time K∆ at which function Re[A1] goes to zero does

not have a strong dependence on temperature. It does, however, have a dependence

on the frequency cutoff ωC. Re[A1] becomes negligible faster for higher values of the

cutoff. In Fig. 7.4, for example, the orange curve (ωC = 1) has a value of Re[A1] = 0.2

for K∆ = 3, while the green curve (ωC = 20) has a value of Re[A1] = 0.01 for the same

memory depth. Identical observations can the made for the temperature independent

imaginary part the correlation function, Im[A1], shown in Fig. 7.5 for different values

of ωC and a fixed value of α. We notice that for a fixed frequency cutoff value ωC =

5, we would need a memory depth time K∆ > 3 in order to achieve a negligible

correlation function for the coupling value of α = 0.1 in the range of temperatures

0 ≤ T ≤ 5, within an approximation < 0.04.

61



0.0 0.5 1.0 1.5 2.0 2.5 3.0
K

0

2

4

6

8

10

12

Re
[

1]
(K

)

T = 0
T = 0.1
T = 1
T = 5

Figure 7.3: Real part of the bath correlation function A1, for four different values of bath tem-
perature T, as a function of the memory depth time K∆ as defined in Eqs. (7.5). Here we have
fixed α = 0.1, ωC = 5.
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Figure 7.4: Real part of the bath correlation function A1, for four different values of frequency
cutoff ωC, as a function of the memory depth time K∆ as defined in Eqs. (7.5). Here we have
fixed T = 5, α = 0.1
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Figure 7.5: Imaginary part of the bath correlation function A1, for four different values of
frequency cutoff ωC, as a function of the memory depth time K∆ as defined in Eqs. (7.6). Here
we have fixed α = 0.1
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7.3 Spin observables and TEMPO parameters

For u = 0, we use TEMPO to compute the dynamics of the spin observables ⟨Ŝz⟩

and ⟨Ŝx⟩ for different values of the algorithm parameters. We first consider the zero

temperature case. In order to see how the Trotter error, introduced in the QuAPI

method and shown in Eq. (3.10), affects the convergence of the observables, we fix the

length of the memory propagated at each time-step K∆ to a constant value, and vary ∆.

The first row in Fig. 7.6 shows different behaviour between ⟨Ŝz⟩, where convergence

arises for ∆ > 0.01, and ⟨Ŝx⟩, where convergence arises for ∆ < 0.1, signalling the

existence of a suitable range for the time-step value for fixed K∆.

Secondly, in order to check how the finite memory time affects the convergence

of the observables, we fix the time-step ∆ and increase K until the results converge.

Fig. 7.6 shows that, for zero bath temperature, the average spin functions converge

reasonably for K > 200, while lower values of the memory cutoff lead to an inaccurate

dynamics (see second row, K = 10, blue line). The dynamics of ⟨Ŝz⟩ calculated here

at value K = 200 (red line, second row) matches the result obtained in Ref. [16] by

Strathearn et al. with the original TEMPO algorithm, for the same values of K, α and

ωC.

Lastly, in order to check how the cutoff in the singular value decomposition affects

the convergence of the observables, we fix K and ∆ and increase p until convergence

is achieved. The third row in Fig. 7.6 shows that best convergence is obtained for

values of p ≥ 80. Fig. 7.7 shows that a similar behaviour in the convergence of the

spin observables is observed for finite temperature T = 5. Convergence of the spin

dynamics is here obtained for ∆ ∼ 0.01, K ≥ 200 and p ≥ 80.
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Figure 7.6: Dynamics of the mean values of the spin operators ⟨Ŝz⟩ (left column) and ⟨Ŝx⟩
(right column) for zero bath temperature, calculated with TEMPO for u = 0. The initial spin
state is |ψ(0)⟩ = |↑⟩. Here ωC = 5 and α = 1. First row: behaviour for different values of
∆, with fixed product K∆ = 3 and p = 80. Second row: behaviour for different values of K,
for fixed p = 80, ∆ = 0.01. Third row: behaviour for different values of p, for fixed K = 400,
∆ = 0.01.
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Figure 7.7: Dynamics of the mean values of the spin operators ⟨Ŝz⟩ (left column) and ⟨Ŝx⟩
(right column) for finite bath temperature T = 5, calculated with TEMPO for u = 0. The initial
spin state is |ψ(0)⟩ = |↑⟩. Here ωC = 5 and α = 1. First row: behaviour for different values
of ∆, with fixed product K∆ = 3 and p = 80. Second row: behaviour for different values of K,
for fixed p = 80, ∆ = 0.01. Third row: behaviour for different values of p, for fixed K = 400,
∆ = 0.01.
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8 | An application: Heat statistics of

the spin-boson model

Although our method for the calculation of heat statistics is general, in the following

we specialize to the spin-boson model describing a single spin one-half interacting

with a bosonic bath of harmonic oscillators. We have presented this model and its

characteristics in Chap. 7, where we defined the Hamiltonians of the overall system

and bath in Eqs. (7.1 - 7.3). We have verified that in the absence of counting field, our

modified TEMPO algorithm reproduces the correct dynamics of the spin observables

and studied the convergence of such dynamics in relation to the TEMPO parameters.

We now consider two different limits of the spin-boson model: the independent-boson

model with Ω = 0 and the unbiased spin-boson model with ω0 = 0 and Ω ̸= 0, with

a focus on heat statistics. The independent-boson model is exactly solvable, allowing

us to verify the accuracy of our numerical method. We then turn to the unbiased spin-

boson model, an archetypal example of a non-integrable open quantum system. The

experimental reasons that make the spin-boson model relevant have been discussed

in the introduction Chap. 5. Another practical motivation for our focus on this model

is that it represents a general setting known to be amenable to efficient tensor-network

descriptions [121, 122]. Furthermore, the canonical open quantum system comprises

a small, few-state system coupled to a bosonic bath, and the spin-boson model is the

simplest case.

We start by studying the mean heat exchanged with the bath in the Markovian

limit, for which an analytical solution is easily obtainable. We then apply our nu-

66



merical method for the calculation of heat statistics in non-Markovian regimes, where

analytical solutions do not exist, after having verified the efficiency of the modified

algorithm and TEMPO parameter ranges necessary for convergence through the solv-

able independent-boson model. Interestingly, our results show that the system-bath

interaction energy makes a considerable contribution to the heat statistics, even in the

weak-coupling and high-temperature regime where a Markovian description of the

system dynamics alone is accurate. This underlines the need to interpret with care the

standard Markovian description of quantum thermodynamics [123], which is based

on properties of the open system alone.

In the following we choose a bosonic bath characterized by an Ohmic spectral den-

sity Eq. (7.4).

8.1 Exchanged heat in the Markovian limit

In order to gather a better understanding of the expected behaviour of the mean ex-

changed heat ⟨Q⟩ defined in Eq. (4.17), we study the Lindblad master equation for

the reduced modified density matrix ρ̂S (t, u) describing the Markovian limit for an

unbiased spin-boson model. For the total Hamiltonian defined by Eqs. (7.1 - 7.3), the

Lindblad master equation is [95]

∂ρ̂S (t, u)
∂t

= −i
[
ĤS, ρ̂S (t, u)

]
(8.1)

− γe

2

[
{r̂+r̂−, ρ̂S (t, u)} − 2eiuΩr̂−ρ̂S (t, u) r̂+

]
− γa

2

[
{r̂−r̂+, ρ̂S (t, u)} − 2e−iuΩr̂+ρ̂S (t, u) r̂−

]
,

where we have set ω0 = 0, r̂+ = Ŝz + iŜy and r̂− = Ŝz − iŜy. Here γe and γa are the

emission and absorption rates respectively, given by

γe = πα
(
1 +

〈
N̂Ω
〉

t=0

)
Ωe−Ω/ωC , (8.2)

γa = πα
〈

N̂Ω
〉

t=0 Ωe−Ω/ωC , (8.3)
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with
〈

N̂Ω
〉

t=0 being the Planck distribution as defined by Eq. (6.37) for ωj = Ω. From

the Lindblad equation we can calculate the time derivative of the mean heat trans-

ferred between bath and system,

d⟨Q⟩ (t)
dt

= Ω
[
γeρ
↑
S (t, 0)− γaρ↓S (t, 0)

]
. (8.4)

ρ↑S (t, 0) and ρ↓S (t, 0) are the diagonal elements of matrix ρ̂S (t, 0) in the eigenbasis of

ĤS; that is, in the basis of eigenstates of operator Ŝx. Setting an initial state for the spin,

the Lindblad master equation Eq. (8.1) can be solved for ρ̂S(t, u) for a fixed value of

the counting field u. The characteristic function of heat is calculated through Eq. (6.7).

This allows us to find the average heat exchanged through a numerical derivative, as

in Eq. (6.13). Preliminary checks show that for a counting field parameter u ≤ 0.01,

the obtained results for ⟨Q⟩(t) converge to one unique function of time. One could

alternatively solve the Lindblad master equation and integrate Eq. (8.4) in time in

order to find ⟨Q⟩(t).

8.1.1 Asymptotic exchanged heat

In the following, we set the initial state of the spin to be |ψ(0)⟩ = |↑⟩, with |↑⟩ an eigen-

state of Ŝz. Fig. 8.1 shows the average heat exchanged in the Markovian limit, for a

spin splitting fixed to Ω = 1, and comparatively high temperature T = 5. It is clear

that the system-bath coupling strength α does not affect the asymptotic value ⟨Q⟩∞

at which the exchanged heat equilibrates, but only affects the time frame at which

this equilibration happens. Stronger coupling leads to a faster equilibration time. The

Markovian solution is however of interest because in a generic non-Markovian, weak

coupling limit, we expect the dynamics defined by the modified influence functional

Eq. (6.21) to lead to an asymptotic solution ⟨Q⟩∞ that includes the average heat trans-

fer described by the Markovian result, among other possible effects. We will see this is

indeed the case. Fig. 8.2 shows that the spin splitting Ω, on the other hand, affects the

asymptotic heat value, which increases, although not linearly, with increasing value
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Figure 8.1: Average heat exchanged between bath and system in the Markovian limit, as a
function of time, for four different values of the system-bath coupling strength. Here we have
set T = 5, ωC = 5, Ω = 1. The initial state of the system is |ψ0⟩ = |↑⟩. The numerical derivative
is taken at u = 0.01.
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ωC = 5, α = 0.1. The initial state of the system is |ψ(0)⟩ = |↑⟩. The numerical derivative is
taken at u = 0.01.

69



of Ω.

