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Summary

Cavity polaritons are particles which are formed from pho-
tons confined to a cavity coupled to electronic excitations such

as semiconductor excitons. Since the observation of cavity polaritons
in 1992, there has been considerable interest in the quantum statisti-
cal behaviour of cavity polaritons. This thesis is a theoretical study
of one of the most spectacular quantum statistical behaviours, Bose
condensation, for cavity polaritons.

In this thesis, we investigate Bose condensation of cavity polaritons
in a generic model of photons interacting with electronic excitations.
The model we consider is a generalisation of the Dicke model, familiar
from quantum optics. It consists of a single bosonic oscillator, de-
scribing the electromagnetic field in a cavity, interacting with a large
number of two-state oscillators with a distribution of energies. These
oscillators could represent, for example, excitons bound to traps in a
disordered semiconductor.

Bose condensation is a phenomenon associated with conserved par-
ticles in thermal equilibrium. Thus to investigate Bose condensed po-
laritons we study the thermodynamics of the model at a fixed number
of polaritons. We do this using two techniques: a variational approach,
and a more powerful path-integral technique. The latter allows us to
give an essentially exact description of both the thermodynamics and
the excitations of the model.
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Chapter 1

Introduction

Apolariton [1, 2] is the quantum of the electromagnetic
field in a dielectric. The behaviour of light in a dielectric

is governed by the properties of polaritons, not the properties of pho-
tons. The textbook model of a dielectric as a set of classical harmonic
oscillators displays much of the basic physics of polaritons. A plane
wave eigenmode of the bare electromagnetic field induces an oscillat-
ing polarisation in the microscopic oscillators. If these oscillators are
dense on the scale of the wavelength of light then the induced macro-
scopic polarisation will be a plane wave of the same wavevector and
frequency as the driving field, which is therefore coupled to the orig-
inal eigenmode of the field. Each eigenmode of this coupled system
is a polariton: a mixture of a plane wave of the electromagnetic field
and a plane wave polarisation.

1.1 Excitons

The polarisability of dielectrics can come from both the lattice and
the electronic states, so we can have polaritons formed from photons
coupled to phonons and from photons coupled to electronic excita-
tions. The classic example of an isolated electronic excitation which
can be directly coupled to light, and so forms polaritons, is an exciton
in a direct-gap semiconductor [3].

The bandstructure of an idealised direct-gap semiconductor, shown
in Fig. 1.1, consists of a completely filled valence band and a com-
pletely empty conduction band. The extrema of the conduction and
valence bands are both at the centre of the Brillouin zone. It is pos-
sible for such a semiconductor to absorb a photon by transferring an
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Figure 1.1: An idealised bandstructure for a direct-gap semicon-
ductor, in the vicinity of the Fermi energy and the centre of the
Brillouin zone, comprising a completely filled valence band and an
empty conduction band. The arrow depicts an electronic excitation
of such a semiconductor in the absence of electron-electron inter-
actions, in which an electron is transferred from the valence to the
conduction band, leaving a hole in the valence band.

electron from the valence band to the conduction band, so that a pho-
ton is converted into an electron-hole pair. Since an electron and a
hole have opposite charges, such an electron-hole pair can lower its en-
ergy by using the Coulomb interaction to form a bound state known
as an exciton. An exciton is the lowest energy excited state of a pure
semiconductor.

It is customary to consider two limiting types of excitons, depend-
ing on their size: Frenkel excitons are tightly bound atomic scale ob-
jects, while Wannier excitons are weakly bound objects which extend
over many lattice spacings. For the moment we consider the latter
limit, which is realised in most of the common inorganic semiconduc-
tors.
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Because a Wannier exciton extends over many lattice spacings,
it can be described without reference to the microscopic structure of
its constituent electronic states. It is sufficient to treat the electron
and hole as particles propagating in free space, with the effects of
the lattice on the motion of these particles taken into account by
effective masses. Thus the singly excited states of the semiconductor,
consisting of one electron and one hole, are described by an effective
Hamiltonian

H =
p2
e

2me
+

p2
h

2mh

− e2

4πεrε0|re − rh|
, (1.1)

where re and rh are the positions of the electron and hole and pe and
ph their momenta. We have assumed that the effective masses of the
electron and the hole, me and mh, are isotropic. The electron and
the hole interact through the Coulomb interaction1 in the dielectric
background of the semiconductor; the relative permittivity εr of the
semiconductor takes into account the screening of the interaction by
the remaining valence electrons and the lattice.

