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Introduction

What is nanophotonics?

Photonics is part of the modern science of light primarily concerned with the
control, generation, and manipulation of optical signals. The wave lengths
of this light are usually on the order of 1 µm = 1000 nm, so at first sight
the relevance of nanoscale physics might appear strained. Nonetheless, it
plays an essential role. This is because the goals of photonics require the
light to be coupled to matter, and with this second component we must
work on the nanoscale. We generate light from things like sodium atoms
in a streetlamp, or an electron-hole plasma in a diode laser; steer and trap
it with metallic or dielectric mirrors and waveguides – and then send it
around the world with combinations of the two.

While the first laser exploited the natural atomic structure of a ruby
crystal, we now engineer artificial atomic structures for use in optical sys-
tems. Arguably, nanophotonics is about the optical properties of these
engineered structures, which include quantum dots, wells, and metallic
nanocrystals. Because they derive from both the wave-like properties of
light and the strong interactions within matter these optical properties are
a significant challenge for theoretical physics.

As well as considering the effects of nanoscale matter on the propagation
of light, a second aspect of nanophotonics is the trapping and manipulation
of light on the scale of its wavelength. This comes in because there is so
little of a nanoscale object, such as a quantum dot, that its effect on the
entire electromagentic field is very small. However, if we introduce an
optical cavity we create resonant modes of the electromagnetic field, which
are localized in the cavity. For a smaller and smaller cavity, these resonant
modes couple more and more strongly to a single nanoscale object inside
it. Thus a single nanoscale object can have a noticeable affect on the
electromagnetic field in a small cavity. One can then further increase the
coupling by putting many nanoscale objects in the cavity. This direction,
however, makes the system more linear, and therefore perhaps eliminates
some interesting physical phenomena. The richest regime will probably
turn out to be the intermediate one: a few, or few hundred, nanoscale
objects in a microscale cavity.
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vi INTRODUCTION

Course overview

The aim of this course is to provide an introduction to some of the theo-
retical tools used to model solid-state light-matter systems. To do this, we
will focus primarily on an important example: the semiconductor micro-
cavity. By the end of the course, you should be able to construct theoretical
models of some microcavities, and solve them to understand some of their
simpler predictions. The vast majority of the remaining consequences of
these theories are research problems.

Our aim in the first two chapters of the course is to understand how to
construct a microcavity. This is a problem in classical optics and electro-
magnetism, which has both practical importance and interesting links to
wave mechanics. Having done this, we shall then develop a quantum the-
ory of the light trapped in microcavities (Chapter 3, 4), and combine this
with the quantum theory of nanoscale objects in the microcavity (Chapter
5, 6). Chapter 5 considers the simplest case of a single atomic-like system
in a cavity, while chapter 6 addresses the generalization to an ensemble
of such systems, allowing us to treat the formation of polaritons in planar
microcavities.

Although we develop a full quantum treatment of both light and matter,
it may be worth noting that this full treatment is not always needed. Many
of the effects known at present in microcavities can be described by treating
the light as a classical wave, and reserving the quantum description to the
matter. In this course we will approach from the fundamental quantum
theory, and only then discuss the connection to the classical limit. This
approach is hopefully accessible.

Problems

There are problems interspersed throughout these notes, some of which I
will set as homework for assessment. These may well be questions which
we have discussed during the lectures, but you are nonetheless expected to
hand in written solutions. Questions marked ♠ are rather challenging, only
for the keen, and will not be obligatory for assessment.



Chapter 1

Microcavity
Electrodynamics

A microcavity[1, 2] is a structure designed to create resonant modes of
the electromagnetic field, essentially by reflecting light so that it forms
standing waves. The simplest toy model of such structure is a pair of high-
reflectivity parallel mirrors, with some separation d, containing a material of
refractive index n. For most incident frequencies the high mirror reflectivity
means that incident light is strongly reflected. However, at the resonant
frequencies the different reflections add up destructively. Thus the external
reflectivity is very small and the light is transmitted through the structure
(Fig. 1.1, left). This effect is caused by the presence of quasi-localized
standing-wave modes of the electromagnetic field, which are optical analogs
of the bound states of electrons in a potential well (Fig. 1.1, right).

The simplest treatment of this effect[3] is to calculate the reflected am-

Figure 1.1: Left: The reflected amplitude from a double-mirror structure,
where each mirror has amplitude reflectivity r and transmission t, can be
calculated as shown. Right: The electric field profiles for scattering at the
first two resonant frequencies show the connection to formation of standing
wave modes between the mirrors.

1



2 CHAPTER 1.

Figure 1.2: Calculated amplitude reflectivity |r| for the structure in Fig.
1.1 with r = 0.8 (blue), r = 0.9 (orange).

plitude from the double-mirror structure shown in Fig. 1.1, in terms of the
reflection and transmission coefficients of the mirrors. This is the sum over
all the bounces

R = −r +
t2

r
(r2eiδ + r4e2iδ + . . . .) (1.1)

= r

(
1− r2

e−iδ − r2
− 1
)
. (1.2)

Here we have assumed lossless mirrors, for which |r|2 + |t|2 = 1. Fig. 1.2
shows when r ≈ 1 we obtain the sharp resonant dips in the reflectivity. In
fact, for lossless mirrors the reflectivity vanishes at the resonance condition
δ = 2nπ. This is a surprising result: no matter how good the mirrors, they
are effectively transparent at the resonance condition. If there are losses,
e.g. due to the finite conductivity of metallic mirrors, |r|2 + |t|2 < 1, and
the reflectivity dips but does not go to zero.

Because the reflectivity of the mirrors is finite, a standing wave mode
of the cavity decays. Its finite lifetime, or finite damping, corresponds to
the finite width of the resonances visible in Fig. 1.2. This effect is usually
parametrized by the Q-factor of the resonator

Q =
ωc

δω
, (1.3)

where δω is the full-width at half-maximum of the resonance (in frequency).
It measures the rate at which energy in the resonator decays, in this case
due to the escape of photons through the mirrors.
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Figure 1.3: Schematic of a planar semiconductor microcavity with dis-
tributed Bragg reflectors. This is a planar semiconductor heterostructure,
formed for example from layers of AlxGa1−xAs with different dopings x
(colours). The variation in x gives layers of different refractive index, and
hence reflections at the interfaces. These reflections create standing-wave
modes of the electromagnetic field. Typically the “gap” layer has thickness
3λ/2, while the repeating layers in the mirrors have thickness λ/4.

Question 1.1: Consider a driven harmonic oscillator with damping con-
stant γ,

ẍ+ γẋ+ ω2
0x = Aeiωt. (1.4)

Write down the solution for x(t) long after any transients have died away.
Calculate and sketch the scaled square of the amplitude of the driven
oscillations f(ω) = |x(t)|2/A2. Calculate the width δω of the response
curve f(ω) in terms of the oscillator parameters. Show how the Q-factor
ω0/δω is related to the decay time for free (unforced) oscillations. (Assume
γ, (ω − ω0) � ω, ω0)

It is relatively easy to make a high-Q resonator which is large, but it
is much harder to make a wavelength-sized resonator for light. Our aim
in the remainder of the first two lectures will be to understand how this
can be done using semiconductor heterostructures. We focus on one such
structure, the planar semiconductor microcavity with distributed Bragg
reflectors (Fig.1.3). To understand the physics of this structure, we will first
review the necessary aspects of classical electromagnetism. We will then
see how to calculate the reflection and transmission of light incident on the
simplest possible microcavity, formed from a layer of dielectric embedded
in surroundings of a different refractive index. In the next lecture, we will
see how periodic dielectric structures allow us to make much better mirrors,
and hence useful microcavities. Along the way, we will further explore the
connection between optical resonances and the bound states of quantum
wells, described by the Schrödinger equation.
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In general one al-
lows for the induced
magnetic dipoles
by introducing the
magnetizing field
H analogously to
the electric displace-
ment. However, in
the following we are
concerned with non-
magnetic dielectrics,
so can neglect this
effect. H and B are
then just be different
names for the same
thing, related by a
universal constant
B = µ0H. See [4].

1.1 Revision of electromagnetism

The fundamental basis for both classical and quantum optics is Maxwell’s
equations in vacuum

∇×B = µ0J + µ0ε0Ė ∇ ·E = ρ/ε0 (1.5)

∇ ·B = 0 ∇×E = −Ḃ. (1.6)

In matter, the electric and magnetic fields generally induce an electric polar-
ization and magnetic moment. Most of these induced fields are proportional
to the electromagnetic fields, so for the electric polarization we can write

P = ε0χE, (1.7)

which defines the susceptibility χ. We then define an “electric displace-
ment” and relative permeability ε to include this polarization

D =ε0E + P = ε0εE, (1.8)
ε = 1 + χ. (1.9)

To the extent that Eq. (1.7) holds the material disappears from the prob-
lem, giving Maxwell’s equations in a medium

∇ ·D = 0 (1.10)
∇ ·B = 0 (1.11)

∇×H = Ḋ (1.12)

∇×E = −Ḃ. (1.13)

Electromagnetic waves

From Eqs. (1.10–1.13) we find that the electric field in a uniform medium
obeys the wave equation

∇2E = µ0ε0εË. (1.14)

This has an infinite set of linearly-independent solutions, which are plane
waves

E = E0
e,keei(k.r−ωt) (1.15)

with phase velocity v = ω/|k| = 1/
√
µ0ε0ε. The phase velocity differs from

that of the vacuum via the refractive index n, v = c/n. A general solution
is a superposition of these waves with different k, e,

E =
∑

e,k,±
E0
±,e,ke

i(k.r−ωt). (1.16)

As usual, in a finite region of space there is a discrete set of allowed
values of k which depend on the boundary conditions. The infinite system
may be treated by introducing an artificial quantization volume V →∞. In
the limit sums such as (1.16) become integrals involving a density-of-states
(called the density-of-modes in the optics literature).
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V

Figure 1.4: Simple microcavity consisting of a slab with refractive index n1

embedded in a medium of index n0. For n1 > n0 the wave equation for the
electric field in such a dielectric corresponds to the Schrodinger equation
for a particle in a potential well (right).