In the Markovian weak-damping limit, the spin evolves in time to a thermal steady-

state in Gibbs form, ρ̂S(∞) = exp[−βĤS]/ZS, with ZS = TrS[exp(−βĤS)]. The

asymptotic value of its energy ⟨ĤS⟩∞ = TrS[ρ̂S(∞)ĤS] is then easily calculated. The

only contribution to the average heat change in the spin system ⟨QS⟩∞ = ⟨ĤS⟩∞ −

⟨ĤS⟩0, is the heat transferred as it relaxes to a thermal state, which, in the absence of

external work, is equal to the change in its internal energy. We therefore have

⟨QS⟩∞ = −

√
Ω2 + ω2

0

2
tanh


√

Ω2 + ω2
0

2T

− ⟨ψ(0)|ĤS|ψ(0)⟩. (8.5)

For an initial spin state |ψ(0)⟩ = |↑⟩, and parameters ω0 = 0, Ω = 1 and T = 5 as

in Fig. 8.1, we can calculate from Eq. (8.5) ⟨QS⟩∞ = −0.04983. On the other hand,

the numerical asymptotic solution for the average heat exchanged by the bath can be

extrapolated from the data collected in Fig. 8.1, and amounts to ⟨Q⟩∞ = 0.04983. We

can see that in the Markovian limit, the only change in energy that occurs in the bath

is caused by the transfer of heat from the system, ⟨Q⟩∞ = −∆U∞. For an initial spin

state |↑⟩, this amounts to

⟨Q⟩∞ =
Ω
2

tanh
[

Ω
2T

]
. (8.6)

We can verify that this conclusion holds true for different initial states of the spin.

Fig. 8.3 shows ⟨Q⟩(t) for an initial state of the spin |←⟩ = (−1, 1) and |→⟩ = (1, 1),

both eigenstates of the spin operator Ŝx with eigenvalues ±1/2 respectively. The

asymptotic heat exchanged by the bath is drastically different. Again, the data from

Fig. 8.3 shows it is equal to −⟨QS⟩∞. From Eq. (8.5), it amounts to

⟨Q⟩∞ =
Ω
2

tanh
[

Ω
2T

]
− Ω

2
(8.7)

for initial state |ψ(0)⟩ = |←⟩, and

⟨Q⟩∞ =
Ω
2

tanh
[

Ω
2T

]
+

Ω
2

(8.8)
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Figure 8.3: Average heat exchanged between bath and system in the Markovian limit, as a
function of time, for three different initial states of the spin. Here we have set T = 5, ωC = 5,
α = 0.1, and Ω = 1. The numerical derivative is taken at u = 0.01.

for initial state |ψ(0)⟩ = |→⟩. From both the data and the analytical prediction of

Eqs. (8.7 - 8.8), the asymptotic values are ⟨Q⟩∞ = −0.45016 and ⟨Q⟩∞ = 0.54983 re-

spectively, for Ω = 1 and T = 5. Fig. 8.3, in particular, reveals that in a Markovian

set up with a system Hamiltonian as in Eq. (7.1), the total heat exchanged by the bath

equals the sum of the energies that it takes for the initial system state to reach the

energy level of the state |↑⟩ and the heat transferred from the system to the bath as

it equilibrates to a thermal state Eq. (8.6). An initial system state |←⟩ has an energy

lower than that of state |↑⟩ by an amount equal to Ω/2, and therefore the bath trans-

fers to the system a quantity of heat equal to Ω/2. On the other hand, an initial system

state |→⟩ has an energy higher than that of state |↑⟩ by an amount Ω/2, and therefore

the bath receives from the system a quantity of heat equal to Ω/2.

These predictions derived from the Markovian limit will be useful in the explana-

tion of the phenomena that drive non-Markovian heat transfers.
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8.2 Independent boson model

The independent-boson (IB) model is described by Eqs. (7.1 - 7.3) with Ω = 0. This

model, for which we derive an analytical solution for the characteristic function of

heat, will serve us as a way to verify the accuracy of our method.

The Hamiltonian can be diagonalised by a polaron transformation, which takes the

general form

P̂ = exp

[
Ŝz ∑

j

f j

ωj

(
âj − â†

j

)]
. (8.9)

This describes a spin-dependent displacement of each bath oscillator by an amount

proportional to f j. The choice f j = gj diagonalises the IB Hamiltonian as P̂†ĤP̂ =

Ĥ0 − 1
2 Er, where Ĥ0 = ĤS + ĤB is the free Hamiltonian and we have defined the

reorganisation energy

Er =
1
2

∫ ∞

0
dω

J(ω)

ω
= αωC, (8.10)

for an Ohmic spectral density, which determines the shift in ground-state energy due

to the system-bath interaction. In the IB model, [Ĥ, ĤS] = 0, meaning that the local

energy of the spin is conserved and ∆U = 0. Therefore, the heat dissipated into the

bath is associated purely with the system-bath interaction.

8.2.1 Average heat and variance for the independent boson model

Using the transformation defined by Eq. (8.9), we write the unitary time evolution

operator as

Û(t) = P̂e−iĤ0tP̂† (8.11)

= e−iĤ0t
(

eiĤ0t/2P̃(t/2)P̃†(−t/2)e−iĤ0t/2
)

, (8.12)
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where the tilde denotes an operator in the interaction picture with respect to Ĥ0,

i.e.,

P̃(t) = eiĤ0tP̂e−iĤ0t

= exp

[
Ŝz ∑

j

gj

ωj

(
e−iωjt âj − eiωjt â†

j

)]
. (8.13)

Using the Baker-Campbell-Hausdorff formula, eAeB = exp(A + B + 1
2 [A, B] + . . .),

and neglecting an irrelevant phase factor, we obtain Û(t) = Û0(t)ÛI(t), where Û0(t) =

e−iĤ0t is the free propagator and

ÛI(t) = exp

[
2Ŝz ∑

j

(
αj(t)â†

j − α∗j (t)âj

)]
(8.14)

is the interaction-picture propagator, which describes a spin-dependent displacement

for each mode of magnitude

αj(t) =
gj

2ωj

(
1− eiωjt

)
. (8.15)

The time evolution of the bath density matrix ρ̂B(t) is

ρ̂B (t) = TrS

[
ÛI (t) ρ̂S (0)⊗ ρ̂B (0) Û†

I (t)
]

. (8.16)

Expanding the trace over the spin degrees of freedom in the basis of eigenstates of Ŝz,

{|↑⟩, |↓⟩}, we see that the action of the time evolution operator ÛI(t) is

Û†
I (t) |↓⟩ = exp

[
∑

i

(
αi (t) â†

i − α∗i (t) âi

)]
|↓⟩ (8.17)

Û†
I (t) |↑⟩ = exp

[
−∑

i

(
αi (t) â†

i − α∗i (t) âi

)]
|↑⟩ , (8.18)
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which is the action of a product of displacement operators D̂(xi) = exi â†−x∗i â for each

bosonic mode, where in this case xi = αi (t). We can define the bath operator

D̂B(t) = exp

[
∑

i

(
αi (t) â†

i − α∗i (t) âi

)]
, (8.19)

and write the time evolution of ρ̂B(t) as

ρ̂B(t) =
(

D̂†
B (t) ρ̂B (0) D̂B (t)− D̂B (t) ρ̂B (0) D̂†

B (t)
)
⟨↓| ρ̂S (0) |↓⟩ (8.20)

+ D̂B (t) ρ̂B (0) D̂†
B (t) .

It is easy to see that the action of the bath displacement operator D̂B(t) on the bath

free Hamiltonian ĤB is given by

D̂B (t) ĤBD̂†
B (t) = ĤB −∑

i
ωi

(
αi (t) â†

i + α∗i (t) âi

)
+O

(
g2

i

)
, (8.21)

D̂†
B (t) ĤBD̂B (t) = ĤB + ∑

i
ωi

(
αi (t) â†

i + α∗i (t) âi

)
+O

(
g2

i

)
. (8.22)

Here we have expanded the operator D̂B(t) up the the second order in the coupling

strength constant gi, and used the commutation rules [ĤB, â†
i ] = ωi â†

i and [ĤB, âi] =

−ωi âi. The coefficients of any given even power of gi in the further Taylor series

expansion of Eqs. (8.21-8.22) are the same function, with same sign. The coefficients

of any given odd power of gi are the same function, but appear with opposite sign.

However the odd power coefficients consist of an odd number of annihilation and

creation operators, and therefore their mean value ⟨•⟩B is zero. On the other hand the

terms with an even power of gi in the Taylor series expansion cancel each other when

subtracted, and it follows that

〈
D̂B (t) ĤBD̂†

B (t)
〉

B
−
〈

D̂†
B (t) ĤBD̂B (t)

〉
B
= 0. (8.23)
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Using this result and the time evolution of ρ̂B(t) Eq. (8.20), it is easy to calculate the

mean heat exchanged by the bath ⟨Q⟩(t) = ⟨ĤB⟩t − ⟨ĤB⟩0,

⟨Q⟩(t) =
〈

D̂†
B (t) ĤBD̂B (t)

〉
B
− ⟨ĤB⟩0. (8.24)

This is not surprising, as one would expect the heat exchanged by the bosonic bath

to be independent of the initial state of the system, in a pure dephasing, independent

boson model. We expand the first term, noting that the displacement operator D̂B(t)

acts on the bosonic modes as

D̂†
B (t) âiD̂B (t) = âi + αi (t) , (8.25)

D̂†
B (t) â†

i D̂B (t) = â†
i + α∗i (t) . (8.26)

It follows that
〈

D̂†
B (t) ĤBD̂B (t)

〉
B = ∑i ωi |αi (t)|2 + ⟨ĤB⟩0. Eq. (8.24) leads then to

⟨Q⟩(t) = ∑i ωi |αi (t)|2. Using the definition of the displacement coefficients αi(t)

Eq. (8.15), and the definition of the spectral density function Eq. (3.17), we find the

mean heat for the independent boson model to be

⟨Q⟩ = 1
2

∫ ∞

0
dω

J(ω)

ω
[1− cos(ωt)] , (8.27)

which is strictly positive and independent of temperature. Interestingly, these prop-

erties are shared by all odd cumulants of the heat distribution in the IB model. For

an Ohmic spectral density, we have ⟨Q⟩ = αω3
Ct2/(1 + ω2

Ct2), which monotonically

approaches the reorganisation energy in the long-time limit:

⟨Q⟩∞ = αωC = Er. (8.28)
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The same passages that lead to the calculation of Eq. (8.27), lead to the exact analytical

expression for the heat variance

⟨⟨Q2⟩⟩ = 1
2

∫ ∞

0
dω J(ω) [1− cos(ωt)] coth

(
βω

2

)
. (8.29)

Unlike the mean heat in Eq. (8.27), which is independent of temperature, the variance

in Eq. (8.29) depends on the inverse temperature of the bath β.

8.2.2 Characteristic function for the independent boson model

We show that the heat characteristic function is independent of the state of the spin

and given explicitly by

ln χ(u) = −1
2

∫ ∞

0
dω

J(ω)

ω2 [1− cos(ωt)] (8.30)

×
{
[1− cos(ωu)] coth

( ω

2T

)
− i sin(ωu)

}
.