The Hamiltonian (1.1) is analogous to that of the hydrogen atom,
with the masses of the electron and proton replaced with effective
masses, and the dielectric constant of the vacuum replaced with that
of the semiconductor. Its eigenstates comprise a series of bound states,
the excitons, and a continuum of ionized states describing unbound
electrons and holes. Using R to denote the centre of mass coordinate
and r the relative coordinate of the electron and hole, the bound states
may be written as

F (R, r) =
1√
V
eiQ.Rφn(r). (1.2)

The first term in the wavefunction (1.2) describes the free motion
of the centre of mass of the exciton. The second is a hydrogen-like
bound state in the relative motion, with principal quantum number

1While there is also an exchange interaction, it is small for Wannier excitons
since the electron and hole are widely separated.
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n = 1, 2, 3 . . .. The binding energy is, in eV,

eEb =
e2

8πεrε0a0n2
,

where the exciton Bohr radius is

a0 =
4πεrε0~

2

e2µ
,

and µ is the reduced mass of the electron and hole. We see that
for small effective masses and large dielectric constants the exciton is
indeed weakly bound and large, so that the effective mass approxima-
tion is consistent. As an example, the relative permittivity of GaAs
is ∼ 10 while the ratio of the reduced mass to the bare electron mass
is ∼ 0.05. Thus the exciton Bohr radius is ∼ 100Å and the binding
energy of the n = 1 state is ∼ 10meV.

Excitons are neutral excitations with an inhomogeneous charge
distribution: they are quanta of the electronic polarisation [1, 3, 4],
which can couple to the transverse electromagnetic field. To describe
the coupling between excitons and light, we need the actual electronic
state corresponding to (1.2). This state can be compactly expressed
using the formalism of second quantization, with the Bloch states

ψk,l(r) =
1√
V
eik.ruk,l(r) (1.3)

as a basis. These states are labelled by a wavevector in the first
Brillouin zone, k, and a band index l. V is a quantization volume. We
use c†k to denote the creation operator for an electron in the conduction

band and d†k the creation operator for a hole in the valence band. The
electronic wavefunction for a semiconductor containing one exciton of
wavevector Q is a superposition of free electron-hole pair states with
wavevectors near to zero

|Q, n〉 = D†
Q,n|0〉 =

1√
V

∑

k

φn(k)c†
k+ Q

2

d†−k+ Q

2

|0〉. (1.4)

For simplicity, we have taken the electron and hole effective masses to
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be equal. φn(k) is the Fourier transform of the internal wavefunction
of the exciton, φn(r), and |0〉 is the ground state of the semiconductor.

Equation (1.4) defines the exciton creation operator D†
Q,n. Since

excitons are bound states of two fermions, they are bosons at low
densities. This important property is reflected in the commutation
relation for the exciton operators

[DQ′,n′ , D†
Q,n] =

δQ,Q′

V

∑

k

φ∗n′(k)φn(k)
(

1 − d†
−k+

Q

2

d
−k+

Q

2

− c†
k+

Q

2

c
k+

Q

2

)

= δQ,Q′
[

δn,n′ + O(Na3
0/V )

]

, (1.5)

where N/V is density of excitons.

1.1.1 The Exciton-Photon Interaction

In the Coulomb gauge, there is a linear coupling between the vec-
tor potential and the mechanical momentum of the electrons in the
semiconductor

Hint = − e

m

∑

A.pi, (1.6)

where the sum is over all the electrons. Since we can decompose the
electromagnetic field into plane waves, we begin by considering the
coupling to a single plane wave of amplitude A0 and polarisation eλ,

AK(r) = A0eλe
iK.r.

This plane wave couples the conduction and valence bands to each
other, as well as coupling the electrons within each band. The intra-
band part of this coupling is irrelevant to the optics of excitons. The
remaining inter-band part of (1.6) can be written as

Hint = −A0
e

m

∑

k

(

c†K+kd
†
−kg

K+k,k
c,v + d−K−kckg

K+k,k
v,c

)

, (1.7)
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with a coupling strength determined by the polarisation of the field
and the form of the Bloch functions

gk′,k
l′,l = eλ ·

1

Ω

∫

u∗
k′,l′puk,ld

Dr.