Polarization

As shown in question 1.2, the vectors e and k do not vary independently:
generally e must be orthogonal to k. We say that light is a transverse wave.
For every k there are two linearly independent solutions, specified by a
direction of e. This degree-of-freedom is called the polarization of light[3].
A wave with a constant direction to E is called linearly polarized light. A
superposition of two such solutions, identical apart from a π/2 phase shift
and rotation of the direction of E, is called circularly-polarized light. This
is because the electric field vector rotates as the wave propagates.

Question 1.2: Show that only solutions of the wave equation with e and
k perpendicular are solutions of Maxwell’s equations.

Question 1.3: Show that, at a constant position, the direction of the
electric-field vector in a circularly-polarized light wave rotates.

1.2 The wave equation in layered dielectrics

Microcavities are generally planar structures formed from media of varying
refractive index, such as Fig. 1.4. We now develop a general formalism
which allows us to calculate the optical properties of such a structure,
effectively solving the wave equation in it.

The solution to (1.14) in a layered structure is determined by how the
plane-wave solutions in each layer join up, i.e., the boundary conditions
at the interfaces. Eqs. (1.12–1.13) require that the transverse compo-
nents of E and H are continuous at the interfaces. This is a more compli-
cated condition than you may be used to, for example when matching the
wavefunctions in Schrödingers equation at a potential step. However, for
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waves in which either E or H lies parallel to the interfaces, it is simple:
E or H must be continuous across the interface. These are referred to
as transverse-electric (TE) and transverse-magentic (TM) waves. TE and
TM waves are “polarization eigenmodes” of planar dielectric structures:
the interfaces preserve the polarization of such a wave. Problems involving
arbitrarily-polarized wave can be treated by decomposing into the TE and
TM eigenmodes. Thus one can describe, for example, the general change
in polarization on reflection.

We focus on the case of a TE polarization, where the elementary solu-
tions to (1.14) are of the form

E = eE(z)eik‖.r‖e−iωt, (1.17)

and E(z) obeys

− d2E(z)
dz2

+
[
ω2

c2
(n2

0 − n(z)2)−
(
ω2n2

0

c2
− |k‖|2

)]
E(z) = 0. (1.18)

Adding and subtracting a background constant in this way shows clearly
that the problem is equivalent[2, 3] to solving the one-dimensional Schrodinger
equation

− ~2

2m
d2ψ

dz2
+ (V (z)− E)ψ = 0, (1.19)

with the electric field envelope E(z) playing the role of the wavefunction.
As shown in Fig. 1.4, an upward step in refractive index corresponds to
a downward step in the potential: potential wells map to layers of high
refractive index.

Transfer matrices

To solve Eq. (1.18) in a general layered structure we use the transfer matrix
technique[1]. The idea is to introduce an operation which “propagates the
solution in space”, i.e. takes the solution at one position z0 and gives us
the solution at another z1 > z0. Since (1.18) is second-order in space we
actually need both E(z0) and dE

dz |z0 to be able to do this, so we introduce
the vector

φ(z0) =
(

E(z0)
−i
k0

dE
dz |z=z0

)
. (1.20)

The vacuum wavenumber k0 = ω/c is included in the definition as it sim-
plifies the notation later.

In more straightforward form, (1.18) is

d2E(z)
dz2

= −(n2k2
0 − |k‖|2)E(z) = −k2

z,nE(z). (1.21)

kz,n = k0n cosφn is the z-component of the wavevector in the medium with
refractive index n, where φn is the angle to the normal in that medium.

Question 1.4: Can k2
z,n < 0? What happens?
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Figure 1.5: Scattering geometry used to calculate reflection and transmis-
sion coefficients from a 1D structure.

In each layer the solution is a sum of forward- and backward- propagat-
ing waves

E(z) = A+eikz,nz +A−e−ikz,nz. (1.22)

Thus the transfer matrix which relates the fields at the left and right of a
layer of thickness a must transform(

A+ +A−

(kz,n/k0)(A+ −A−)

)
→
(

A+eikna +A−e−ikna

(kz,n/k0)(A+eikna −A−e−ikna).

)
(1.23)

A little thought shows that it is

Tn,a =
(

cos(kz,na) i sin(kz,na)/(kz,n/k0)
i(kz,n/k0) sin(kz,na) cos(kz,na)

)
. (1.24)

Since the boundary conditions are that E(z) and dE(z)/dz are continu-
ous at the interfaces, it is clear that the transfer matrix across a boundary
is just the identity matrix. Thus the transfer matrix for a layered structure
is a product of that for the individual layers. For example, for the entire
structure shown in Fig. 1.4 the fields on the right and left are related by

φ|R = TaTbTaφ|L. (1.25)

Question 1.5: Show that the transfer matrix (1.24) produces the trans-
formation (1.23).

Reflection and transmission coefficients

The usual practice in optics is to use transfer matrices to evaluate the
reflection and transmission coefficients from the structure. This scattering
geometry is shown in Fig. 1.5. We have

T

(
1 + r

(kz,L/k0)(1− r)

)
=
(

t
(kz,R/k0)t

)
. (1.26)
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Figure 1.6: Reflectivity of a slab of dielectric with n = 1.5 of thickness a in
air.

If we consider normal incidence kz,n = nk0, so

T

(
1 + r

nL(1− r)

)
=
(

t
nRt

)
. (1.27)

This equation can be solved to determine r and t as functions of the refrac-
tive indices and k0 = ωc,

r = 1 +
2nRt11 − 2t21

nR (−t11 + nLt12) + t21 − nLt22
(1.28)

t =
2nL (t12t21 − t11t22)

nR (−t11 + nLt12) + t21 − nLt22
. (1.29)

Away from normal incidence, the z-component of the wavevector may be
written kz,n/k0 = n cosφ, where φ is the angle to the normal in the medium.
Thus the results away from normal incidence can be obtained by taking the
normal-incidence expressions written in terms of the refractive indices, and
substituting n→ n cos(φn).

1.3 A planar resonator

To show the utility of the formalism, we can use it to calculate the reflec-
tion and transmission coefficients for a simple realistic structure: a slab of
dielectric with n = 1.5 in air. The results are shown in Fig. 1.6. Notice
that this is a very poor microcavity: the widths of the resonances are com-
parable with their separation, and k0na ∼ 1, so Q is of order 1. In the next
lecture, we shall see how to make microcavities with much better Q values.

Question 1.6: Suggest why the planar dielectric slab is such a poor
microcavity.
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1.4 Photonic eigenstates

To conclude this chapter, we try to connect the peaks in the reflection and
transmission coefficients to the idea of eigenstates in Schrodinger’s equation.

The usual practice in quantum mechanics is to find normalizable eigen-
states of the wave equation. These are solutions which :

• Have a simple harmonic time dependence ψ(z, t) ∝ eiωt, and

• Satisfy the boundary conditions ψ(z, t) → 0 as z → ±∞.

Let us see where this procedure leads applied to the wave equation in a
layered dielectric.

In terms of the transfer matrix, we have an eigenstate if the transfer
matrix takes us from the boundary condition at the left to the boundary
condition at the right – like waves fitting on a guitar string. Let us speci-
fying boundary condition in terms of outgoing waves outside the structure.
Thus the electric fields at the left boundary are of the form (1.22), with
A− = 1, A+ = 0, and on the right with A+ = A,A− = 0. Since the transfer
matrix connects the two sides, we have an eigenstate condition

T

(
1

−kz,L/k0

)
= A

(
1

kz,R/k0

)
. (1.30)

This gives a condition on the wavevectors of the outgoing waves – which is
an implicit equation for the normal mode frequency, or eigenenergy:

t11(kz,R/k0)− t12(kz,L/k0)(kz,R/k0) + t22(kz,L/k0)− t21 = 0, (1.31)

or at normal incidence,

t11nR − t12nLnR + t22nL − t21 = 0. (1.32)

In general, (1.32) gives a complex n – really a complex kz,n. To under-
stand this, let us go back to the general expression

k2
z,n = n2ω2/c2 − |k‖|2, (1.33)

where k‖ is constant everywhere in the structure. Suppose first that kz,n is
pure imaginary. Then there for any |k‖| > =(kz,n) there are solutions with
real ω. These are waveguide modes, where light in the structure is totally
internally reflected at the boundaries with the surroundings. Thus the fields
outside are evanescent in the z direction, and there are real eigenmodes of
the system analogous to the bound states of a quantum well.

The more general case of complex kz,n implies that ω is complex. This
means that in the free evolution of the system the fields are decaying ex-
ponentials, i.e., there is a lifetime to the mode, and the system behaves
like a damped oscillator. We know that when such a damped oscillator is
driven it oscillates at the driving frequency, with an amplitude which de-
pends on how close to resonance it is at. This is why any weakly damped
photonic eigenmodes appear as sharp features in the reflection and trans-
mission spectra: at those points we are driving a weakly damped oscillator
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close to its resonant frequency, so the response becomes very large. This
manifests itself as a reflection coefficient close to zero, and a transmission
coefficient close to one.