To do this we use the expression for the interaction-picture propagator ÛI(t) from

Eq. (8.14), in the definition of quantum characteristic function Eq. (6.4), where Û(t) =

Û0(t)ÛI(t), obtaining χ(u) = ⟨V̄†
−u(t)V̄u(t)⟩0. Here V̄u(t) = eiuĤB/2ÛI(t)e−iuĤB/2 is

the modified interaction-picture evolution operator, given explicitly by

V̄u(t) = |↑⟩⟨↑| ⊗∏
j

D̂B

(
αjeiωju/2

)
+ |↓⟩⟨↓| ⊗∏

j
D̂†

B

(
αjeiωju/2

)
, (8.31)

where we have expanded the operator Ŝz into its eigenbasis. D̂B(x) is the displace-

ment operator for each bosonic mode. We can therefore divide the characteristic func-

tion into the sum of two terms, χ(u) = p↑χ↑(u) + p↓χ↓(u), where p↑ = ⟨↑|ρ̂S(0)|↑⟩
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and p↓ = ⟨↓|ρ̂S(0)|↓⟩ denote the initial spin occupations and

χ↑(u) = ∏
j

〈
D̂†

B

(
αje−iωju/2

)
D̂B

(
αjeiωju/2

)〉
0

, (8.32)

χ↓(u) = ∏
j

〈
D̂B

(
αje−iωju/2

)
D̂†

B

(
αjeiωju/2

)〉
0

. (8.33)

These can be evaluated using the property D̂B(x)D̂B(y) = eiIm(xy∗)D̂B(x+ y) [124] and

the thermal average ⟨D̂(x)⟩ = exp[−1
2 |x|2 coth(βω/2)]. We find that χ↑(u) = χ↓(u)

and therefore χ(u) is independent of the spin populations. The final result for χ(u)

is quoted in Eq. (8.30), from which the n-th cumulant of the heat distribution can be

derived via the formula

⟨⟨Qn⟩⟩ = (−i)n dn

dun ln χ(u)
∣∣∣∣
u=0

. (8.34)

Through Eq. (8.34) we equivalently find Eq. (8.27) and Eq. (8.29) calculated before.

Explicitly, we obtain

⟨⟨Q2l−1⟩⟩ = 1
2

∫ ∞

0
dω J(ω)ω2l−3 [1− cos(ωt)] , (8.35)

⟨⟨Q2l⟩⟩ = 1
2

∫ ∞

0
dω J(ω)ω2l−2 [1− cos(ωt)] coth

(
βω

2

)
, (8.36)

for integers l > 0. We see that all cumulants are positive and only the even cumulants

depend on temperature.

8.2.3 Numerical and analytical solution: a comparison

For an Ohmic spectral density function, Eq. (8.27) depends on only two parameters,

the coupling strength and the frequency cutoff. While ωC sets the timescale of the heat

transfer process, the mean exchanged heat scales linearly with α. At first glance, it is

not obvious that for strong coupling our method will be able to give the correct predic-

tion, as this regime is often difficult to reach numerically. It is therefore of interest to

demonstrate the validity of the numerical method for different values of α. The mean
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Figure 8.4: Mean heat dissipated into the bath as a function of time in the independent boson
model, as given by Eq. (8.27) (triangles) and as calculated numerically (solid lines), for four
different values of the coupling strength α. The spin splitting is ω0 = 1, the temperature is
T = 5, and the bath cutoff is ωC = 5. The parameters controlling the numerical accuracy are
K∆ = 5, ∆ = 0.01, p = 100, and the derivative is taken at u = 0.01.

heat is plotted as a function of evolution time for several different coupling strengths

in Fig. 8.4. We use these results to validate the numerical modified TEMPO algorithm,

the results of which are shown in the same plot. We find excellent agreement between

our simulations and the exact solution for each value of α considered. A simple esti-

mate of the accuracy of our approach is obtained by comparing the asymptotic heat

values to the exact result in Eq. (8.28). For the convergence parameters we have used,

we find a relative discrepancy of δQ/Q = 0.04% in the case of α = 0.1, which increases

to δQ/Q = 0.67% in the case of α = 1.5. These discrepancies could be further reduced

by increasing the accuracy of TEMPO through changing the convergence parameters

∆, p and K.

To quantify the fluctuations of the exchanged heat, we consider the variance ⟨⟨Q2⟩⟩ =

⟨Q2⟩ − ⟨Q⟩2, given by Eq. (8.29). Unlike the mean heat in Eq. (8.27), which is indepen-

dent of temperature, the variance in Eq. (8.29) depends on the inverse temperature of

the bath β. We show that our method is accurate for both a lower and a comparable

temperature kBT with respect to the energy scale of the system ω0. Fig. 8.5 shows

the variance as a function of time, for different values of temperature and coupling

strength. The numerical predictions again match the analytical solutions given by
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Figure 8.5: Variance of the heat dissipated into the bath as a function of time in the inde-
pendent boson model. The solid lines are the second cumulant calculated numerically for the
values of temperature and coupling strength indicated. The triangular markers are the corre-
sponding analytical results given by Eq. (8.29). The spin splitting is set to ω0 = 1 and the bath
cutoff is ωC = 5. The parameters controlling the numerical accuracy are K∆ = 5, ∆ = 0.01,
and p = 100. The derivative is taken at u = 0.01 for α = 0.1 and at u = 0.005 for α = 1.5.

Eq. (8.29). Note that in order to get a better match between the solutions for high

coupling, α = 1.5, the value of the counting field at which the numerical derivative

of χ(u) is taken has been set to u = 0.005, compared to the value of u = 0.01 in the

case of α = 0.1. This suggests that high coupling strength cases require in general

more computational precision than low coupling cases, although not higher precision

in the singular-value decomposition cutoff or time-step. The relative discrepancy in

the asymptotic values between analytical and numerical solutions for ⟨⟨Q2⟩⟩ in the

case of T = 1 are found to be δQ2/Q2 = 0.12% for α = 0.1, and δQ2/Q2 = 0.06% for

α = 1.5. In the case of T = 0.1, α = 0.1, the relative discrepancy is δQ2/Q2 = 0.13%.

Overall we can conclude that, within the discussed discrepancies, our numerical

method matches the analytical solution with great accuracy.

8.2.4 TEMPO memory depth

In Sec. 3.4 we have discussed the finite memory depth K of the TEMPO algorithm that

allows it to efficiently propagate the ADT. We have also discussed in Sec. 7.2 how the

correlation function in the absence of counting field vanishes with a memory depth
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Figure 8.6: Upper figure: asymptotic mean heat for the independent-boson model as a function
of K. Lower figure: asymptotic variance of the heat distribution for the independent-boson
model as a function of K. Triangles represent the analytical solution given by Eq. (8.27) (upper
figure) and Eq. (8.29) (lower figure) in the long time limit. The figures are plotted for different
values of the temperature and coupling strength. The remaining parameters are set to ωC = 5,
∆ = 0.01, p = 100 and u = 0.01.
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time K∆ which depends on the bath parameters. We will now show how the memory

depth affects the convergence of the mean heat and the variance of the heat distribu-

tion studied throughout this thesis.

The form of the correlation functions in Eq. (6.51-6.53) sets the minimum value

of K∆ needed. Indeed, K∆ has to be large enough to so that the discretized correla-

tion functions are negligible. Preliminary calculations have shown that, for the values

of temperature and coupling strength we will consider, this requirement is satisfied

around the value K∆ = 5. Fig. 8.6 shows that in the independent-boson model, for a

fixed value of ∆, both the mean heat and the variance of the heat distribution reach

the predicted asymptotic value for K > 300, for all the values of T and α depicted.

For values K < 100, however, the asymptotic TEMPO result diverges greatly from the

predicted one. This clearly shows how our method, which is able to operate at high

values of the memory depth, has a much greater accuracy than other methods which

operate in the region K < 100.

8.3 Unbiased spin-boson model

We now turn to the spin-boson model with Ω ̸= 0 in the Hamiltonian Eq. (7.1), focus-

ing on the unbiased case where ω0 = 0. In this context, TEMPO has previously been

used to pinpoint the localisation phase transition [16], which occurs when T = 0 and

at a critical value of the coupling α [125, 126], and to study non-Markovian dynam-

ics induced by spatially correlated environments [112]. Here we use our numerical

method based on TEMPO to investigate the non-equilibrium thermodynamics of re-

laxation over a range of temperatures and coupling strengths. In the following, we

take Ω = 1, which defines our unit of energy.

8.3.1 Numerical derivative and counting field value

It has been discussed in Sec. 6.1.2 that in order to evaluate the statistical moments of

the heat exchange, one needs to evaluate the derivative of the characteristic function
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Figure 8.7: Upper figure: independent-boson model. Lower figure: spin-boson model. Real
(dashed line) and imaginary (solid line) parts of the characteristic function, as a function of the
counting field parameter u. χ(u) is evaluated for both a small time t = 1 (blue) and equilib-
rium times t = 10 for the IB model and t = 9.53 for the SB model (purple). The temperature
is set to T = 1 and the coupling strength to α = 0.1. The parameters controlling the numerical
accuracy are ωC = 5, K∆ = 5, ∆ = 0.01, and p = 100. The sampling of the function is taken at
intervals of δu = 0.2.
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at the point u = 0. The symmetries of χ(u) have been shown in Eq. (6.10) and are il-

lustrated in Fig. 8.7, for both the independent-boson and spin-boson model. Note that

in Fig. 8.7 it was not computationally possible to evaluate the characteristic function

up to equilibrium time for values of u higher than those represented. In the case of the

spin-boson model, t = 9.53 was the maximum time the TEMPO algorithm was able to

reach for u = 3.

In our method we perform a numerical differentiation in order to calculate the first

and second moments of the heat distribution, as shown in Eq. (6.13) and Eq. (6.14).

In order to do that, we have to choose a suitable value of u. Note however that the

counting field is not a numerical parameter of the TEMPO algorithm, but a variable of

the characteristic function. The value uϵ of the counting field at which the numerical

derivative has to be taken must be such that, within the interval [0, uϵ], the real part

of the characteristic function can still be approximated by a constant function, and the

slope of the imaginary part is linear. uϵ will depend on the model, as shown by com-

paring the two figures in Fig. 8.7, and on the physical parameters α, T and ωC. Indeed,

Fig. 8.5 shows an example where for α = 0.1 it is sufficient to take u = 0.01, but for

stronger coupling such as α = 1.5 it is necessary to set u = 0.005 to achieve the same

precision.

We have found that in order to achieve a function ⟨Q⟩ that is constant in the long

time limit, for the parameters considered in this thesis the value of uϵ cannot be greater

than uϵ = 0.01. In general, decreasing the value of uϵ below uϵ = 0.005 will increase

the computational time but not improve significantly the precision of the result.