Here the integral is taken over a single unit cell of volume Ω. The
matrix element of the coupling between the ground state and a single
exciton state is

〈Q, n|Hint|0〉 = −A0
e

m

∑

k,k′
φ∗n(k)〈0|d−k+ Q

2

c
k+ Q

2

c†
K+k′d

†
−k′ |0〉

= −A0
e

m
δ(K − Q)

∑

k

φ∗n(k)g
k+ K

2
,k−K

2
c,v

≈ −A0
e

m
δ(K − Q)g0,0

c,vφ
∗
n(0), (1.8)

where we have used the fact that the exciton is large in real space to
approximate the inter-band matrix element g by its value at k = 0;
this is the electric-dipole approximation. In this approximation, the
matrix element for the creation of an exciton is proportional to φn(0),
which is the probability amplitude that the electron and the hole
are at the same point in space. Thus the s-wave excitons, for which
φn(0) 6= 0, are coupled to light provided the transition between the
conduction and valence bands is dipole-allowed (i.e. g0,0

c,v 6= 0).

An electromagnetic field of wavevector K couples both to the dis-
crete set of exciton states and the continuum of unbound electron-hole
pair states. If the electromagnetic field is weak only a small number of
excitations will be involved, and so their interaction can be neglected.
We can then write an effective Hamiltonian describing photons prop-
agating in a semiconductor

H = Hfield +He−ex +Hint, (1.9)

where Hfield describes the bare electromagnetic field, He−ex the bare
electronic excitations, and Hint the coupling between the electromag-
netic field and the electronic excitations. Since this Hamiltonian is
linear we will write only part of it, describing a single exciton transi-
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tion and a single polarisation of the photons. The free part is

Hfield +He−ex =
∑

k

Eψ(k)ψ†
kψk + Eex(k)D†

kDk, (1.10)

where ψ is the photon annihilation operator and D the exciton an-
nihilation operator. The photons and excitons have the dispersion
relations

Eψ(k) = ~c|k|

ED(k) = E0 +
~

2|k|2
2mex

respectively, where E0 = Egap − Eb is the rest energy of the exciton
and mex = me + mh is the exciton mass. Combining the standard
decomposition of the free electromagnetic field into plane wave eigen-
states

A(x) =
∑

k

√

~cµ0

8V |k|eλe
iK.x(ψk,λ + ψ†

−k,λ),

with the matrix element (1.8) gives the interaction between excitons
and photons

Hint = − e

m

∑

k

√

~cµ0

8V |k|
(

ψk + ψ†
−k

)

(1.11)

×
(

g0,0
v,cφ(0)D−k + g0,0

c,vφ
∗(0)D†

k

)

.

1.1.2 Exciton Polaritons

The Hamiltonian (1.9-1.11) is a microscopic version of the classical
physics described at the beginning of this chapter: each plane wave
photon is coupled to a plane wave polarisation which, at low densi-
ties where the excitons are bosons, has the dynamics of a harmonic
oscillator. Let us demonstrate the formation of polaritons in this mi-
croscopic theory.

We simplify Hint by dropping the terms which describe the simul-
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taneous creation or annihilation of a photon and an exciton,

(

ψk + ψ†
−k

)(

D−k +D†
k

)

→ D†
kψk + ψ†

−kD−k,

which is known as the rotating-wave approximation [5]. It is justified
close to resonance, where the terms retained describe the resonant
coupling between the two oscillators, while those dropped describe
non-resonant processes. We take the exciton-photon coupling strength
to be real, and denote it by g(|k|). At low densities where the excitons
are bosons, the Hamiltonian (1.9-1.11) in the rotating-wave approxi-
mation can be diagonalized by the unitary transformation

(

pk,1

pk,2

)

=

(

cos θk − sin θk

sin θk cos θk

)(

ψk

Dk

)

,

from excitons and photons to two types of polariton, with annihilation
operators p1, p2. The diagonalized Hamiltonian,

H =
∑

k

E1(k)p†k,1pk,1 + E2(k)p†k,2pk,2,

describes non-interacting polaritons which have the dispersion rela-
tions

E1,2(k) =
1

2

[

Eψ(k) + ED(k) ±
√

(ED(k) − Eψ(k))2 + 4g(|k|)2
]

.