This connection may be seen formally by noting that the same function
of ω, D(ω) appears in the denominators of the expressions for the reflection
and transmission coefficients and in the condition for a photonic eigenmode.
Denoting the complex frequency by z = ω+ Iγ, the eigenmode condition is
D(z) = 0. Suppose now we have an eigenmode with a small γ. This means
that there is a zero of D(z) close to the real axis, so that D(ω) is small
(roughly γ). Thus we see why close to ω there are sharp structures in the
reflection and transmission coefficients. This is a general phenomenon in
the scattering of waves from systems with bound or quasi-bound states. In
quantum mechanics it is called resonant tunneling ; for electrons, the effect
is exploited in a device called a resonant tunneling diode. This electrical
analog of the optical resonator consists of two tunnel barriers separated by
a gap. Its electrical conductivity has sharp features as a function of bias
voltage, which relate to the presence of quasi-bound states between the
barriers.
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Chapter 2

Periodic optical structures
and microcavities

In the last chapter, we saw how to solve the wave equation in planar di-
electric structures. In this chapter, we apply these ideas to periodic planar
dielectric structures. We shall then see how such structures allow us to
make very good mirrors, and hence useful microcavities, which we shall
discuss in the final part of the chapter.

2.1 Bloch theorem and photonic bandstructure

Suppose we have an infinite, periodic stack of dielectric layers, with period
d. By Bloch’s theorem the solution to Eq. (1.21) is of the form

E(z) = eiqzUE(z), (2.1)

where UE(z) has period d. The vector φ(z) defined by Eq. (1.20) behaves
similarly,

φ(z) = eiqzΦ(z), (2.2)

where Φ(z) is periodic. Thus we have

TdΦ(0) = eiqdΦ(0), (2.3)

where Td is the transfer matrix connecting the fields across one period of
the structure. Thus we see that eiqd must be an eigenvalue of the matrix
Td.

Because the transfer matrix preserves the normalization of the wave,
det Td = 1. The eigenvalue equation is then

λ2 − Tr(Td)λ+ 1 = 0, (2.4)

and writing λ = eiqd we have

2 cos(qd) = T11 + T22. (2.5)

This is a relationship between ω (remember Td depends on frequency) and
q, which is exactly analogous to the bandstructure of a one-dimensional

11
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Figure 2.1: Photonic bandstructure for a periodic stack, with each period
formed from two different layers of thickness a, b, and refractive indices na,
nb. naa = nbb, na = 1.5, nb = 1.

solid. It is therefore sometimes describes as a photonic bandstructure. An
example is shown in Fig. 2.1, which shows the bandstructure for a repeating
stack of two layers, with refractive indices na, nb and thicknesses a, b.

A crucial feature of photonic bandstructures can be seen from (2.5):
only if |T11 +T22| < 2 do we have solutions. In general these solutions exist
over ranges of frequencies called photonic bands. These are analogous to
the electronic bands in solids. If this condition is not satisfied there are
no solutions to the wave equation in the infinite periodic structure (the
solutions with complex q are inadmissable as they do not satisfy Bloch’s
theorem). These regions of frequency correspond to the bandgaps in a solid,
and are called stop-bands or photonic bandgaps. They can be seen along
the vertical axis in Fig. 2.1.

It is worth emphasising that an evanescent wave (a complex q) cannot
be a solution to the wave equation in a periodic system. An interpretation
of evanescent solutions in the context of Bloch’s theorem is wrong: in a
periodic system these solutions simply do not exist. Evanescent solutions
exist only at the boundaries of a periodic system, where Bloch’s theorem
does not apply.

2.2 Reflection from an infinite periodic structure

The extension of this theory to a semi-infinite medium [1], say in the region
z > 0, does allow for solutions with complex q, and shows us how a periodic
medium may be used to make a mirror. Consider reflection from the surface
of a semi-infinite periodic medium. If we make the ansatz that the solution
in the medium (say z > 0) is of the form (1.20), then the solution in the
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medium has a q determined by solving (2.5) at the frequency of the incident
beam ω. If ω lies in the stop-band the ansatz is solved for a complex q.
Thus the field decays exponentially into the medium, i.e., is evanescent.

As one expects, if the field is evanescent in the medium, we have perfect
reflection. To see this we note that in the stop bands the two eigenvalues of
Td are µ1 = λ, µ2 = 1/λ, with eigenvectors e12, and we may choose |λ| < 1.
e1 then describes a decaying component, and e2 a growing one. Note from
(2.2) that the decay length is −d/ log |λ|.

The incident field is

φ(z = 0) =
(

1 + r
nL(1− r)

)
. (2.6)

Now notice that we must have

φ(z = 0) ∝ e1 =
(
a
ib

)
(2.7)

if the field is not to grow indefinitely under the repeated action of the
transfer matrix. It follows from the form of Td that a, b are real in the stop
band. Thus we have

r =
nLia− b

nLia+ b
(2.8)

⇒ |r| = 1, (2.9)

arg r = π − 2 arctan
(anL

b

)
. (2.10)

Question 2.1: It is impossible to calculate a reflection cofficient
from a semi-infinite medium outside the stop bands. Explain why.
What does this mean for a large but finite structure? (Hint: think
about generalizing the analysis above)

2.3 Properties of distributed Bragg reflectors

We have seen that a semi-infinite periodic stack creates, in general, perfect
reflection over a set of frequency windows. Since the fields in the stop
bands decay exponentially, it is clear that a stack much larger than the
decay length −d/ log |λ| will have a reflectivity close to one. Such mirrors
are called distributed Bragg reflectors (DBRs).

The standard DBR consists of a periodic stack, in which each period
has two layers a and b, with naa = nbb. Henceforth we consider this case.
As can be seen in Fig. 2.1, the centers of the stop-bands for such a stack
appear at the frequencies

ω(naa+ nbb)/c = π, 3π, 5π, . . . . (2.11)

This is (almost) the same as the Bragg interference condition in X-ray
diffraction: bright spots (high reflectivity) appear when there is construc-
tive interference between the reflections from successive periods of the struc-
ture. That is, the round-trip optical path length of the period should be a
multiple of 2π:

2ω(naa+ nbb)/c = 2π × integer. (2.12)
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The fact that half of these are missing reflects the special choice naa = nbb.

Question 2.2: Construct the transfer matrix Td for one period of
a distributed Bragg reflector with naa = nbb at normal incidence
k‖ = 0. Use Eq. 2.5 to derive expressions for the minimum,
maximum, and center frequencies of the stop bands.

♠ Question 2.3: Compare plots of the right-hand side of Eq. 2.5
for a symmetric mirror, naa = nbb, and an asymmetric one. Why
might symmetric mirrors be preferable?

2.4 Microcavity

Since Bragg stacks make very good mirrors, we can use them to implement
the double-mirror structure shown in Fig. 1.1. The ideal case is two identical
semi-infinite Bragg stacks, separated by a defect layer of index nc and size
L. The frequencies of the bound states are determined by requiring that
the round-trip phase is a multiple of 2π, i.e.,

arg r(ω) + ωncL/c = πm. (2.13)

In general arg r(ω) varies with ω, as determined by (2.10). It is zero at
the central frequency of the stop-band if the outermost layer of the mirror
has the smaller refractive index, or π in the opposite arrangement. The
spectrum is the same in either case, but in the first (second) the field
profiles have antinodes (nodes) at the surface of the mirror. Fig. 1.1 shows
the form of the field profile in the second case.

If the confined mode is not at the center frequency of the stop band
then the mode frequency moves away from the naive value set by the mir-
ror spacing L. This can be seen explicitly by noting that, provided we
are not too close to the edge of the stop band, the phase change may be
approximated as a linear function of ω, or kz,0 = ω/c. Thus we can write
the round-trip condition

α(kz,0 − k̄z,0) + kz,0ncL = mπ, (2.14)

so

kz,0 =
πm+ αk̄z

α+ Lnc
, (2.15)

in which the factor Leff = α + Lnc appears as the effective confinement
length. The parameter α is generally similar to the decay length of the
mode through the Bragg mirror, which is usually much larger than L. Thus
unless take care to design a structure where the resonance lies exactly in the
centre of the stop band, the confinement energy will be controlled mostly
by the decay into the mirrors rather than the cavity gap[2].

Real microcavities, such as Fig. 1.3, are simply truncated approxima-
tions to this ideal. The point is that the mirror reflectivity is so high that
we can now produce optical cavities, on the scale of the wavelength, with
very high Q factors. This can be seen in the reflection spectrum in Fig. 2.2.
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Figure 2.2: Calculated intensity reflectivity for a semiconductor microcav-
ity structure at normal incidence. Note the very narrow peak in the middle
of the stop band, which correspond to a long-lived confined resonant elec-
tromagnetic mode. Calculated by R. T. Phillips.

2.5 Dispersion relation in planar microcavities

An important feature of planar microcavities is their behaviour away from
normal incidence. The transfer matrix across a layer of the DBR,

Ta =
(

cos(kz,aa) i sin(kz,aa)/(kz,a/k0)
i(kz,a/k0) sin(kz,aa) cos(kz,aa)

)
, (2.16)

depends on the accumulated phase

kz,aa = (ω/c)na cos θa = (ω/c)n̄a (2.17)

as well as the frequency-independent factor

kz,a/k0 = na cos θa = n̄a, (2.18)

which implements the changes in the reflection coefficients at the interfaces
as we go to finite angles. Here θa is the angle of propagation to the normal in
this layer of the mirror. The most important effect comes from the changes
in the phase factors, so that the stop-band structures of the mirrors moves
up to higher frequencies as we go to higher angles.