8.3.2 High temperature and weak coupling

We begin by studying the regime of weak coupling and relatively high temperature,

with α = 0.1 and T = 5. The mean heat transfer is plotted in Fig. 8.8 as a function of

time, starting from a pure initial state, ρ̂S(0) = |ψ(0)⟩⟨ψ(0)|. Specifically, we consider

three different initial conditions: |ψ(0)⟩ ∈ {|←⟩, |→⟩, |↑⟩}, where Ŝx|→⟩ = 1
2 |→⟩,

Ŝx|←⟩ = −1
2 |←⟩ and Ŝz|↑⟩ = 1

2 |↑⟩. We also consider two values of the cutoff, ωC = 5
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Figure 8.8: Heat transfer for the spin boson model in the high-temperature weak-coupling
regime, with bath cut-off ωC = 5 (upper panel) and ωC = 50 (lower panel). Solid lines:
numerical results for the mean heat ⟨Q⟩ (t) transferred to the bath as a function of time, for
three different initial states of the system. Dashed lines: asymptotic approximation for ⟨Q⟩∞
given by Eq. (8.37). The environment parameters are set to T = 5 and α = 0.1. The parameters
controlling the numerical accuracy are K∆ = 5, ∆ = 0.01, p = 100 and the derivative is taken
at u = 0.01 for ωC = 5 and u = 0.001 for ωC = 50.
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and ωC = 50.

Inspection of these results suggests that the heat transfer, ⟨Q⟩ is a sum of two con-

tributions. The first contribution is the heat transferred directly from the system as it

relaxes to a thermal state ρ̂S(∞) ∝ e−βĤS . This is the contribution we discussed for

the asymptotic Markovian limit in Sec. 8.1.1, whose corresponding change in internal

energy ∆U∞ is defined in Eq. (8.5). The second contribution to the mean heat transfer

is associated with switching on the system-bath interaction, and is equivalent to the

work done in a cyclic process. If we assume this contribution to be the reorganization

energy Er defined in Eq (8.10) as the asymptotic value of ⟨Q⟩ in the independent-boson

model, we have the prediction

⟨Q⟩∞ = Er +
Ω
2

tanh
(

βΩ
2

)
+ ⟨ĤS⟩0. (8.37)

This approximation shows near-perfect agreement with the long-time limit of the nu-

merical results, as demonstrated by the dashed lines in Fig. 8.8. Notice that Eq. (8.5)

is independent of the details of the bath spectral density (i.e. α and ωC), while Er does

not depend in any way on the spin degrees of freedom. This indicates that, at high

temperature and weak coupling, the displacement of the bath modes is not affected by

the thermalization of the spin. Instead, these two processes give rise to independent

and additive contributions to the mean heat transfer.

These distinct modes of heat transfer take place on different time scales. This is

illustrated by the blue lines in both the ωC = 5 and ωC = 50 case of Fig. 8.8, corre-

sponding to the low-energy initial state |ψ(0)⟩ = |←⟩. First, heat is transferred to the

environment as the system-bath interaction forces the bath modes to rapidly adjust to

their new equilibrium. This takes place over a time set by the inverse cutoff, ω−1
C ≈ 0.2

for ωC = 5 and ω−1
C ≈ 0.02 for ωC = 50. Then, the direction of heat flow reverses as

the bath gives up energy in order to bring the spin to thermal equilibrium, which oc-

curs on a slower timescale fixed by the inverse of the thermalization rate, which can be

estimated as γ ≈ (π/4)J(Ω) coth(βΩ/2) from standard weak-coupling theories, e.g.,
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Figure 8.9: Expectation value ⟨Ŝx⟩(t) for the spin boson model at weak coupling and high
temperature, for three different initial states of the system. The figure shows a comparison
between the numerical results (solid lines) and the results obtained in the Born-Markov and
weak-coupling approximation with the same parameters (dash-dotted lines of the same color
as the corresponding initial states). The environment parameters are set to T = 5, α = 0.1
and ωC = 5. The parameters controlling the numerical accuracy are K∆ = 5, ∆ = 0.01, and
p = 100.

the secular Born-Markov master equation discussed in Sec. 2.3, giving γ−1 ≈ 0.8 for

ωC = 5 and γ−1 ≈ 0.65 for ωC = 50. A comparison between the two different values

of ωC in Fig. 8.8 shows how a larger frequency cut-off determines a shorter timescale

for the heat transfer process, for fixed T and α. (Er is ten times larger in the ωC = 50

case, so that the energy due to the displacement of the bath modes dominates over

that due to the spin thermalization.) It is worth emphasising that the system-bath

interaction energy gives a significant contribution to the heat transfer, even though

the system dynamics is very well captured by a Markovian, weak-coupling descrip-

tion. Indeed, for the parameters considered in Fig. 8.8 and ωC = 5, the reorganisa-

tion energy is comparable to the natural energy scale of the spin, since Er = Ω/2.

Nevertheless, Fig. 8.9 shows that in this regime the calculated spin dynamics (solid

curves) matches the corresponding Born-Markov and weak-coupling approximated

problem (dash-dotted curves), within the limits of such an approximation, the cou-

pling strength being set to α = 0.1. The discrepancy shown in Fig. 8.9 is ≲ 10%.

We calculated the spin dynamics in the Born-Markov theory by solving the Lindblad
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Figure 8.10: Mean heat ⟨Q⟩ (t) exchanged by the bath for the spin boson model in weak cou-
pling at temperature T = 1 (solid line) and T = 0.1 (dash-dotted line), as a function of time, for
an initial state of the system set to |↑⟩. Dashed lines: sum of the energy change in the system
and the reorganisation energy of the bath for the corresponding temperatures and coupling
strengths. Inset: same plot for temperature T = 1 and strong coupling. The parameters con-
trolling the numerical accuracy are K∆ = 5, ∆ = 0.01, p = 100 and the derivative is taken at
u = 0.01. ωC = 5 for all the plots.

master equation (8.1) for u = 0, and plotting ⟨Ŝx⟩(t) = TrS[Ŝxρ̂S(t)].

8.3.3 Lower temperature and stronger coupling

We now consider the heat transfer at intermediate and low temperatures. In Fig. 8.10

we show the mean heat transfer for temperatures T = 1 and T = 0.1, starting from

the state |ψ(0)⟩ = |↑⟩. We see the same monotonic relaxation behaviour as was ob-

served at high temperature (the orange curve in Fig. 8.8), albeit proceeding on a slower

timescale as the temperature is reduced.

Outside of the high-temperature limit, the asymptotic value of ⟨Q⟩ can no longer be

well approximated by Eq. (8.37), shown by the dashed lines in Fig. 8.10. We find that

the the spin’s internal energy change and the total heat transfer are smaller in mag-

nitude than Eqs. (8.5) and (8.37) predict, as Fig. 8.10 and Fig. 8.11 both show, leading

to

⟨Q⟩∞ < Er +
Ω
2

tanh
(

βΩ
2

)
+ ⟨ĤS⟩0. (8.38)
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Figure 8.11: Variation of internal energy of the system ∆U (t) as a function of time for temper-
ature T = 1, where the solid blue line is for α = 1.5 and the solid orange line for α = 0.1, and
temperature T = 0.1, where the dash-dotted line is for α = 0.1. Dashed lines: total internal
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)
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line) and T = 0.1 (dashed magenta line). The parameters controlling the numerical accuracy
are K∆ = 5, ∆ = 0.01 and p = 100. ωC = 5 for all the plots.

This demonstrates that the tendency of the spin to minimise its local free energy de-

fined by ĤS competes with the displacing effect of ĤI on the bath modes. As a conse-

quence of this interplay, both ∆U and ⟨W⟩ depend non-trivially on system-bath corre-

lations generated during the relaxation process.

The effect of the correlations with the bath is indeed to decrease the magnitude of

∆U with respect to the value −Ω
2 tanh

(
Ω
2T

)
predicted by Eq. (8.5), and represented in

Fig. 8.11 by the dashed lines. Such discrepancy is starkly greater for stronger coupling.

In order to understand this, we note that at strong system-bath coupling the equi-

librium state must be generalised to [62]

ρ̂
eq
S =

TrB

[
e−βĤ

]
Tr
[
e−βĤ

] , (8.39)

i.e. the reduction of a global thermal state. This takes into account correlations with

the bath and reduces to the standard form ρ̂
eq
S ∝ e−βĤS in the weak-coupling limit.

Assuming that the open quantum system couples to the bath locally in space, the

interaction Hamiltonian is a local degree of freedom that is also expected to thermalise,
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in the sense that

⟨ĤI⟩∞ =
Tr
[

ĤIe−βĤ
]

Tr
[
e−βĤ

] . (8.40)

We emphasise that these thermalization conditions hold only for local subsystems:

they do not imply that the system as a whole attains thermal equilibrium in the long-

time limit.

8.3.4 System-bath correlations and variational theory of heat

transfer

We estimate the effect of system-bath correlations on heat transfer using the varia-

tional approach pioneered by Silbey and Harris [127], which has been successfully

applied to understand various static and dynamic properties of the spin-boson model

[128–130]. The basic idea is to express the Hamiltonian in a different basis by applying

a unitary transformation that mixes the system and bath degrees of freedom. Specif-

ically, the Hamiltonian is diagonalized approximately using the polaron transforma-

tion in Eq. (8.9), with the displacements { f j} interpreted as variational parameters.

Applying the transformation P̂, we arrive at P̂†ĤP̂ = Ĥ′0 + Ĥ′I , where it has been

found in [127] that

Ĥ′0 = Ω′Ŝx + ∑
j

ωj â†
j âj + ∑

j

f j( f j − 2gj)

4ωj
, (8.41)

Ĥ′I = Ω
[(

B̂− B
)

Ŝ+ + h.c.
]
+ Ŝz ∑

j
(gj − f j)(âj + â†

j ). (8.42)

Here B̂ = ∏k D̂( fk/ωk), or explicitly,

B̂ = ∏
j

exp

[
f j

ωj

(
â†

j − âj

)]
, (8.43)
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and B = ⟨B̂⟩0, and using the displacement operator thermal average ⟨D̂(x)⟩0 =

exp[−1
2 |x|2 coth(βω/2)], one can write

B = exp

[
−1

2 ∑
j

f 2
j

ω2
j

coth
(

βωj

2

)]
. (8.44)

The average defined here is relative to the variational Hamiltonian Ĥ′0,

⟨•⟩0 =
Tr[•e−βĤ′0 ]

Z0
, (8.45)

where Z0 = Tr[e−βĤ′0 ]. We have defined Ŝ+ = (Ŝx + iŜy)/2 the spin raising operator,

and Ω′ = BΩ is a renormalized tunneling amplitude.