(1.12)

The polariton dispersions and the mixing angle θk are illustrated in
Fig. 1.22. Near to the resonance of the bare excitons and photons the
polaritons are significantly different from excitons or photons, and the
polariton dispersions show the level repulsion characteristic of coupled
oscillators. This region is often referred to as the strong-coupling
regime, because it cannot be described by perturbation theory in the

2This figure shows up a peculiar feature of the dispersion (1.12): at zero
wavevector, the energy of the lower polariton lies below the energy of the vacuum.
This implies that the conventional ground state of a dipole-active semiconductor
is unstable, an incorrect result which is an artifact of the rotating wave approxi-
mation.
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Figure 1.2: Illustration of the polariton (red), photon (solid black)
and exciton (dashed black) dispersions in a bulk semiconductor, and
the corresponding variation in the mixing angle θk with wavevector.

coupling. This can be seen by noting that the polariton energies do
not have a Taylor expansion in g when

|Eψ(k) − ED(k)| < g.

1.2 Cavity Polaritons

In 1992, Weisbuch et al. [6] demonstrated the strong-coupling regime
for excitons coupled to photons confined in a wavelength-sized cavity.
Such a cavity is referred to as a microcavity ; the mixed eigenstates
of exciton and photons which form in the strong-coupling regime of
microcavities [7] are known as cavity polaritons.

The system studied by Weisbuch et al., illustrated in the top part

9
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Mirror Quantum Well Mirror

∼ 1 wavelength of light

AlAs

GaAs

Figure 1.3: The experimental set up of Weisbuch et al., adapted
from [6]. The upper part of the figure illustrates the basic structure
of their planar microcavity, while the lower part shows the band-
structure which actually forms this device. Only the beginning
of the mirror stack is shown. The actual system contains several
quantum wells at the centre of the cavity, rather than the single
well illustrated here.

of Fig. 1.3, is essentially a Fabry-Pérot resonator containing a set of
quantum wells. It is constructed from layers of (Ga,Al)As with various
dopings, producing a bandstructure for the conduction band shown in
the lower part of Fig. 1.3. The mirrors are distributed Bragg reflectors,
which are interference devices constructed by using alternating layers
of doping to produce alternating layers of high and low refractive
index. Choosing the optical thickness of each layer to be λ/4 produces
a mirror with a very high reflectivity over a broad range of wavelengths
(a “stop-band”) centred on λ.

Photons in such a planar cavity, with energies inside the stop-
band of the mirrors, are quantized in the direction perpendicular to
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the plane of the mirrors. They have allowed wavevectors

|kz| =
πm

L
m = 1, 2, 3 . . . ,

where L is an effective separation for the mirrors which takes into
account the finite penetration of the field into the mirrors [7]. There
is no confinement parallel to the mirrors however, so that each of these
confined modes is associated with a continuum of propagating modes
with an in-plane dispersion

Eψ(k) = ~c|k|

= ~c
√

k2
z + |k‖|2

≈ ~c

(

|kz| +
|k‖|2
2|kz|

)

. (1.13)

The low lying electron and hole states in the microcavity are confined
in an analogous way by the quantum wells, so that lowest energy
electronic excitations are two-dimensional excitons in each of the wells.
Each two-dimensional exciton is formed from electron and hole states
in the lowest subband of the quantum well. Such a two-dimensional
exciton is more strongly bound than the three-dimensional exciton,
with a binding energy increased by as much as a factor of four.

The size of the optical cavity is chosen so that photons with k‖ = 0
and a small m, typically m = 2, are close to resonance with the quan-
tum well exciton. The quantum wells are positioned at an antinode of
the field for these photons, so that they are coupled to the excitons.
In this configuration, photons with other values for kz are far removed
in energy and may be ignored.