The same effect leads to a shift of the cavity resonances to higher fre-
quencies with angle. So long as the axial wavevector kz,n is inside the
stop-bands of the mirrors, its value at resonance is fixed by the round-trip
condition [cf (2.13)]

arg r(kz,n) + kz,nL = πm. (2.19)
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Figure 2.3: Dispersion relation for a confined mode in a planar cavity (solid
line) and a photon in free space (dashed). The lower x axis is labelled with
the in-plane wavevector. The upper is labelled with the angle of propagation
to the cavity normal in vacuum.

The frequency where this resonance appears is

ω2 = (c2/n2)
(
k2

z,n + |k‖|2
)

(2.20)

= ω2
0 + (c2/n2)|k‖|2. (2.21)

⇒ ω ≈ ω0 +
c2|k‖|2

2ω0
, (2.22)

and the propagation direction outside the structure is of course tan−1 |k‖|/kz,0.
This form for the dispersion relation is shown in Fig. 2.3. Notice that for
small angles the dispersion relation E = ~ω is that of a non-relativistic
massive particle in two dimensions, with effective mass m = ~ω0/(c/n)2

and rest energy ~ω0 = m(c/n)2 (this is not really a coincidence). Typi-
cally microcavities are designed so that ω0 is an optical or near infrared
frequency, say ~ω0 = 1eV, in which case m ≈ 10−6mel.
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Chapter 3

Quantum theory of light

In the quantum theory of a single particle, one learns that the particle
position and momentum are operators, which obey the commutation rule

[q̂, p̂] = i~. (3.1)

The motion of the particle is governed by Schrödinger’s equation

i~
∂

∂t
|ψ〉 = Ĥ|ψ〉, (3.2)

for the wavefunction |ψ〉. This is written in terms of the Hamiltonian
operator

Ĥ =
p̂2

2m
+ V (q̂). (3.3)

Finally, one learns how to calculate the outcomes of experiments: these
correspond to Hermitian operators Ô, with complete sets of eigenvalues and
eigenvectors λi, |λi〉. The outcome of an experiment on a system in state
|ψ〉 is one of the eigenvalues, λj , with probability |〈λj |ψ〉|2. Immediately
after a measurement yielding value λi, the state is |λi〉.

The foundations of the quantum theory of light are very similar to
those of the quantum theory of a single particle. There are fundamental
non-commuting quantities: the electric and magnetic fields. There is a
wavefunction; a time evolution controlled by a Hamiltonian; and a mea-
surement rule related to the non-commuting nature of the operators. The
additional complexity appears because, whereas for a single particle there
are two degrees of freedom – position and momentum – for the electro-
magnetic field there are an infinite number of degrees of freedom – the
amplitude of the electric and magentic field at every point in space. You
should already have seen theories like this: a simple example would be a
set of harmonic oscillators

Ĥ =
∑

i

p̂2
i

2m
+
mω2

i

2
q̂2i , (3.4)

which you may recognise is the Einstein model of lattice vibrations in a
solid.

17
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To work effectively with quantum theories like (3.4), which are called
quantum field theories, one needs a new set of bookeeping techniques: the
language of second quantization. In this chapter we shall develop the quan-
tum theory of light in, and alongside with, this new language. We shall see
that this is the same theory one would write for a gas of bosons, an impor-
tant general point:

Quantum field theory = Many particle physics,

or more specifically

Quantum electrodynamics = Many photon physics.

3.1 Quantum harmonic oscillator

The quantum dynamics of the electromagnetic field will turn out to be the
same as that of (3.4). Let us first review the operator approach to solving
the single harmonic oscillator. One defines the “annihilation operator”

â =
√
mω

2~
q̂ + i

√
1

2~mω
p̂, (3.5)

and its Hermitian conjugate â†. Notice that the prefactors involve the nat-
ural lengthscale, ` =

√
~/mω, and momentum scale, mω`, of the quantum

harmonic oscillator, so that â is a dimensionless operator. The algebra of
these operators is

[â, â†] = 1. (3.6)

They allow us to write the harmonic oscillator Hamiltonian as

Ĥ = ~ω
(
â†â+

1
2

)
. (3.7)

This quantity is basically the number operator N̂ = â†â. Because only
energy differences are significant the final energy term can be dropped in
many calculations, although there are situations in which it can and does
have measurable effects.

We now notice that if |n〉 is an eigenstate of N̂ with eigenvalue n, â|n〉
is an eigenstate with eigenvalue n− 1. In fact,

â|n〉 =
√
n|n− 1〉. (3.8)

Similarly, we find that

â†|n〉 =
√
n+ 1|n+ 1〉. (3.9)

Since the operator N̂ = â†â is positive-definite, there must be a state
corresponding to the lowest eigenvalue. â must annihilate this state, i.e.

a|0〉 = 0, (3.10)

and so the eigenvalue of N̂ for this state is zero.
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It therefore follows that the eigenspectrum of N̂ is the discrete ladder
of states |n〉, where n = 0, 1, 2, 3 . . ., with eigenvalues n of â†â. These states
are called “Fock states” or “number states”, and can all be constructed
by repeated application of â† to the “vacuum state” |0〉. In more familiar
terminology, this vacuum state |0〉 is the ground state of the harmonic
oscillator.

Since we have shown how to construct all the eigenstates of the Hamil-
tonian – which form a complete set, since the Hamiltonian is a Hermitian
operator – we can now solve any problem in the physics of the quantum
Harmonic oscillator.

Question 3.1: Consider a harmonic oscillator prepared in the (un-
normalized) state at t = 0, |a(t = 0)〉 = (â†â† + â†)|0〉. What are the
outcomes of a measurement of the energy in this state, and with
what probabilities?

Question 3.2: What is the expectation value of the position of
the oscillator in question 3.1 at time t?

In problems involving harmonic oscillators one is often particularly in-
terested in the position of the particle, for which it is useful to find the
position-space wavefunctions un(q) = 〈q|n〉, where |n〉 is a Fock state and
|q〉 an eigenstate of the position operator. A neat way to do this is to note
that the ground state obeys

â|0〉 = 0. (3.11)

In position space this reads

1√
2

(
q

`
+ `

d

dq

)
u0(q) = 0. (3.12)

This equation can be solved to determine the ground-state wavefunction
u0(q)

u0(q) =
(

1
π

)1/4 1√
`
e−q2/2`2 . (3.13)

The remaining wavefunctions for the Fock states (energy eigenstates of the
harmonic oscillator), can then be found by repeatedly applying the real-
space form of the differential operator â† to this wavefunction.

Question 3.3: Sketch, or plot numerically, a function showing the
possible outcomes of the measurement of q (x-axis), and their
probability density (y-axis) in the Fock states |0〉, |1〉.

3.2 Heisenberg picture

In elementary quantum mechanics one normally works in what is called the
Schrodinger picture or representation. In this representation the operators,
which determine the observables of the system from the wavefunction, are
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time-independent, while the wavefunction is time-dependent. In the fol-
lowing we shall sometimes need an alternative picture, in which we work
with time-dependent operators and time-independent wavefunctions. This
is known as the Heisenberg picture.

To make the transition to the Heisenberg picture, we note that the
expectation value of an operator B is

〈ψ(t)|B|ψ(t)〉. (3.14)

The formal solution to the Schrodinger equation is

|ψ(t)〉 = e−iHt/~|ψ(0)〉, (3.15)

so the expectation value (3.14) can be rewritten as

〈ψ(0)|eiHt/~Be−iHt/~|ψ(0)〉. (3.16)

This defines the Heisenberg picture operator

BH(t) = eiHt/~BSe
−iHt/~, (3.17)

and wavefunction
|ψ〉H = |ψ(t = 0)〉S . (3.18)

All physical quantities are the same in the two pictures; it is merely a matter
of preference whether one writes the time dependence in the wavefunctions
or the operators. Differentiating (3.17), gives a useful operator equation for
BH(t),

i~ḂH(t) = [BH(t),H], (3.19)

which is called the Heisenberg equation.

Question 3.4: Repeat the calculation of question 3.2 in the Heisen-
berg picture.

3.3 Quantum theory of an electromagnetic
cavity

To understand the formalism of quantum electrodynamics, let us focus
on the case of x-polarized electromagnetic waves propagating along the
z-axis of a planar conducting cavity as shown in Fig. 3.1. Thus we have
E(r, t) = iEx(z, t). We suppose the cavity is a perfect conductor, for which
the general boundary conditions are

n×E = 0 (3.20)
n.B = 0 (3.21)

on the surfaces. In our case Ex(z, t) = 0 at z = 0 and z = L. We expand
the field as

Ex(z, t) =
∑

n

√
2ω2m

V ε0
sin(kz)qn(t), (3.22)
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Figure 3.1: Single electromagnetic mode of a model one-dimensional cavity
with conducting mirrors

where k = nπ/L. The corresponding magnetic field By is

By(z, t) =
∑

n

εµ

k

√
2ω2m

V ε0
cos(kz)q̇n(t). (3.23)

The mass m in (3.22) defines a normalization of the mode coordinate en(t)
which is, in the classical theory, arbitrary. We use introduce a constant
with units of mass so that en(t) has the units of length, for reasons which
will become apparent in a moment.