We need to choose the set { f j} such that the Feynman-Bogoliubov upper bound

on the free energy, F = −T ln Tr[e−βĤ], is minimized, under the key assumption that

the variational interaction Hamiltonian Ĥ′I is small enough. The Feynman-Bogoliubov

upper bound is defined as [127]

F ≤ FB = −T ln Z′0 + ⟨Ĥ′I⟩0 +O(⟨Ĥ′2I ⟩0), (8.46)

where ⟨Ĥ′I⟩0 = 0 by construction. This procedure is designed to give the optimal

approximation with the free thermal state, exp[−βĤ′0]/Z′0 ≈ exp[−βĤ′]/Z′, where

Ĥ′ = P̂†ĤP̂, Z′ = Tr[e−βĤ′ ], within the class of variational states defined by { f j}.

Writing explicitly Eq. (8.46), one can find that [127]

FB = ∑
j

f j( f j − 2gj)

4ωj
− T ln

[
2 cosh

(
βΩ′

2

)]
. (8.47)

All terms O(⟨Ĥ′2I ⟩0) are dropped since they are small by assumption.

The minimum of Eq. (8.47) is defined by ∂FB/∂ f j = 0, with solution f j = gjϕ(ωj),
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where

ϕ(ω) =

[
1 +

Ω′

ω
tanh

(
βΩ′

2

)
coth

(
βω

2

)]−1

, (8.48)

Ω′ = Ω exp
[
−1

2

∫ ∞

0
dω

J(ω)

ω2 ϕ2(ω) coth
(

βω

2

)]
, (8.49)

which must be solved self-consistently for Ω′. Using these results in Eq. (8.42) also

shows self-consistently that Ĥ′I = O(Ω). Eq. (8.46) can thus be interpreted as a formal

expansion in powers of Ω/ωc. That is, the variational approach treats the spin Hamil-

tonian ĤS as a small perturbation with respect to the independent-boson Hamiltonian

ĤB + ĤI , and becomes exact in the limit Ω→ 0.

This equilibrium theory is not useful for the evaluation of the dynamics of the bath,

which is far from equilibrium at all times. However, we find it useful in the evaluation

of ⟨ĤB⟩. As discussed in Eq. (8.39) and Eq. (8.40), we can assume subsystem equili-

bration, which is known to be a correct assumption for exactly solvable models and

expected for relatively weak coupling. If Eq. (8.39) holds true, then

⟨ĤS⟩∞ =
Tr
[

ĤSe−βĤ
]

Tr
[
e−βĤ

] . (8.50)

If the system is locally coupled to one part of an infinite bath, then the same as-

sumption holds for the interaction Hamiltonian mean value, and Eq. (8.40) holds true.

Then ĤS and ĤI can be considered operators on some augmented system S′ which

should approximately thermalize, with the assumption that the residual bath B′ is

approximately thermal at the same temperature. It follows from such reasoning and

Eq. (8.50), under the assumption that we can approximate P̂†ĤP̂ ≈ Ĥ′0 and therefore

e−βĤ ≈ P̂e−βĤ′0 P̂†, that

⟨ĤS⟩∞ ≈
Tr
[

ĤSP̂e−βĤ′0 P̂†
]

Tr
[

P̂e−βĤ′0 P̂†
] =

Tr
[

P̂†ĤSP̂e−βĤ′0
]

Z′0
(8.51)

= −Ω′

2
tanh

(
βΩ′

2

)
. (8.52)
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Similarly, from Eq. (8.40),

⟨ĤI⟩∞ ≈
Tr
[

P̂†ĤI P̂e−βĤ′0
]

Z′0
= −1

2

∫ ∞

0
dω

J(ω)

ω
ϕ(ω). (8.53)

Here Ω′ is the renormalized tunneling matrix element defined in Eq. (8.49), and E′r =

1
2

∫
dω J(ω)ϕ(ω)/ω the renormalized reorganization energy. From the conservation of

the total energy ⟨Ĥ⟩∞ = ⟨Ĥ⟩0, we have that the asymptotic average heat exchanged

by the bath ⟨Q⟩∞ = ⟨ĤB⟩∞ − ⟨ĤB⟩0 is

⟨Q⟩∞ = ⟨ĤS⟩0 − ⟨ĤS⟩∞ + ⟨ĤI⟩0 − ⟨ĤI⟩∞ =

= E′r +
Ω′

2
tanh

(
βΩ′

2

)
+ ⟨ĤS⟩0, (8.54)

where ⟨ĤI⟩0 = 0 for initial product states. This has the same form as Eq. (8.37).

The variational theory predicts that both the spin tunnelling matrix element and

the reorganisation energy are reduced relative to their bare values, since Ω′/Ω ≤ 1

and ϕ(ωj) ≤ 1. Physically, this occurs because the tunnelling between spin states

|↑⟩ ↔ |↓⟩ induced by ĤS is suppressed by the spin-dependent mode displacements

generated by ĤI , which reduce the effective overlap between the two spin states. The

equilibrium state emerges from a balance of these two competing effects, which ex-

plains why both ∆U and ⟨Q⟩ are reduced at low temperature relative to Eqs. (8.5)

and (8.37). We show in Fig. 8.12 that the variational theory gives a good quantitative

approximation to the mean heat transfer at low temperature, T = 0.1, with the best

agreement at weak coupling. At higher temperatures on the order of T = 1 and above,

we find that the approximation breaks down completely because the renormalisation

of the tunnelling amplitude is overestimated, leading to values Ω′ ≪ Ω. This failure

is presumably due to the neglect of thermally activated transitions generated by Ĥ′I ,

which become relevant at temperatures βΩ′ ≲ 1. On the other hand Fig. 8.12 shows

that the additive ansatz given by Eq. (8.37) performs worse than the variational theory

across all the coupling range.
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Figure 8.12: Long-time limit of the heat transfer for the spin boson model as a function of cou-
pling strength, calculated using the path integral (circles), the additive theory (dash-dotted)
and the variational method (line), for T = 0.1.

At very strong coupling, the variational theory performs well at all temperatures. In

this regime, strong correlations with the bath lead to an almost maximally mixed equi-

librium state of the spin, corresponding to a vanishing tunnelling rate in the varia-

tional frame, Ω′ → 0. As a result, the heat transfer for an initial state |ψ(0)⟩ = |↑⟩

reduces to the bare reorganisation energy, Er. This behaviour is shown in the inset of

Fig. 8.10, where the solid curve converges to ⟨Q⟩ ≈ Er to a good approximation. The

dynamics of the heat transfer is correspondingly fast in this regime since it depends

only on the bath cutoff scale, ωC.

8.3.5 Heat fluctuation-dissipation relation in the spin-boson model

As a final demonstration of our method, we study the temperature dependence of the

heat fluctuations in the spin-boson model. Fig. 8.13 shows the asymptotic variance

of the heat distribution at long times, starting from the initial state |ψ(0)⟩ = |↑⟩. We

see that the fluctuations increase with temperature, and grow approximately linearly

with T at high temperature.

This linear behaviour of ⟨⟨Q2⟩⟩∞ can be understood as a manifestation of the fluctuation-

dissipation relation (FDR) that is well known in the context of non-equilibrium work

distributions. FDRs have been discussed in Sec. 4.3.1, and in particular Eq. (4.13) holds
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Figure 8.13: Variance of the heat distribution as a function of temperature in the spin-boson
model, for both weak (α = 0.1) and strong (α = 1.5) coupling starting from the initial state
|ψ(0)⟩ = |↑⟩. The parameters are ωC = 5, K∆ = 5 and ∆ = 0.01, with p = 100 and u = 0.005
for α = 1.5, and p = 120 and u = 0.01 for α = 0.1.

for Gaussian distributions of work W. In the case of the independent-boson model,

ĤS is a conserved quantity, which implies ∆U = 0. From the first law of thermody-

namics Eq. (4.6), it follows that ⟨Q⟩ = ⟨W⟩ and heat is identical to work. The process

is cyclic because the initial and final states of the open system are equilibrium states

where ρ̂S(t f ) = ρ̂S(0). Then from the definition of system entropy change Eq. (4.19),

∆S = 0. The equilibrium free energy change is defined as ∆F = ∆U− T∆S, and there-

fore ∆F = 0. It follows that we can write an equivalent FDR for the heat distribution

from Eq. (4.13):

⟨⟨Q2⟩⟩ = 2T⟨Q⟩. (8.55)

At high temperature, this relation holds at all times in the independent-boson model,

as can be seen by comparing Eqs. (8.27) and (8.29) in the limit βωC ≪ 1. At low tem-

peratures, the relation might fail at times too small for the open system to equilibrate.

In the spin-boson model, we no longer have equality between work and heat since

∆U ̸= 0. Nevertheless, we find numerically that the FDR (8.55) approximately holds at

high temperatures, βωC ≲ 1, as shown in Fig. 8.14. This behaviour stems from the fact

that the spin’s contribution to the heat fluctuations is limited by its finite energy split-

ting Ω, whereas the contribution of the spin-boson interaction energy can grow arbi-
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Figure 8.14: Asymptotic ratio of the variance to the mean heat as a function of temperature,
showing the validity of the FDR for T ≫ ωC. Dash-dotted and solid lines are the numerical
results for the spin boson model, for the values of α indicated. The figure shows a compar-
ison with the analytical solution for the independent boson model, which is independent of
α (triangles). The FDR value of ⟨⟨Q2⟩⟩∞/T⟨Q⟩∞ = 2 is shown by the black dashed line. The
parameters are the same as in Fig. 8.13.

trarily large. The heat fluctuations are thus dominated by independent-boson physics

at high temperature. For strong coupling, where the spin energy scale Ω is negligible

compared to the reorganisation energy Er, we show in Fig. 8.14 that the heat fluctu-

ations are essentially identical in the spin-boson and independent-boson models at

all temperatures. One limitation encountered in the calculation of the data shown in

Fig. 8.14, is that the TEMPO algorithm was not able to compute the variance up to

equilibrium time for very low temperatures. Indeed, the lowest temperature shown

is T = 0.4. Exploring the validity of the heat FDR in other scenarios, e.g. multipartite

open quantum systems, is an interesting avenue for future work.
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9 | Thermodynamics of decoherence

During any open dynamical process, correlations (both classical and non-classical)

build between the environment and the quantum system, whether the environment

is a measuring apparatus or a second quantum system, or both. The dynamics se-

lects a set of preferred states in the Hilbert space of the quantum system, namely the

eigenstates of an observable that is a constant of motion. In this process, the envi-

ronment acts as a measurer of the conserved observable, destroying quantum coher-

ence. Loss of quantum coherence means loss of phase information in the quantum

system. In general, the probability density of a local measurement on the system will

contain an interference or phase term, which depends on the overlap of the environ-

ment energy eigenstates [131]. For a large environment, interaction events between

many degrees of freedom lead the overlap terms to decay in a time frame defined by

a characteristic decoherence timescale τd. Consequently, the phase term decays and

quantum coherence between different system eigenstates can no longer be measured.