The conventional picture [6] of these confined polaritons is similar
to the microscopic theory of bulk polaritons discussed in subsection
1.1.2. The quantum well is assumed to be translationally invariant
parallel to the plane of the mirrors, so that the excitons are propa-
gating states with a well defined in-plane wavevector k‖. Momentum
conservation in the plane then ensures that each of these exciton states
is coupled only to a single mode of the electromagnetic field with the
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Figure 1.4: Illustration of the polariton (red), photon (solid
black), and exciton (dashed black) dispersions for an ideal quantum
well embedded in a planar microcavity. We have chosen kz so that
the excitons and photons are resonant at zero in-plane momentum.

same in-plane wavevector. Thus the form of the Hamiltonian is iden-
tical to (1.9-1.11), and the polariton energies are given by (1.12) with
the two-dimensional photon dispersion (1.13). The resulting polariton
energies are illustrated in Fig. 1.4.

Cavity polaritons are coupled to photons outside the cavity due
to the finite mirror reflectivity. Because of this, they can be directly
probed in properties such as the reflectivity or luminescence spectra
of the cavity. While bulk polaritons can also be probed in this way,
the interpretation of bulk measurements is complicated [2, 7] by two
delicate issues: the photon-polariton coupling at the interface, and the
transport of polaritons in the crystal. Understanding the coupling is
difficult because the interface breaks momentum conservation, so that
there can be polaritons with two different wavevectors inside the sam-
ple coupled to photons of a single wavevector outside. This does not
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occur in the cavity system, because there is no longer a component of
the wavevector perpendicular to the interface. Describing bulk lumi-
nescence requires a theory of transport because it is only at the surface
of the sample that polaritons are coupled to photons; again, this issue
does not arise for cavity polaritons, since there is no transport to the
interfaces.

Another advantage of cavities over bulk systems for studying the
strong-coupling regime is the ability to tune the energy of the photons
through the energy of the excitons. This can be done either by varying
the in-plane wavevector, i.e. making measurements at finite angles of
incidence, or by varying the length of the cavity. The length of the
cavity can be varied in a single experiment, by growing the cavity as
a wedge shape and making measurements at different positions on the
sample.

Cavity polaritons were first reported in the normal-incidence re-
flectivity spectra shown as Fig. 2 of Ref. [6]. The different curves
correspond to different detunings between the bare exciton and pho-
tons, obtained by varying the size of the cavity as discussed above. In
general, the reflectivity dips sharply at the energies of the two k‖ = 0
polaritons, since it is only at these energies that the incident photons
can be transferred across the cavity; the amplitude of these dips varies
with the photon component of the polariton. Far from resonance one
of the polaritons has almost no photon component, so only a single
dip is visible on the top left curve. As the cavity is tuned towards
resonance, both polariton branches acquire a significant photon com-
ponent, so two dips can be seen in the reflectivity. The symmetrical
curve occurs exactly at resonance, when the two polaritons are equal
mixtures of exciton and photon. Because of the characteristic level
repulsion of the strong-coupling regime, the polariton energies are dif-
ferent even when the exciton and photon are degenerate.

There is a great deal of physics in these systems beyond that in
the two-dimensional analog of (1.9–1.11). An important issue is the
presence of damping, and hence finite linewidths, for both the exciton
and the photon. This is relevant because the strong-coupling regime
only exists when two sharp resonances are coupled together. For the
strong-coupling regime to exist for damped excitations, the linewidths

13
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must be small compared with the coupling strength

γ . g. (1.14)

This condition applied, for example, to the exciton linewidth means
that the polarisation induced by the cavity field must remain long
enough for the cavity field to respond to its creation. The require-
ment (1.14) prevents strong-coupling behaviour for an isolated, ex-
cited atom in free space since, as there is no momentum conservation,
the atom couples to a continuum of photon modes. The formation of
mixed modes is then replaced with irreversible decay of the atom as
the excitation is transferred into the continuum.

The cavity modes are damped by the escape of photons. The con-
fined mode, k‖ = 0, only decays because of the finite reflectivity of the
mirrors. It typically has a lifetime of a few picoseconds, corresponding
to linewidths of the order 0.1–1 meV. At a simple level, we can include
this linewidth as an imaginary part in the photon energy. In Fig. 1.5,
we plot the polariton energies (1.12) as a function of the imaginary
part of the photon energy, when the exciton and photon are resonant
and the exciton is undamped. Note the reduction and eventual disap-
pearance of the level repulsion, characteristic of the strong-coupling
regime, as the damping increases.