The important feature is that any allowed electromagnetic field in our
problem can be decomposed as (3.22) and (3.23). The (related) functions
in this decomposition are called the electric and magnetic mode functions;
here they are proportional to i sin(kz) and j cos(kz).

Question 3.5: Use Maxwell’s equations to show that (3.23) is the
magnetic field corresponding to (3.22).

Now substitute the mode decomposition (3.22,3.23) into the energy for
the electromagnetic field, we have

H =
1
2

∫
d3r

(
ε0|Ex|2 + µ0|Hy|2

)
(3.24)

=
∑

n

mω2
nq

2
n

2
+
mq̇2n

2
(3.25)

=
∑

n

mω2
nq

2
n

2
+
p2

n

2m
. (3.26)

We identify this as the energy for a set of harmonic oscillators, one for
each mode of the cavity, and each with mass m (so p = mq̇). Similarly,
this representation transforms the equations of motion – i.e. Maxwell’s
equations – into the equations for a set of independent harmonic oscillators.
These oscillators are called “radiation oscillators”.

Question 3.6: Derive (3.25) from (3.24).
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The reason for pursuing this mode decomposition is that we know how
to write a sensible quantum theory for a harmonic oscillator. Take the
classical Hamiltonian, which is the energy written in terms of the position
q and momentum p, and replace these quantities with operators obeying

[q̂, p̂] = i~. (3.27)

The result is the quantum Hamiltonian which controls the time-dependence
of the system according to Schrodinger’s equation. This rule is called
“canonical quantization”.

Following the canonical quantization rule, we obtain the quantum Hamil-
tonian for the electromagnetic field in the cavity, which is (3.26) with the
operator substitution pn → p̂n, qn → q̂n. The operators obey the commu-
tation rules

[q̂n, p̂n] = i~δn,n′ . (3.28)

As before, we make this theory tractable by rewriting it in terms of creation
and annihilation operators

ân =
√
mω

2~
q̂n + i

√
1

2~mω
p̂n, (3.29)

which obey [ân, â
†
n] = 1. Of course this gives

Ĥ =
∑

n

~ωn

(
â†nân +

1
2

)
. (3.30)

More interesting is the form of the mode decompositions (3.22,3.23), which
become the operators corresponding to the electric and magnetic fields

Êx(z) =
∑

n

En√
2
(an + a†n) sin(knz) (3.31)

B̂y(z) =
∑

n

(
− iEn

c
√

2
(an − a†n)

)
cos(knz). (3.32)

The normalization constant

En =
√

2~ωn

V ε0
, (3.33)

is a fundamental unit of electric field, which appears in our system of units
once we introduce ~. It corresponds to the harmonic oscillator length `
in the mechanical analogy. The quantity En/

√
2 is the amplitude of the

electric field associated with a photon.
The operators Êx(z), B̂y(z) do not commute – remember they are ba-

sically the position and momentum operators – so that in general there is
an uncertainty relation between the electric and magnetic fields, and these
fields are not simultaneously measurable with arbitrary precision. Nor do
these operators commute with the Hamiltonian, so that in general we ex-
pect the results of measurements of the electric or magnetic fields to have
quantum mechanical fluctuations.
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3.4 Second quantization

Let us see what all this has to do with “photons”, by considering an ap-
parently different problem: the quantum mechanics of N non-interacting
bosons in some potential. The Hamiltonian is

H =
∑

i

p̂2
i

2mi
+ V (q̂i). (3.34)

The eigenfunctions of this Hamiltonian are products of the eigenfunctions
for the one-particle problem, like

φ1(q1)φ3(q2)φ7(q3) . . . . (3.35)

This particular function corresponds to a state where particle 1 is in energy
level 1, 2 in energy level 3, and so on. However, we know that this is not
a valid wavefunction for indistinguishable particles in quantum mechanics,
because it violates the indistinguishability. Instead we should form the
symmetrized (antisymmetrized) wavefunction for bosons (fermions)

1√
NP

(φ1(q1)φ3(q2)φ7(q3) (3.36)

±φ1(q2)φ3(q1)φ7(q3)
±φ1(q1)φ3(q3)φ7(q2)

+ . . . ,

where NP is the number of permutations involved.
Writing out wavefunctions like (3.36) is tedious and pointless, because

by the fact of indistinguishability we know that the only information in the
wavefunction is the number of particles occupying each of the energy levels
of the single-particle Hamiltonian. So one can write the wavefunction with
only these labels,

|n1, n2, n3, . . .〉, (3.37)

where the first slot in the ket denotes the number of particles in eigenstate
1, the second in eigenstate 2, and so on. These are the “N-particle Fock
states”. They form a complete basis in the space of wavefunctions of an
N -particle system. Thus in describing an N particle system, one can work
not with real-space wavefunctions like (3.36), but with the Fock states of
a single-particle Hamiltonian. The single-particle Hamiltonian chosen does
not even have to be related to the actual Hamiltonian although it generally
helps if it is. The set of Fock states for all possible values of N forms a
basis for describing the wavefunctions of any many-particle system of the
right symmetry (bosons or fermions). Henceforth we shall focus on bosons.

To actually work with Fock states, one defines the operators

ai|n1, n2, . . . , ni, . . .〉 =
√
ni|n1, n2, . . . , ni − 1, . . .〉. (3.38)

a†i |n1, n2, . . . , ni, . . .〉 =
√
ni + 1|n1, n2, . . . , ni + 1, . . .〉 (3.39)



24 CHAPTER 3.

These operators respectively annihilate and create a particle in the ith

single-particle state, and hence allow us to construct any Fock state system-
atically from the state with no particles, |0〉. The factors like

√
ni ensure

that one cannot annihilate a particle which does not exist, and magically
keep track of the correct normalization factor Np in (3.36).

Any operator, such as the terms in the Hamiltonian, can be written
in terms of the creation and annihilation operators. The form for a one-
particle operator Ô, like the non-interacting Hamiltonian (3.34), is∑

ij

a†iOijaj , (3.40)

where
Oij =

∫
φ∗i (r)Ôφj(r)dDr (3.41)

is the matrix element of Ô between the single-particle basis states. For the
Hamiltonian (3.34) of course, Hij = δijEi, so its second-quantized repre-
sentation is

H =
∑

i

Eia
†
iai. (3.42)

It turns out that the operators ai, aj obey the commutation rules

[ai, aj ] = 0 [ai, a
†
j ] = δij . (3.43)

You can recognise these as identical to those for the creation and annihi-
lation operators for the harmonic oscillator, and the electromagnetic field.
Furthermore, the Hamiltonian (3.42) has exactly the same form as (3.30).
Therefore :

• Quantum electrodynamics is mathematically identical to the quantum
mechanics of a gas of non-interacting bosons, occupying energy levels
corresponding to the classical normal modes of the electromagnetic
field.

• These bosons are called photons.

Second quantization works almost identically for a system of fermions,
such as electrons. The fermonic creation and annihilation operators for one
orbital obey (3.38,3.39), but we must take

[ci, cj ]+ = [ci, c
†
j ]+ = 0, (3.44)

for different orbitals i, j. Here [A,B]+ is the anticommutator AB + BA.
This definition, with the anticommutator, keeps track of the minus signs in
(3.36). For coincident orbitals we find

[ci, c
†
i ]+ = 1, (3.45)

so the commutation relations are analogous to (3.43) with anticommutators
rather than commutators.
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3.5 Free-space quantum electrodynamics

The procedure above can be followed generally, to determine the form of
quantum electrodynamics in an arbitrary cavity, or even in free space. As a
second, and important, example, let us see how this free-space quantization
works. To do this we introduce a large cubic cavity of side L, and impose
periodic boundary conditions on the faces. The appropriate electric mode
functions are then the plane waves√

~ωk

2εV
εeik.r. (3.46)

The cavity requires k = 2π(nx, ny, nz)/L. Since we require k.ε = 0 there
are two independent values of the polarization vector ε associated with each
of these allowed electric field modes.

As before, Maxwell’s equations reduce to an ensemble of independent
harmonic oscillators, one for each of the modes, which we quantize to obtain
the form (3.30). The normal modes are now specified by the wavevector k
and polarization, and have frequency

ω = c|k|. (3.47)

The electric and magnetic field operators take the forms

E(r) =
∑
k

εk

√
~ωk

ε0V
ake

ik.r + h.c. (3.48)

H(r) =
1
µ0

∑
k

k × εk

ωk

√
~ωk

ε0V
ake

ik.r + h.c. (3.49)

Finally, one can make the transition to the continuum by taking the size of
the box L→∞, so that sums like (3.49) become integrals over a continuous-
valued k.





Chapter 4

Quantum theory of light II

4.1 Simple features of the cavity field

Let us discuss some simple features of the electric field in a cavity. These
are all properties of the harmonic oscillator you should be familiar with, so
there should be no doubt about the results, even though they may seem
strange in the context of electromagnetism.

Suppose we had a detector which measures the electric field associated
with only a single mode i of the field. Although an idealization, this is a
resonable one: real detectors respond only to a limited range of frequencies
(they have a finite bandwidth) and a limited range of spatial modes (they
have a finite size), so one can tailor a detector to match a given field mode.
What would this detector register?

Well, suppose the mode is in an eigenstate, corresponding to a definite
number of photons n. This means the radiation oscillator is in the nth

energy eigenstate, for which the wavefunction is

un(Ex) = 〈Ex|n〉 (4.1)

=
1√
2nn!