If the system is represented by a reduced density matrix in its energy eigenbasis, the

diagonal elements are conserved, while off-diagonal elements, which depend on the

phase information, are erased by decoherence. This process is also referred to as the

quantum-to-classical transition, as information about quantum correlations is lost and

quantum probability distributions approach classical probability distributions.

Decoherence as a phenomenon arising from the coupling of an open quantum sys-

tem to a thermal bath is discussed in Sec. 4.4.3. This coupling leads a displaced sys-

tem back to its thermal equilibrium during a thermalization process (see Sec. 4.4.2).

Thermalization is fundamental in thermodynamic protocols, making environment-
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induced decoherence an important aspect. While the study of heat transfer from an

open system to a bath intuitively assumes an exchange of energy, in a pure decoher-

ence process the system energy is conserved in the absence of dissipative phenomena.

It could then seem that no heat is generated during a pure decoherence protocol. In

the following, we show how, surprisingly, non-zero heat exchange is generated in this

context [92].

9.1 Pure decoherence

We consider a pure dephasing (or pure decoherence) process, so that its effects on

heat statistics can be distinguished from those arising from dissipation or stochas-

tic fluctuations. The conservation of the open system energy ∆U = 0 implies, from

Eq. (4.6), that the heat exchanged is solely in the form of work performed on the sys-

tem, ⟨Q⟩ = ⟨W⟩. As there is no external force assumed to be acting on the open

system, it could seem that ⟨Q⟩ = 0 for a pure dephasing process. However, we show

that this is not the case. Contrary to expectations, decoherence can lead to generation

of heat. While the conservation of ĤS does not imply ⟨Q⟩ = 0 , in order to have deco-

herence and heat exchange it is necessary that
[
ĤB, ĤI

]
̸= 0. We show that the origin

of non-null heat exchange in pure dephasing processes arises from the interaction be-

tween system and bath. Decoherence is generated during the coupling process, which

requires work to switch on and maintain the interaction. Such average work is then

absorbed into the bath as heat when the system is decoupled from it at the end of the

protocol.

9.2 Characteristic function of heat in pure decoherence

processes

Following the standard two-point measurement scheme [65–67], the work W and heat

Q of a quantum process are defined by a difference in energy obtained by projective
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measurements at the initial time, t = 0, and final time, t = t f . Specifically, W per-

tains to measurements of the total Hamiltonian, Ĥ, while Q corresponds to measure-

ments of the bath Hamiltonian, ĤB, as already discussed in Sec. 4.4. In order for work

and heat to be simultaneously measurable, therefore, the interaction energy must be

negligible at the beginning and end of the evolution [62]. Here, we assume that the

coupling is suddenly switched on at t = 0 and switched off at t f , but other switching

protocols yield similar results.

We write a very general equation for the characteristic function of heat of a bath

interacting with an open quantum system, with overall Hamiltonian described by

Eq. (2.2). Here the only assumptions are that
[
ĤS, ĤI

]
= 0, and that the initial state of

the system is the product state Eq. (2.11). We show that the characteristic function of

heat is a weighted sum of characteristic functions of work.

From Eq. (6.4) with Û(t f ) = exp[−it f Ĥ], we use [ĤS, ĤI ] = 0 to cancel the terms

e±it f ĤS and write

χ(u) =Tr
[
eiĤBt f +i ∑k gkΠ̂k⊗V̂kt f eiuĤB e−iĤBt f−i ∑k gkΠ̂k⊗V̂kt f e−iuĤB ρ̂S (0)⊗ ρ̂B (0)

]
. (9.1)

Here we used the most generic form of the interaction Hamiltonian defined in Eq. (4.23)

for a process where ∆U = 0. The generic open quantum system initial state can be

written in the orthonormal eigenbasis of ĤS, {|n⟩}, as ρ̂S (0) = ∑i,j ρ
ij
S (0) |i⟩ ⟨j|, where

ρ
ij
S (0) = ⟨i|ρ̂S (0) |j⟩. Inserting a resolution of the identity in the eigenbasis of the

quantum system energy in Eq. (9.1), and tracing over its degrees of freedom S, it is

straightforward to calculate

χ (u) = ∑
n

TrB

[
∑
m

∑
i

δnmeit f ĤB+it f gnV̂n eiuĤB×

δmie
−it f ĤB−it f gmV̂m e−iuĤB ρin

S (0) ρ̂B (0)
]

, (9.2)
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where we have used ⟨n|Π̂k|m⟩ = δnkδkm and ⟨n|m⟩ = δnm. Using the Kronecker delta

properties, Eq. (9.2) simplifies to

χ (u) =∑
n

pnTrB

[
eit f ĤB+it f gnV̂n eiuĤB e−it f ĤB−it f gnV̂n e−iuĤB ρ̂B (0)

]
, (9.3)

with pn = ρnn
S (0). It is straightforward to see from the definition of Ĥn Eq. (4.25)

that

χ (u) = ∑
n

pnTrB

[
eit f Ĥn eiuĤ0e−it f Ĥn e−iuĤ0 ρ̂B (0)

]
. (9.4)

We obtain

χ(u) = ∑
n

pnχn(u), (9.5)

where we have defined

χn(u) = ⟨eiĤnt f eiuĤB e−iĤnt f e−iuĤB⟩B. (9.6)

A very similar calculation to the one leading to Eq. (9.4), leads to the expression for the

time evolution of ρ̂B(t f ). From ρ̂B(t f ) = TrS
[
Û
(
t f
)

ρ̂ (0) Û† (t f
)]

, it follows that

ρ̂B(t f ) = ∑
n
⟨n|e−it f ĤB−it f ∑k gkΠ̂k⊗V̂k

×∑
i,j

ρ
i,j
S (0) |i⟩ ⟨j| ρ̂B(0)eit f ĤB+it f ∑k gkΠ̂k⊗V̂k |n⟩, (9.7)

where we have again used the assumption [ĤS, ĤSB] = 0 and the decomposition of

the system operator into the eigenbasis of ĤS. Using the orthonormality of the open

system energy eigenbasis, it follows that

ρ̂B(t f ) =∑
n

pne−it f Ĥn ρ̂B (0) eit f Ĥn (9.8)

from which it is clear that ÛB(t f ) = e−it f Ĥn is the operator that defines the time evolu-

tion of the bath density matrix.

We recognise then χn(u) as the characteristic function of the work, as defined in
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Eq. (6.8), done on the bath in the following (fictitious) cyclic unitary process. The bath

is initialised in the equilibrium state ρ̂B(0) with Hamiltonian ĤB. The Hamiltonian is

then suddenly perturbed as ĤB → Ĥn = ĤB + gnV̂n and the bath is allowed to evolve

for a time t f before the perturbation is switched off again.

9.3 Dissipated heat and work arising from interaction

switching

The work done during the described cyclic process, w, is determined by the difference

in energy that would be obtained by projective measurements of ĤB at the start and

finish of the evolution. This work is distributed according to the probability distribu-

tion (see Sec. 4.4.4)

Pn(w) = ∑
j,k

e−βEk

ZB
|⟨Ej|e−iĤnt f |Ek⟩|2δ

(
w− (Ej − Ek)

)
, (9.9)

where |Ej⟩ is an eigenvector of ĤB with eigenvalue Ej. Taking the Fourier transform

of Pn(w) in Eq. (9.9), we can verify that it results in Eq. (9.6) according to the definition

of characteristic function Eq. (4.29). The heat probability distribution P(Q), defined as

the inverse Fourier transform of Eq. (9.4), is given by

P(Q) = ∑
n

pnPn(w = Q). (9.10)

The results shown in Eq. (9.5) and Eq. (9.10) express the dissipated heat as a sum over

the work done in independent cyclic processes, each one conditioned on a state |n⟩ of

the open system and weighted by the probability pn = ⟨n|ρ̂S(0)|n⟩ that the system is

initially in that state. Accordingly, the bath dynamics is described by the unital map

ρ̂B(t f ) = ∑n pne−iĤnt f ρ̂B(0)eiĤnt f , with e−iĤnt f the physical time evolution operator for

the bath conditional on the state |n⟩. The average heat exchanged by the bath is the
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first moment of Eq. (9.10),

⟨Q⟩ = ∑
n

pn⟨w⟩n, (9.11)

where ⟨w⟩n is the mean work associated to the conditional distribution Pn. Since the

average work done in any thermodynamic cyclic process is non-negative, we conclude

that ⟨Q⟩ ≥ 0. The free energy change vanishes for cyclic processes, ∆F = 0, so that the

Jarzynski equality discussed in Sec. 4.3.1 in this case becomes the integral fluctuation

relation ⟨exp (−βQ)⟩ = 1. This also follows from Eq. (9.10) because each Pn(w) obeys

the Jarzynski equality,
∫

dwe−βwPn(w) = 1 [44, 67].

We also have that ∆S ≥ 0 because the evolution of the system density matrix

in Eq. (4.24) is manifestly unital [132]. Therefore, pure decoherence processes obey

a stronger bound on entropy production than the second law, since both terms in

Eq. (4.7) are separately non-negative. We also note that the system entropy change ∆S

is nonzero only when the system density matrix has initial coherences, while the en-

tropy flux β⟨Q⟩ depends only on the populations pn. Therefore, the standard expres-

sion Eq. (4.7) represents a decomposition of the entropy production into contributions

from initial coherences and populations in the energy eigenbasis, respectively [133–

135].

9.4 Decoherence without heat dissipation and its

connection to static phase noise

The evolution of the system coherences in time is intimately connected to the presence

of non-trivial heat dissipation. Indeed, our results show that finite heat dissipation

generically occurs in a pure decoherence process, unless [Ĥn, ĤB] = 0 for all n. We

show that decoherence processes that do not involve heat absorption by the bath are

generically equivalent to classical, static phase noise.