The broadening of the exciton and the destruction of the strong
coupling behaviour is connected to another important issue in these
systems: nonlinearity [8, 9]. So far we have assumed that the excita-
tion of the quantum well is negligible, so that the interaction between
excitations can be neglected. Such a theory describes the linear opti-
cal properties of the microcavity. If we probe the cavity using stronger
fields, we will create a finite density of excitons and unbound electron-
hole pairs in the quantum wells. If this density is not too high excitons
continue to exist, although they may be shifted in energy and acquire
a lifetime as a result of the interactions. The coupling between exci-
tons and photons can also be reduced, for two main reasons: (1)At
finite densities, the exclusion principle blocks the creation of an exci-
ton from a photon. The electron-hole pair states which are already
occupied are not available for the formation of further excitons. This
nonlinearity is known as “phase space filling”. (2)The Coulomb inter-
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Figure 1.5: Crossover from strong to weak coupling with increas-
ing damping of the photon. The upper and lower panels are the real
and imaginary parts of the energies (1.12) of the coupled modes,
as a function of the imaginary part of the photon energy. We have
taken the exciton and photon to be resonant, so that <Eψ = <ED.

action between the electron and hole in the exciton can be screened
by the other excitations. Thus the exciton will be larger, and hence
more weakly coupled to light. With increasing density, this screening
process eventually completely destroys the excitons. Since increasing
excitation can increase the exciton linewidth and decrease the exciton-
photon coupling, increasing density eventually violates the inequality
(1.14) and destroys the strong-coupling regime. While this has been
demonstrated experimentally [10, 11], there is no consensus concern-
ing the importance of the different nonlinearities to the destruction of
the strong-coupling regime.

Since these pioneering experiments using GaAs quantum well ex-
citons in planar optical cavities, there have been several other real-
isations of cavity exciton-polaritons, using different geometries and
approaches to photon confinement, or different materials containing

15



Bose Condensation in a Model Microcavity

excitons. Polaritons have been realised in photon wires [12] and in
pillar microcavities [13, 14]. Alternative dielectrics which have been
used in planar optical cavities include films of organic semiconductor
[15, 16], bulk GaAs [17], and (Zn, Cd)Se quantum wells [18].

These more recent realisations of cavity polaritons show up a flaw
in the conventional picture discussed above. This picture is based
on a perfect, infinite quantum well, where the bare electronic exci-
tations are propagating states with a well defined momentum. Thus
microscopic momentum conservation ensures that each exciton is cou-
pled only to a single cavity mode, so that the condition (1.14) can
be obeyed despite the presence of a continuum of cavity modes with
different k‖. Yet the real systems in which polaritons are observed con-
tain structural disorder, and all bar one are two-dimensional. In these
two-dimensional disordered systems, the excitons are localised rather
than propagating states. If the localisation length is long compared
with the wavelength of light, one could believe a picture based on
microscopic momentum conservation. However, given the long wave-
length of light, this is unlikely to be true in any of these systems. The
problem is particularly clear for organic semiconductors, which are
often highly disordered at the molecular level.

Structural disorder in quantum well systems [19–22] has a variety
of origins. For example, one source of disorder is fluctuations of the
alloying concentration across the sample; another is that the interfaces
of the quantum well are not perfectly flat. It is generally assumed that
this disorder is weak compared with the binding energy of the exciton,
so that it may be treated as a potential acting on the centre of mass
of the exciton. Thus the quantum well contains a set of exciton states
with localised centre of mass wavefunctions. The energy distribution
of these localised states corresponds to an inhomogeneous linewidth
for the exciton, which is typically a few meV. This is actually the
dominant broadening mechanism for quantum well excitons at low
densities, far more important than any actual damping of the exciton.
The correlation length of the disorder potential, and hence the spatial
extent of the exciton, depends on the growth conditions of the sample
[23]. In GaAs, this correlation length seems to vary between a few
times the exciton Bohr radius and about ten times the exciton Bohr
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radius [24].