(
1

πEi sin(kiz)

)1/4

e−x2/2E2
i sin2(kiz)Hn

(
E

Ei sin(kiz)

)
,

where

H0(x) = 1 (4.2)
H1(x) = 2x (4.3)

H2(x) = 4x2 − 2 (4.4)
. . . (4.5)

are Hermite polynomials. In these states our detector could measure any
value of the electric field, with the probability distributions |un(Ex)|2 shown
in Fig. 4.1.

In all these states the average value of the electric field is zero, but
fluctuations, measured by the standard deviation, behave as

∆Ex = Ei sin(kz)
√
n+ 1/2. (4.6)
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Figure 4.1: Probability distribution for a measurement of the electric field
Ex in a single-mode field in the vacuum state |0〉 (lightest shading), the 1-
photon number state |1〉, and the 2-photon number state |2〉 (dark shading).

In the ground state, for example, we see that although the average field
is zero, typical measurements will give a modulus of the electric field ∼
Ei sin(kiz). The strength of the fluctuations follows the classical mode pro-
file sin(kiz). And the magnitude of the fluctuations are higher for higher
energy modes (larger ωi), and if there are more photons (larger n), as per-
haps one might expect. In the one-photon state for example the mean is
still zero, but the we will now never measure zero electric field; instead the
most likely value of the electric field is about Ei sin(kiz). This is consistent
with our notion that Ei sin(kz) is the electric field per photon of the mode.

We can also use our familiarity with quantum mechanics to write the
uncertainty principle for the electric and magnetic field components. In
particular, the statement

∆p∆x ≥ ~/2 (4.7)

translates to

∆Ex(z)∆By(z) ≥
E2

i

2c
sin(kiz) cos(kiz). (4.8)

(These results follow from the general property ∆A∆B ≥ 1
2c which applies

to measurements of non-commuting operators with a scalar commutator
[A,B] = c.) The vacuum state, u0 is one of many possible states which
saturate this bound, and are referred to as a minimum uncertainty states.
The Fock states un for n 6= 0 do not saturate this bound: the probability
distribution for measurements of the field amplitudes extends over a wider
range of fields than is required by the fundamental restrictions of quantum
mechanics.
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4.2 Multimode fields and divergent vacuum
fluctuations

What happens if we allowed our detector to “see” several modes? The op-
erators for the radiation oscillators for the different modes commute, so we
could measure each component of the electric field independently. The total
electric field registered by the detector is thus a sum of random variables
distributed like (4.1). If all the modes are in the ground state, the total
field will be Gaussian distributed with the variance

∑
i E2

i sin2(kiz)/2. So
as we make our detector sensitive to more and more modes, we start seeing
larger and larger values for the electric field – even in what we thought
was the empty, lowest-energy, vacuum state. This is the “divergence of the
vacuum fluctuations” in quantum electrodynamics.

It might seem strange to suggest that one can measure even a finite
value of the electric field in the vacuum, let alone an arbitrarily large one.
One measures a finite electric field by seeing a charge move in response to
the field, in which case the field does some work on the charge. But if the
field is already in its lowest-energy state there is apparently nowhere for
the energy to come from.

Notwithstanding the appeal of this argument, the fluctuating electric
and magnetic fields of the vacuum actually show up in experimental mea-
surements. We shall briefly discuss one such example, the Casimir effect.
A closely related effect is the Lamb shift between the n = 2 levels 2S1/2

and 2P1/2 of the hydrogen atom.

4.3 Casimir Effect

As a simple model of the Casimir effect, let us consider a square conducting
box, with three sides L,L, d. The normal modes in the box have frequencies

ωlmn = πc
(
l2/L2 +m2/L2 + n2/d2

)1/2
, (4.9)

where the integers lmn index the modes. They range over all integer values
including zero, except that no more than one of them may be zero at
once. Furthermore, for modes with no zero indices there are two possible
polarization states, and for modes with one zero index there is one.

Question 4.1: By writing out the electric field mode functions in
the box, explain why no more than one mode index may be zero,
and establish the polarization degeneracy of the modes.

Using (3.30) we can write the energy of the vacuum state of the field in
the box

Evac(d) =
∑
lmnσ

1
2

~ωlmn, (4.10)

where the indices lmn label the spatial modes, and σ the polarization.
Supposing that L� d, we replace the sums over l and m with integrals, to
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get

Evac(d) =
~cL2

π2

∞∑
n=0

∫
dx

∫
dy
(
x2 + y2 + π2n2/d2

)1/2 (4.11)

=
~cL2π2

d3

∞∑
n=0

∫ ∞

0
dw
√
w + n2. (4.12)

This expression is infinite, but we are really concerned with the difference
in energy from the limit d→∞, which is

Evac(d)− E0 =
~cL2π2

d3

( ∞∑
n=0

∫ ∞

0
dw
√
w + n2

−
∫ ∞

0
dn

∫ ∞

0
dw
√
w + n2

)
. (4.13)

As it stands the expression in parentheses is meaningless, since we are sub-
tracting two infinite quantities. However, recall that we are trying to de-
scribe the field in a conducting box, and conductors, or indeed any matter,
becomes transparent to electromagnetic radiation at high enough frequen-
cies. So the very high energy modes are unaffected by the confinement,
and should not contribute to the difference Evac(d) − E0. Thus we should
really give the upper limits in (4.13) large finite values, related to the high-
frequency cut-offs of the confinement by the box. Then we are subtracting
two large finite expressions, which is certainly a legitimate thing to do.
Happily, the difference comes out to be finite even in the limit where the
cut-off frequencies become infinite, showing that the answer is not sensitive
to the exact details of the confinement.

Since the answer does not depend on the cut-off, we are free to introduce
it in any way convenient. One way is to introduce a factor e−αω2

lmn into
the sum (4.9), and therefore a factor e−z(n2+w) inside the sum and integral
in (4.13). Here α and z are parameters, which model the cut-off at high
frequencies, and should be taken to zero at the end of the calculation.
The difference in (4.13) can then be evaluated analytically by the Euler-
Maclaurin formula, or numerically, and one obtains a finite answer in the
infinite cut-off limit z → 0. The procedure is somewhat tedious, however,
so we take it on trust that the answer is finite. In that case we can see that
the answer must be

Evac(d)− E0 = −A~cL2π2

d3
, (4.14)

where A is a positive numerical factor (which actually turns out to be
1/720). This implies that there is a force per unit area attracting the
plates of

F = − 1
L2

dU

dd
= −π

2~c
240

1
d4
. (4.15)

This Casimir force has indeed been observed.



Chapter 5

Light-matter interactions I

In the remainder of the course, we shall look at how the electromagnetic
field couples to matter, and the new effects which arise from this coupling.
In this chapter we start with the simplest problem – what is the Hamiltonian
describing the coupled system consisting of the electromagnetic field and
a single atom? In the next lecture, we shall see the Hamiltonian for a
semiconductor nanostructure, such as a quantum dot, interacting with the
electromagnetic field, looks remarkably similar.

5.1 First and second quantized Hamiltonians for
an atom

The Hamiltonian describing for an atom is, in the absence of an electro-
magnetic field,

ĤA =
∑

i

p̂2
i

2m
+ Ven(r̂i) +

1
2

∑
ij

Vee(r̂i − r̂j), (5.1)

where the sum is over the electrons, Ven is the interaction energy between
the electrons and the nucleus of charge −Ze, and Vee the interaction energy
(Coulomb repulsion) between the electrons. The eigenstates of this Hamil-
tonian form a complete set of states in the space of states of Z electrons,
so in that space we have

1̂ =
∑

i

|i〉〈i|. (5.2)

As eigenstates they obey
ĤA|i〉 = ~ωi|i〉. (5.3)

Inserting the representation of the unit operator twice, we have

ĤA =
∑
ij

|i〉〈i|Ĥ|j〉〈j| (5.4)

=
∑

i

~ωi|i〉〈i|. (5.5)

This is a second-quantized representation for the Hamiltonian of an atom,
analogous to those discussed in chapter 3 for the electromagnetic field and
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= +

Figure 5.1: Association between a polarization distribution and a charge
distribution: a charge at position rα is equivalent to a charge at the origin
and a line of dipoles connecting the origin to rα.

a system of electrons. It associates the energy ~ωi with each eigenstate of
the atom. More generally, any one-electron operator (like

∑
i r̂i) for the

atom can be written
O =

∑
ij

|i〉〈j|gij , (5.6)

where
gij =

∫
drφ∗(r)Ôφ(r) (5.7)

is the matrix element of the operator Ô. Cf. Eqs. (3.40, 3.41).

5.2 Classical light-matter interactions

The coupling between the atom and the electromagnetic field is the quan-
tum version of the interaction energies between

• The electronic charge distribution and the electric field and

• The electronic current distribution and the magnetic field.