From Eqs. (9.5) and (9.6) we see that a sufficient condition for vanishing heat dis-

sipation is that [Ĥn, ĤB] = [V̂n, ĤB] = 0 for all n. If the Hamiltonian ĤB is nonde-
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generate, this further implies that [V̂n, V̂m] = 0 for all m, n. That is, the interaction

operators {V̂n} share a common eigenbasis with ĤB, i.e., V̂n|Ej⟩ = Vn(Ej)|Ej⟩, with

Vn(Ej) denoting the eigenvalue of V̂n corresponding to the energy eigenvector |Ej⟩ of

ĤB. Under these conditions, the overlap function ⟨eiĤnte−iĤmt⟩B entering Eq. (4.24) can

be written as

〈
eiĤnte−iĤmt

〉
B
= ∑

j
p(Ej)e

i(Vn(Ej)−Vm(Ej))t, (9.12)

which describes the average of a random phase shift that takes the value Vn(Ej) −

Vm(Ej) with probability p(Ej) = e−βEj /ZB. This result can be reproduced by a simple

noise model in which the dynamical bath is replaced by a random, time-independent

Hamiltonian

ĤS = ∑
n
(εn + δn)|n⟩⟨n|, (9.13)

where the energy shift δn is a stochastic variable that takes the possible values Vn(Ej)

with corresponding probabilities p(Ej). We can define a state

ρ̂S(t) = ⟨e−itĤS ρ̂S(0)eitĤS⟩ =

= ∑
j

p(Ej)e−it ∑n(εn+Vn(Ej))|n⟩⟨n|ρ̂S(0)eit ∑n(εn+Vn(Ej))|n⟩⟨n|, (9.14)

which is an average over the noise distribution p(Em), whose matrix elements ρ̂mn
S (t) =

⟨m|ρ̂S(t)|n⟩ are given exactly by Eq. (4.24), with Eq. (9.12). We have therefore shown

that the absence of heat dissipation implies that the dephasing noise is equivalent

to a static, classical, random phase shift for each eigenstate of the open quantum sys-

tem. This contrasts sharply with naturally occurring quantum dephasing noise, which

is typically characterised by a nontrivial frequency spectrum [136–138]. Such time-

dependent noise is a consequence of dynamical fluctuations of the bath, which arise

when the absorption of energy drives it out of equilibrium.

We note that, since [V̂n, ĤB] = 0 for all n is only a sufficient condition, we cannot

rule out the absence of heat dissipation when [V̂n, ĤB] ̸= 0 for certain initial environ-

102



ment states, e.g., infinite-temperature states. Furthermore, the arguments above have

assumed that ĤB is nondegenerate. If we allow ĤB to be degenerate, it is possible to

construct models in which [V̂n, ĤB] = 0 for all n yet [V̂n, V̂m] ̸= 0 for some m, n. Re-

markably, such models can feature nontrivial decoherence for the open system despite

the state of the bath being completely invariant under the dynamics.

9.5 An application: Qubit decoherence in a fermionic

lattice environment

To exemplify the thermodynamics of decoherence, we now focus on a specific system

comprising a qubit coupled to a noninteracting fermionic bath. Our setup is moti-

vated by recent experiments that monitored the decoherence of two-level impurity

atoms embedded in a single-component atomic gas of ultracold fermions [81]. At

low temperatures, the atoms interact via s-wave scattering. The fermions therefore do

not interact with each other due to wavefunction antisymmetry, while the impurity-

fermion interaction strength is proportional to the scattering length, which is generally

different for each internal state of the impurity. For simplicity, we assume that the host

Fermi gas is confined to the lowest band of a one-dimensional lattice potential, e.g., a

species-selective optical lattice [139]. The Hamiltonian takes the form

ĤS =
ϵ

2
σ̂z, (9.15)

ĤB = −Ω
2

L

∑
j=1

(
ĉ†

j ĉj+1 + ĉ†
j+1ĉj

)
, (9.16)

ĤI = g |1⟩ ⟨1| ⊗ ĉ†
1 ĉ1. (9.17)

Here, σ̂z is the Pauli spin operator for the qubit, with ϵ the energy level splitting, and

ĉj (ĉ†
j ) is the fermionic annihilation (creation) operator for site j, with anticommutation

relation {cj, c†
k} = δjk. ĤB describes the tunnelling of fermions on the lattice, where

Ω is the hopping amplitude and we impose periodic boundary conditions, ĉL+1 ≡ ĉ1.
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We take the thermodynamic limit by choosing the number of lattice sites L = 500 to be

large enough so that all results are independent of L. We also fix the average fermion

number N = 250 to half-filling, so that the Fermi energy equals Ω. Finally, ĤI de-

scribes a collisional energy shift for the fermion localised on site j = 1, with coupling

strength g to qubit state |1⟩ and vanishing coupling when the qubit is in state |0⟩. In

the context of ultracold atoms, this can be achieved by tuning the corresponding scat-

tering length to the zero crossing of a Feshbach resonance [140].

We consider a standard Ramsey interferometry protocol, following Refs. [88, 90,

141, 142]. The bath is initialised in thermal equilibrium with the qubit in its nonin-

teracting state |0⟩. At t = 0, a π/2-pulse prepares the qubit state ρ̂S(0) = |+⟩ ⟨+|,

with |+⟩ = (|1⟩ + |0⟩)/
√

2 a superposition of the impurity eigenstates. According

to Eq. (4.24), the qubit coherence evolves as ρ̂10
S (t) = e−iϵtν(t)ρ̂10

S (0), where ν(t) =

⟨eiĤ0te−iĤ1t⟩B is the decoherence function with

Ĥ0 = ĤB, (9.18)

Ĥ1 = ĤB + gĉ†
1 ĉ1. (9.19)

This complex function may be experimentally extracted by applying a second π/2-

pulse with a variable phase and measuring the final qubit populations [81, 84, 89].

9.5.1 Functional determinant approach and decoherence function

The decoherence function ν(t) = ⟨eiĤ0te−iĤ1t⟩B for a bath of fermionic modes can

be computed exactly through the functional determinant approach [143–145], which

expresses the average of a product of many-body exponential operators in terms of

single-particle quantities through the Levitov formula [143],

〈
eŶ1eŶ2 ...eŶN

〉
B
= det

[
1− n̂ + n̂eŷ1eŷ2 ...eŷN

]
, (9.20)
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Figure 9.1: Decoherence functions for a qubit impurity in a 1D fermionic lattice. The value
of the coupling is g = 0.1Ω (black lines), g = 0.5Ω (red lines) and g = Ω (blue lines), with
temperature T = 0 (dotted lines), T = 0.01Ω (solid lines), and T = 0.1Ω (dashed lines). Axes
are in logarithmic scale. Inset: Regular part of the heat distribution P(Q) = 1

2 δ(Q) + 1
2 P1(Q)

for T = 0.1Ω, and g = Ω (blue, dashed), g = 0.5Ω (red, dashed).

where Ŷi are bilinear many-body fermionic operators, ŷi are their corresponding single-

particle operators, and n̂ is the single-particle occupation number operator. In partic-

ular, the decoherence function is found from

ν(t) = det
[
1− n̂ + n̂eiĥ0te−iĥ1t

]
, (9.21)

where n̂ =
(

eβ(ĥ0−µ) + 1
)−1

is the single-particle occupation number operator, µ is

the chemical potential and ĥ0 and ĥ1 are the single-particle counterparts of the Hamil-

tonians Ĥ0 and Ĥ1. The absolute value of ν(t) is shown in Fig. 9.1 for different tem-

peratures and coupling constants.

The decoherence function crosses over from power-law to exponential decay after

the thermal timescale β. This behavior is a manifestation of the Fermi-edge singular-

ity [146, 147] associated with Anderson’s orthogonality catastrophe [148]. Decoher-

ence arises because collisions with the impurity excite particle-hole pairs in the gas,

gradually reducing the overlap between the perturbed and unperturbed states of the

environment. These excitations are initially restricted to the vicinity of the Fermi sur-

face due to the Pauli exclusion principle, generating the slow power-law decoherence
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seen in Fig. 9.1 for t ≪ β. Thermal broadening of the Fermi surface eventually leads

to the onset of exponential decay when t ≳ β. At stronger coupling, we also observe

oscillations of the qubit coherence (blue curves in Fig. 9.1), indicating a highly non-

Markovian (nondivisible) evolution [20]. We therefore see that nontrivial decoherence

emerges here as a direct consequence of the dissipation of energy into the fermionic

bath.

9.5.2 Heat dissipation in pure decoherence

The characteristic function of heat follows from Eqs. (9.5) and (9.6) as

χ(u) =
1
2
+

1
2

〈
eit f Ĥ1eiuĤ0e−it f Ĥ1e−iuĤ0

〉
B

. (9.22)

The first, constant term χ0 = 1 pertains to the |0⟩ component of the qubit’s initial

superposition state, which leads to exactly zero heat dissipation, i.e., P0(Q) = δ(Q).

The second term χ1(u) =
〈

eit f Ĥ1eiuĤ0e−it f Ĥ1e−iuĤ0
〉

B
in Eq. (9.22) corresponds to the

interacting state |1⟩ and can be expressed as a functional determinant. We show how

the identity in Eq. (9.20) can be used to exactly compute χ1(u).

The unperturbed energy eigenbasis {|En⟩}L
n=1 of Ĥ0 and the perturbed energy

eigenbasis
{∣∣∣E′j〉}L′

j=1
of Ĥ1 have in general size L and L′ respectively. We define

M̂ = ∑m |Em⟩ ⟨E′m| an unitary operator represented by an L × L′ matrix whose ele-

ments are mkj =
〈

E′k
∣∣Ej
〉
. The operator M̂ transforms between the perturbed and

unperturbed basis. When applying Eq. (9.20) to function χ1 (u), we consider that the

determinant is evaluated in the unperturbed basis, and transform ĥ1 from its diagonal

basis to the basis of eigenvalues of ĥ0. Therefore we have

χ1 (u) = det
[
1− n̂ + n̂

(
M̂†eiĥ1t f M̂

)
eiuĥ0

(
M̂†e−iĥ1t f M̂

)
e−iuĥ0

]
. (9.23)

The probability distribution P1(Q) associated to this second term is shown in the inset

of Fig. 9.1, for a fixed temperature and two different values of the coupling constant.

The divergence near Q = 0 is a hallmark of the Fermi edge singularity, which is cen-
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Figure 9.2: Heat transfer as a function of time for a qubit in a 1D fermionic lattice. The values
of the coupling are g = 0.1Ω (black lines), g = 0.5Ω (red lines) and g = Ω (blue lines), with
temperatures T = 0 (dotted lines), T = 0.01Ω (solid lines), and T = 0.1Ω (dashed lines).

tred around zero energy as a consequence of the cyclic nature of the process. For

stronger coupling, there is also a feature near the Fermi energy Q = Ω, which can be

attributed to the creation of particle-hole excitations at the bottom of the band [142].

The mean heat ⟨Q⟩ is shown in Fig. 9.2 as a function of time for the same param-

eters as Fig. 9.1. We observe that ⟨Q⟩ grows with protocol time for short evolutions,

Ωt f ≲ 1, and then executes long-lasting oscillations around a finite value for relatively

long protocols Ωt f ≫ 1 before eventually settling to a constant. These intermediate-

time oscillations can be understood as a consequence of the finite bandwidth of the

fermionic lattice, and are more prominent for strong coupling, g ≳ Ω. The tempera-

ture dependence of the mean heat absorbed at asymptotically long times is shown in

Fig. 9.3, for two different values of the coupling constant. As its temperature increases,

the bath absorbs less heat during the decoherence process, which reflects the reduced

disturbance of the high-temperature Fermi sea by the impurity perturbation.
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Figure 9.3: Long-time limit of the heat transfer as a function of temperature for a qubit in a 1D
fermionic lattice, with couplings g = Ω (blue lines) and g = 0.1Ω (inset, red lines).

9.6 Energy costs of projective measurements in pure

decoherence processes

After investigating the heat dissipation due to a pure decoherence process in which

a system relaxes to a thermal state, we study the thermodynamic cost of performing

a measurement on the system at a given time of its relaxation evolution. Quantum

feedback control exploits protocols of this kind, where measurements on the system

are performed in order to retrieve information and determine its consequent evolu-

tion [149]. In this context, the maximum work that can be extracted from the thermal

bath by the feedback control procedure has been studied [100]. Work extraction due

to information gain is shown to be consistent with the second law of thermodynam-

ics, which can be generalized to include quantum feedback control [132]. Here we are

interested specifically in pure decoherence processes, and how measurements affect

the average heat dissipated by the bath. In the following, we only lay out the theo-

retical framework for calculating the characteristic function of heat in the presence of

feedback, but further, in-depth study will be the subject of future work.
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9.6.1 One measurement on the open system

We define
{

P̂v
}

a set of linear operators acting on the Hilbert space of the open system

and satisfying the completeness condition ∑v P̂†
v P̂v = 1S. Such a set defines a mea-

surement on the system S. We assume ρ̂(t) evolves in time through Eq. (2.6) and a

factorized initial state. We perform an instantaneous measurement on the open sys-

tem at a certain time 0 < t1 < t f of the evolution, so that the overall density matrix

ρ̂(t) becomes

ρ̂ (t1)→ ρ̂′ (t1) =

(
P̂v ⊗ 1B

)
ρ̂ (t1)

(
P̂v ⊗ 1B

)†

p1 (v)

=

(
P̂v ⊗ 1B

)
Û (t1) (ρ̂S (0)⊗ ρ̂B (0)) Û† (t1)

(
P̂v ⊗ 1B

)†

p1 (v)
, (9.24)

where

p1 (v) = Tr
[(

P̂v ⊗ 1B
)

Û (t1) (ρ̂S (0)⊗ ρ̂B (0)) Û† (t1)
(

P̂v ⊗ 1B
)†
]

(9.25)

is the probability of the outcome v. After a time t > t1,

ρ̂
(
t f
)
= Û

(
t f − t1

)
ρ̂′(t1)Û† (t f − t1

)
. (9.26)

The characteristic function of heat after one measurement, χ1(u), is defined by Eq. (6.4),

where the unitary time evolution operator is replaced by the operator V̂v(t f , t1) =

Û
(
t f − t1

) (
P̂v ⊗ 1B

)
Û (t1), so that

χ1(u) =
1

p1 (v)
Tr
[
eiuĤBV̂v(t f , t1)e−iuĤB (ρ̂S (0)⊗ ρ̂B (0)) V̂†

v (t f , t1)
]

. (9.27)

For a pure decoherence process, [ĤS, ĤI ] = 0, so that expanding the operators V̂v(t f , t1)

in Eq. (9.27) the terms e±it1ĤS and e±i(t f−t1)ĤS cancel each other inside the trace. We

expand the initial state of the open system in the eigenbasis of ĤS, ρ̂S (0) = ∑i,j ρ
i,j
S (0)

|i⟩ ⟨j|, and expand the trace over the degrees of freedom of the system. Writing ĤI
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as the most general interaction Hamiltonian for a pure decoherence process as de-

fined in Eq. (4.23), the calculations that follow from Eq. (9.27) are identical to the ones

discussed in Sec. 9.2 leading to Eq. (9.4). Using the orthonormality of the energy eigen-

basis of the open system ⟨j| m⟩ = δjm, and ⟨n| Π̂l |m⟩ = δnlδlm, we have the final result

for the characteristic function of heat

χ1 (u) =
1

p1 (v)
∑

m,n,t
⟨m| P̂†

v |n⟩ ⟨n| P̂v |t⟩ ρt,m
S (0)

×
〈

eit1Ĥm ei(t f−t1)Ĥn eiuĤ0e−i(t f−t1)Ĥn e−it1Ĥt e−iuĤ0
〉

B
, (9.28)

with

p1 (v) = ∑
m,n,t
⟨m| P̂†

v |n⟩ ⟨n| P̂v |t⟩ ρt,m
S (0)

〈
eit1Ĥm e−it1Ĥt

〉
B

. (9.29)

Here we have used the definitions Ĥ0 = ĤB and Ĥn = ĤB + gnV̂n.

Eqs (9.28 - 9.29) define a general characteristic function of heat where the operator

P̂v can be replaced with any measurement. The averages ⟨•⟩B can easily be numeri-

cally computed with the functional determinant approach used in Sec. 9.5.1. Calcu-

lations of average heat ⟨Q⟩ can be derived, for example, for the qubit in a fermionic

lattice environment model introduced in Eqs. (9.15 - 9.17).

9.6.2 N measurements on the open system

The result in Eqs (9.28 - 9.29) can be extended to an arbitrary number N of measure-

ments taken on the system respectively at times t1 < t2 < ... < tN. The overall density

matrix at the N-th measurement is calculated iteratively as

ρ̂′ (tN) =

(
∏1

j=N V̂vj(tj, tj−1)
)

ρ̂ (0)
(

∏N
j=1 V̂†

vj
(tj, tj−1)

)
pN (vN | v1, v2...vN−1)

, (9.30)

where V̂vj(tj, tj−1) =
(

P̂vj ⊗ 1B

)
Û
(
tj − tj−1

)
, and we set t0 = 0. The probability of

outcome vN of the N-th measurement, conditioned to the previous N − 1 outcomes
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v1, v2...vN−1, is

pN (vN | v1, v2...vN−1) =
1

pN−1 (vN−1 | v1, v2...vN−2)

× Tr

[(
1

∏
j=N

V̂vj(tj, tj−1)

)
ρ̂ (0)

(
N

∏
j=1

V̂†
vj
(tj, tj−1)

)]
. (9.31)

At the final time t f , the density matrix is

ρ̂
(
t f
)
= Û

(
t f − tN

)
ρ̂′(tN)Û† (t f − tN

)
, (9.32)

from which it follows, after calculations similar to the ones leading to Eq. (9.28), that

the characteristic function of heat is

χN(u) =
1

pN (vN | v1, ...vN−1)
∑

n0,n1...nN

∑
kN−1...k0

ρk0,n0
S (0) (9.33)

×
(

N

∏
j=1

〈
nj−1

∣∣ P̂†
vj

∣∣nj
〉)
⟨nN| P̂vN |kN−1⟩

(
1

∏
j=N−1>0

〈
k j
∣∣ P̂vj

∣∣k j−1
〉)

×
〈

N

∏
j=1

(
ei(tj−tj−1)Ĥnj−1

)
ei(t f−tN)ĤnN eiuĤ0e−i(t f−tN)ĤnN

1

∏
j=N

(
e
−i(tj−tj−1)Ĥkj−1

)
e−iuĤ0

〉
B

.

The expanded conditional probability outcome is

pN (vN | v1, ...vN−1) =
1

pN−1 (vN−1 | v1, ...vN−2)
∑

n0,n1...nN

∑
kN−1...k0

ρk0,n0
S (0)

×
(

N

∏
j=1

〈
nj−1

∣∣ P̂†
vj

∣∣nj
〉)
⟨nN| P̂vN |kN−1⟩

(
1

∏
j=N−1>0

〈
k j
∣∣ P̂vj

∣∣k j−1
〉)

×
〈

N

∏
j=1

(
ei(tj−tj−1)Ĥnj−1

) 1

∏
j=N

(
e
−i(tj−tj−1)Ĥkj−1

)〉
B

, (9.34)

which can be calculated recursively starting from Eq. (9.29).
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10 | Conclusions and Future Work

Part I of this thesis described the known theory of open quantum systems and its con-

nection to quantum thermodynamics. It introduced a methodology to numerically

simulate non-Markovian dynamics and described the TEMPO algorithm.

In Part II, we showed our research work and its results. We discussed how a bet-

ter understanding of dissipation in open quantum systems is a fundamental goal of

quantum thermodynamics as well as being crucial for quantum device engineering.

We have shown that this goal can be successfully addressed by an extension of the

TEMPO algorithm [114] to evaluate the characteristic function of the heat distribu-

tion. We have demonstrated the validity and flexibility of our approach by calculating

the mean and variance of the heat transfer in the spin-boson model over a range of

temperatures and system-bath coupling strengths. Our results clearly demonstrate

the importance of system-environment correlations at low temperatures. Even at high

temperature and weak coupling, we find significant contributions to the heat statistics

from the system-environment interaction energy that are not captured by the standard

weak-coupling master equation. This indicates that system-reservoir interactions are

an important source of dissipation that must be accounted for when designing ther-

modynamic protocols [150–155], even in the weak-coupling regime.

Our approach to calculating heat statistics can be extended in several promising di-

rections. It is straightforward to adapt the method to situations with a time-dependent

system Hamiltonian, which would enable the characterisation of heat statistics for

driven open systems. This problem, which is theoretically challenging even for Marko-

vian environments outside of the slow-driving regime, has numerous applications in
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quantum control, such as quantum information processing [156] and erasure [157], en-

hanced engine cycles through thermodynamic shortcuts [97, 158], and tailored quan-

tum light sources [95, 159]. It is also possible to incorporate multiple baths within

our framework by combining the corresponding influence functionals together [160].

This would allow the study of the full counting statistics of quantum heat transport

in non-equilibrium steady states [111], including highly non-Markovian regimes. In

general, we expect that the method presented here will facilitate further research into

the non-equilibrium quantum thermodynamics of strongly coupled open systems.

Secondly, we discussed the importance of heat dissipation in a pure decoherence

process. Decoherence and heat dissipation are commonly considered to be comple-

mentary manifestations of irreversibility in open quantum systems. Our results show

that these two processes are in fact inextricably linked: environment-induced deco-

herence comes at a fundamental energetic cost. This heat dissipation is a subtle aspect

of decoherence that, to our knowledge, has not yet been investigated in the litera-

ture on quantum thermodynamics. Beyond their foundational implications, our find-

ings are directly relevant for current efforts to harness decoherence for nondestructive

measurements of noise in quantum devices. The unavoidable dissipation of energy

implies an intrinsic disturbance due to such measurements [161], which can be quan-

titatively assessed using the general framework developed here.

The experimentally relevant example of an impurity immersed in an ultra-cold

Fermi gas [81] highlights the rich physics which is unveiled by considering the ther-

modynamics of decoherence. However, our framework can equally well be applied to

a range of other situations, such as ultracold bosonic environments where dephasing

impurities have recently been realized [84, 89], as well as strongly interacting sys-

tems. Starting from this work, further investigations of the peculiar thermodynamic

features of decoherence and associated properties in diverse physical settings are pos-

sible.
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