Suppose we have a charge qα at a position rα close to the origin. We
may express this charge distribution as a superposition of (a)a charge at
the origin, and (b)a line of dipoles connecting the origin to the position
rα, as shown in Fig. 5.1. Thus we can associate a dipole or polarization
distribution with this charge

P (r) = lim
n→∞

n−1∑
p=0

qα
rα

n
δ(r − p+ 0.5

n
rα) (5.8)

=
∫ 1

0
duqαrαδ(r − urα). (5.9)

This generalizes to allow us to associate a dipole distribution with a set of
charges,

P (r) =
∑
α

∫ 1

0
duqαrαδ(r − urα). (5.10)

If this set of charges is neutral,
∑

α qα = 0, the energy of the charge distri-
bution in an electric field is

VE = −
∫

E(r).P (r)dr. (5.11)
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For the interaction of an atom with light, the interaction energy (5.11)
can be considerably simplified, because the wavelength of light is much
greater than the size of the atom (over which P (r) might be non-zero,
assuming we do not ionize the atom). This fact can be used by substituting
(5.10) into (5.11) and Taylor expanding the electric field near rα = 0,

VE = e
∑
α

∫ 1

0
durα.E(rαu) (5.12)

≈ e
∑
α

∫ 1

0
durα. (E(0) + urα.∇E(0) + . . .) . (5.13)

The first term in this expansion is the interaction of the atomic dipole
moment with the field

VE−dip = e
∑
α

rα.E(0), (5.14)

the next the quadrupole interaction, and so on. We can perform a similar
expansion for the magnetic energy of the currents

VM = −
∫

B(r).M(r)dr, (5.15)

whose leading term is the magnetic dipole energy

VM−dip =
∑
α

e

m
lα.B(0), (5.16)

where lα = mrα × ṙα is the orbital angular momentum of an electron.
Subsequent terms in the expansion (5.13) rapidly become small. If the

wavelength is λ and the typical size of the atomic orbit aB, then the second
term will be smaller than the first by a factor aB/λ. We are concerned with
photons whose energy is on the order of the binding energy of the atom, of
the order of the Rydberg energy, and the typical size of an atomic orbit is
the Bohr radius. In this regime the ratio of the first to second term is on
the order of the fine-structure constant

e2

4πε0~c
≈ 1/137. (5.17)

The ratio VM−dip/VE−dip is also of this order. Thus, to a very good ap-
proximation, the interaction energy is just VE−dip.

5.3 Quantum Hamiltonian

We can now write down the quantum Hamiltonian for an atom interacting
with the electromagnetic field. It will be the sum of contributions describ-
ing the energy of the field, (3.30), the energy of the atom, (5.5), and the
interaction between the two. This last is obtained by taking (5.14), and
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replacing rα with a quantum-mechanical position operator, and E(0) with
the electric-field operator at the position of the atom:

Ĥc =
∑
α

er̂α.Ê(0). (5.18)

This is a one-electron operator, so we can also write it using (5.6):

Ĥc =
∑
ij

gij .Ê(0), |i〉〈j| (5.19)

where gij are the matrix elements of the dipole operator
∑

α erα.

5.4 Jaynes-Cummings Model

The Jaynes-Cummings model is a simple but important case, which corre-
sponds to a two-level atom in a single-mode cavity. This applies in practice
when there is a transition between the atomic ground state and an excited
state whose energy is nearly equal to the energy of a cavity mode. Then we
may approximate the Hamiltonian by assuming the atom is in one of these
two states, and the field energy is all in this one nearly resonant mode. The
resulting model is

Ĥ = (∆/2)(|e〉〈e| − |g〉〈g|) + ~ωâ†â+
~Ω
2

(|e〉〈g|+ |g〉〈e|)(â+ â†), (5.20)

= ĤA + ĤF + Ĥc, (5.21)

where ∆ is the energy difference between the levels, ω the frequency of the
cavity mode, â the photon annihilation operator for the cavity mode, and
~Ω a coupling constant which collects the numerical factors in (5.19) and
(3.31). If the atom is at the antinode of the field mode illustrated in Fig.3.1
then

~Ω/2 =
En√

2
eg, (5.22)

where g is the matrix element of x between the atomic orbitals, and En is
the field strength defined in (3.33). Notice that En increases as the volume
of the mode decreases, so that the coupling between a single atom and a
single photon in the mode is stronger if the cavity is smaller.

Since ~Ω � ∆, ~ω, we expect to be able to solve (5.20) by treating the
coupling term Ĥc as a perturbation. Neglecting this term, the eigenstates
will just be the product of the atomic states and the Fock states,

|p〉 = |e, g〉 ⊗ |n〉, (5.23)

with energy

E(0)
p = (±∆

2
) + ~ωn. (5.24)

In general the lowest-order correction due to the coupling will be the usual
second-order pertubation correction to the energy

∆E(2)
p =

∑
q 6=p

|〈p|Ĥc|q〉|2

E0
p − E0

q

. (5.25)
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However, we see that if the cavity mode is close to resonance with the
atomic transition then the energy differences between the states

|g〉 ⊗ |n〉 (5.26)
|e〉 ⊗ |n− 1〉, (5.27)

become very small, and the dominant contribution will come from degener-
ate perturbation theory rather than (5.25) (which diverges). This dominant
contribution does not involve the terms

|e〉〈g|â†, |g〉〈|g〉〈e|â (5.28)

from Ĥc. These may therefore be dropped, an excellent approximation
known as the rotating wave approximation. The model without these terms
is called the Jaynes-Cumming model. The remaining coupling terms

|e〉〈g|â, |g〉〈e|â† (5.29)

correspond to processes where a photon disappears and the atom becomes
excited (first term), or vice versa (second term).

5.5 Rabi splitting for one atom

The eigenstates of the Jaynes-Cummings Model

Ĥ =
∆
2

(|e〉〈e| − |g〉〈g|) + ~ωâ†â+
~Ω
2

(|e〉〈g|â+ â†|g〉〈e|) (5.30)

can be found exactly. The coupling betwen the light and matter connects
the states within the disconnected pairs |g, n〉 and |e, n−1〉. The eigenstates
are therefore superpositions

|n,±〉 = u±|g, n〉+ v±|e, n− 1〉, (5.31)

(two, labelled ±, for each value of the integer n). The eigenvalue equation

Ĥ|n,±〉 = E|n,±〉 (5.32)

gives us the energies

E = ~ω(n− 1
2
)± 1

2

√
(∆− ~ω)2 + ~2Ω2n (5.33)

which are shown in Figs. 5.2,5.3.

Question 5.1: Show that the eigenvalues of the Jaynes-Cummings
model are (5.33).

We see from Fig. 5.2 that if the energy of the atomic transition and the
field mode are the same there are nonetheless two distinct eigenenergies,
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Figure 5.2: Eigenenergies of the Jaynes-Cummings model as a function of
the detuning ∆− ~ω, for n = 1 (solid) and n = 2 (dashed).

Figure 5.3: Energy levels of the Jaynes-Cummings model when ∆ = 0.
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with a “Rabi splitting” ~Ω
√
n. As the energies are tuned away from reso-

nance the energy levels smoothly evolve to those of the atom and the field
separately.

This Rabi splitting can be observed in various ways. The simplest is
in the optical emission or absorption spectrum of the coupled cavity-atom
system. Without the atom, a cavity mode absorbs a photon from outside
by making the transition |n〉 → |n + 1〉, giving a resonance in the optical
response at the frequency of the mode ~ω. This is, in quantum language,
the origin of the resonances in Fig.1.2. If the cavity now contains an atom
resonant with the cavity, we expect to obtain two resonances, split by an
amount which depends on the number of photons in the field mode. If we
start with an empty cavity mode and the atom in its ground state, and we
consider the absorption of a weak probe beam, we only expect the states
with n = 0 and n = 1 to be involved, so that the splitting will be ~Ω.

An equivalent effect appears if we consider what happens when we add
an atom in the excited state |e〉 to a cavity mode in its ground state. At
resonance, the relevant eigenstates of the Jaynes-Cummings model are the
symmetric/antisymmetric superpositions

|±〉 =
1√
2

(|e, 0〉 ± |g, 1〉) , (5.34)

whose energies E± are split by ~Ω. At t = 0 our state is

|φ〉 = |e, 0〉 =
1√
2
(|+〉+ |−〉), (5.35)

so that at time t it is

|φ(t)〉 =
1√
2
(eiE+t/~|+〉+ eiE−t/~|−〉) (5.36)

= ei(E++E−)t/~ (cos(Ωt/2)|e, 0〉+ i sin(Ωt/2)|g, 1〉) . (5.37)

Thus the probability that we observe a photon in the field is an oscillating
function of the time after we added the atom. These oscillations are called
vacuum Rabi oscillations. Notice that this behaviour is quite different to
the familiar notion of radiative decay of an atom, where the energy is mono-
tonically transferred from the atom to the field. This difference is because
for Rabi oscillations we are concerned with coupling to a single mode of
the field, whereas radiative decay arises from coupling to a continuum of
modes of the field.

For Rabi oscillations to occur, the Hamiltonian must be well approxi-
mated by (5.30) for at least the Rabi period T = 1/Ω. This means that
the excitations of the atom and the cavity mode must have a lifetime much
larger than T ; in particular, we need a high-Q cavity so that the decay of
the electromagnetic field can be neglected on a timescale T . The atomic
excitation can also decay, in particular by emitting photons into modes
other than the one cavity mode considered in (5.30).





Chapter 6

Light-matter interactions II

6.1 Review of semiconductors

Semiconductors are of course crystals, and so the basic Hamiltonian is

Ĥ =
∑

i

p̂2
i

2m
+ Vlattice(r̂i), (6.1)

where Vlattice is the periodic lattice potential, and the sum runs over the
electrons. The eigenstates are the antisymmetrized wavefunctions in which
the electrons occupy the Bloch orbitals of the form

φ(r) = eiq.ruq,i, (6.2)

labelled by the Bloch wavevector q and the band index i. We shall be
concerned with direct-gap semiconductors like GaAs, where the highest

k

E

Conduction 
 electrons

Heavy holes

Light holes

Figure 6.1: Schematic bandstructure of a zincblende semiconductor such as
GaAs, with an electronic state containing electrons, heavy, and light holes.
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Figure 6.2: Schematic of the space-dependent band gap in a quantum well,
and the localized states relevant to the optical response.

occupied orbital (HOO), and the lowest unoccupied orbital (LOO), both
correspond to q = 0 in two different bands, called the valence and conduc-
tion bands. A simplified bandstructure for GaAs is shown in Fig. 6.1

Absorption of light for such a semiconductor, as we shall see, transfers
an electron from the valence to the conduction band. The resulting state
can be equivalently described in terms of a hole – an absence of an electron
– in the valence band, and an electron in the conduction band.

Let us now consider what happens if we make a semiconductor inhomo-
geneous, that is, we send Vlattice → Vlatticef(r), where f(r) is not periodic.
This will modulate the bandgap, bringing the HOO and LOO together or
apart with the variation in f(r). If the modulation is not too strong or too
rapid, then we expect the conduction-band orbital near q = 0 to be of the
form

φ(r) = Z(r)u0,c(r). (6.3)

This is called the envelope function approximation. The envelope function
Z(r) is determined as the eigenstate of the Hamiltonian

Ĥ =
∑

i

p̂2
i

2mc
+ Vbg, (6.4)

where the lattice has disappeared into the effective potential Vbg and an ef-
fective massmc. The effective potential is the local variation in the bandgap
produced by modulating the lattice potential, while the effective mass is
the curvature of the band.

Quantum wells and dots are systems grown such that there is a region
of space where the bandgap is reduced, so that the HOO and LOO are the
localized states in the low-bandgap region, as illustrated in Fig. 6.2

The envelope function approximation can also be used to treat the ef-
fects of Coulomb interactions on the low-energy excited states consisting of
an electron and a hole. These states are well approximated by the wave-
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function
φ(re, rh) = Z(re, rh)u0,c(re)u∗0,v(rh), (6.5)

where the two-particle envelope function is an eigenstate of the Hamiltonian

Ĥ =
p̂2

e

2mc
+

p̂2
h

2mh
− e2

4πε0ε|re − rh|
. (6.6)

This is the same as the Hamiltonian for the hydrogen atom, so that the
envelope function will be a bound state in the relative coordinate, and
a plane-wave in the center-of-mass coordinate. This object is called an
exciton. Adding a perturbing potential, the center-of-mass of the exciton
will become localized in the regions of small bandgap.

6.2 Light-matter coupling in semiconductors

We can now see how to incorporate the effects of the electromagnetic field
by analogy to the atomic case. The interaction will just be (5.19), where the
states |i〉 now correspond to different configurations of the electrons among
the orbitals in the crystal (rather than an atom). A standard situation is
a quantum dot in a cavity, where the transition energy ∆ in Fig. 6.2 is
close to the energy of the cavity mode. Then the simplest approximation
would be to retain only the HOO and the LOO , which are electronic states
localized in the dot. We thus obtain the Jaynes-Cummings model (5.20).

Fig. 6.3 shows the experimental spectrum obtained for a single quantum
dot, coupled to a single cavity mode. As expected from our discussion of
the Jaynes-Cummings model, the spectrum is split by the coupling when
the dot and cavity mode are resonant.

6.3 Dicke Model

The Jaynes-Cummings model applies when there is only a single relevant
electronic transition – absorbing a photon onto the dot should preclude the
possibility of absorbing a second. This is why, in the Jaynes-Cummings
model, the Rabi splitting depends on the photon number. A much more
common case involves many electronic transitions coupled to the same mode
of the field. This occurs, for example, when we have a quantum well or just
a bulk semiconductor embedded in a cavity – or even just light propagating
in a dielectric with negligible scattering (in which case we can treat each
plane-wave mode of the field separately, even without a cavity). Taking
a tight-binding model of the semiconductor (or other dielectric) it is clear
that the relevant model will be much like the Jaynes-Cummings model, but
with many electronic transitions coupled to the field mode:

Ĥ = ~ωâ†â+
i=N∑
i=1

(∆)|ei〉〈ei|+ (6.7)

+
i=N∑
i=1

~Ω
2

(|ei〉〈g|â+ â†|g〉〈ei|).
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Figure 6.3: Photoluminescence spectrum. from a single quantum dot em-
bedded in a photonic crystal microcavity, as the energy of the dot and
cavity mode are scanned through one another by varying temperature [1].
Note there is always a double-peaked structure, corresponding to the split-
ting of the emission lines into a Rabi doublet by the coupling. Reprinted
by permission from Macmillan Publishers Ltd: Nature 432, 200, copyright
2004.

This model, with N electronic transitions, is called the Dicke model. Here
the state |ei〉 denotes a state in which the ith transition is excited while all
the others are in their ground state

|ei〉 = | . . .+i . . .〉, (6.8)

and |g〉 the state where all electrons are in the ground state. We have made
the rotating wave approximation discussed in chapter 5, and shifted the
zero of energy so that the completely unexcited state has zero of energy.

6.4 Many-atom Rabi splitting and polaritons

The Dicke model (6.7) conserves the total number of photons and excited
electrons. Let us find the eigenenergies of this model assuming that there
is only one excitation. The difference between this eigenenergy and the
ground state with no excitations will be the frequency at which light is
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emitted from a weakly-excited system, or absorbed under weak driving.
These one-excitation eigenstates must be of the form

|λ({ci}〉 = |g, 1〉+
∑

i

ci|ei, 0〉. (6.9)

Substituting this into the eigenvalue equation we find the eigenenergies
obey

~ω +
~2Ω2N

4(E −∆)
= E, (6.10)

and hence eigenenergies

E =
1
2

[
(∆ + ~ω)±

√
(∆− ~ω)2 + ~2Ω2N

]
. (6.11)

This spectrum is very similar to the spectrum of the Jaynes-Cummings
model when n = 1. Similarly to (5.34), at resonance ∆ = 0 the coupled
modes are symmetric/antisymmetric superpositions

|±〉 = |g, 1〉 ± 1√
N

∑
i

|ei, 0〉. (6.12)

This sort of hybrid, light-matter state, is called a polariton.
One difference compared with the Jaynes-Cummings model is that the

single-atom Rabi splitting ~Ω has become the collective Rabi splitting
~Ω
√
N . This is just because the electric susceptibility of N transitions

is N times the susceptibility of one transition (note that for a homogeneous
dielectric this factor of N and the factor of V in (3.49) combine, and the
splitting is finite for a macroscopic dielectric, as it must be). However, the
nonlinear properties of the Dicke model are very different from those of
the Jaynes-Cummings model. In particular, the spectrum of the Jaynes-
Cummings model depends on the photon number on a scale of one photon,
so that (say) the absorption spectrum will vary very quickly with the power.
However, to make an appreciable change to the absorption spectrum of the
Dicke model requires a field with of order N photons, i.e., on the order of
the number of electronic transitions inside the mode volume of the field.

Question 6.1: Derive (6.10).

Question 6.2: Generalize (6.10) to include damping as a phe-
nomenological imaginary part to the cavity mode frequency ω →
ω + iγ. Consider the optical spectrum at resonance ~ω = ∆. Plot
the positions of the peaks in this optical spectrum, <(E)/~ as a
function of the damping term. Under what conditions is there a
Rabi splitting in this damped system?

6.5 Connection to Lorenz oscillator model

The solution to the Dicke model can be understood as a quantum version
of the calculation of the polariton splitting in the classical Lorenz oscilla-
tor model. In this model the electronic dipoles are assumed to behave as
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damped, harmonic oscillators, driven by the applied electric field. Thus we
assume a frequency-dependent relative permittivity

εR(ω) = εR

(
1 +

Ω2

(ω2
0 − ω2) + iγω

)
, (6.13)

where Ω is an assumed parameter, related somehow to the magnitude of
the induced polarization.

Let us try to calculate the resonant frequencies of an optical cavity
containing a medium with permittivity (6.13). These are the (possibly
complex) frequencies ω which satisfy

∇2E(ω) + ω2εR(ω)µE(ω) = 0, (6.14)

with the appropriate boundary conditions. We know that in the absence
of the frequency-dependent permittivity the corresponding equation (with
εR(ω) = εR) is solved by some cavity mode frequency ωc. Comparing the
equations we have

ω2εR(ω) = ω2
c εR. (6.15)

This is a quadratic in the mode frequency ω2; if we neglect the damping,
then the result is identical to (6.10) in the close-to-resonance limit. As there,
and in the Jaynes-Cummings model, away from the resonance ωc 6= ω0 the
frequencies are basically ωc and ω0, but there is an “anticrossing” as the
modes are tuned through one another.

6.6 Polaritons in planar cavities

We can now understand the formation of polaritons in a planar microcavity
containing a quantum well [2]. In this case we have not a single cavity
mode, but a continuum of modes labelled by their in-plane wavevector k‖;
the frequency or energy of these modes disperses as shown in Fig. 2.3.
However, the quantum wells have a resonant peak in their susceptibility,
due to the formation of excitons. Thus if we try to tune the frequency
of the cavity mode through the frequency of the exciton transition (which
can be done by varying the angle), the modes will anticross, as illustrated
in the Fig. 6.4. Close to the anticrossing there are two distinct peaks in
the optical spectra, and the “quanta of excitation” are not excitons and
photons separately, but coherent superpositions of light and matter like
(6.9). Far from the anticrossing, the excitations are essentially excitons or
photons, and only the latter gives a strong peak in the optical spectra.
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Figure 6.4: Schematic of the excitation energies (red) as a function of in-
plane wavevector for a microcavity containing quantum wells. The dotted
line is the exciton energy in the quantum well, and the solid black line the
energy of the cavity mode.
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