There are two reasons why strong-coupling behaviour can be re-
alised using localised excitations for which there is no microscopic mo-
mentum conservation, despite the condition (1.14). The first reason,
which was mentioned at the beginning of this chapter, applies when
there are many microscopic excitations in one wavelength of light. The
excitations which couple to light are then coherent superpositions of
many microscopic excitations. So long as the microscopic excitations
remain mutually coherent, i.e. so long as the homogeneous linewidth
of the excitations is small, this collective state couples only to one field
mode. Interference of the microscopic polarisations effectively restores
macroscopic momentum conservation. This is why strong-coupling be-
haviour shows up in the refractive index of sodium vapour [2]. The
second reason is that optical cavities can produce sharp resonances in
the photon density of states3, so momentum conservation may not be
required at any level. This is why strong-coupling behaviour has been
observed for a few hundred sodium atoms in an optical cavity [25].

These considerations suggest that the conventional model of cavity
polaritons, based on microscopic momentum conservation, is inappro-
priate in many experiments, and that a more appropriate model is a
single mode of the electromagnetic field coupled to many microscopic
excitations. In this thesis we will study one such model, a generalisa-
tion of the Dicke model [26, 27].

1.3 The Dicke Model

The Dicke model, which is one of the basic models of quantum optics,
was originally introduced to study the radiative decay of a gas. It
treats each molecule in the gas as a two-state oscillator, correspond-
ing to two possible electronic states of the molecule. The transition

3This depends on the cavity structure: the density of photon states in three-
dimensional cavities would be completely discrete, but in an idealised planar cavity
it would be the usual two-dimensional stepped density of states. In fact, it seems
likely that the photon density of states in a real planar cavity has peaks at the
energies of the k‖ = 0 modes, since these are only damped by the escape of photons
through the mirrors, while the propagating modes can escape through the sides of
the cavity.
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between these two states occurs through the electric-dipole interaction
with a single mode of the electromagnetic field. All other degrees of
freedom of the molecules, including their dispersion, are neglected, as
are any direct interactions between molecules.

As Dicke noted, a two-state oscillator is equivalent to a spin of
magnitude one-half. Thus we can write the Hamiltonian of the Dicke
model in a spin notation. The two eigenstates of σzn, with eigenvalues
±1

2 , correspond to the two electronic states of the nth molecule. Using
Eg to denote the energy separation of these eigenstates, g the strength
of the electric-dipole transition between them, and ωc the energy of
the photon, we write the Hamiltonian of the Dicke model as

H = ωcψ
†ψ +

∑

[

Egσ
z
n + g

(

σ+
n ψ + ψ†σ−n

)]

, (1.15)

where the summations are over the N different molecules. We have
made the rotating wave approximation, as on page 8. For simplicity,
we have also assumed that the amplitude of the field mode at each
molecule is the same for all the molecules, so that the coupling strength
g does not depend on the index n.

There is an upper bound on the excitation of the molecules in the
Dicke model, because the exclusion principle for the electrons prevents
more than a single excitation existing on any one molecule. This satu-
ration nonlinearity does not appear directly in the Hamiltonian (1.15),
but is concealed in the commutation relations of the spin operators.
While much of the present thesis concerns this nonlinearity, it is irrel-
evant for weak excitation. The model (1.15) then contains essentially
the same physics as our earlier bosonic Hamiltonian (1.9-1.11).

Let us define, following Dicke [26], the total pseudospin operator S

for the two level oscillators. The components of this spin are related in
the obvious way to the components of the constituent spins Sx,y,z =
∑

σx,y,zn . Physically, Sz measures the total excitation, and S+ the
total dipole moment, of the gas. Note that the squared magnitude of
the pseudospin, S2, with eigenvalues S(S+1), is a conserved quantity.

The equivalence between the Dicke model and our earlier bosonic
Hamiltonian exists because the photon is coupled to collective excita-
tions of the gas. These excitations are created and annihilated by the

18



Introduction

operators S±. When the number of excited molecules Nex = Sz+N/2
is small compared with the total number of molecules N , the commu-
tation relation for these operators is a large number with a small
operator part:

[S−, S+] = −2Sz

= N − 2Nex (1.16)

∼ N.

Thus, apart from a normalisation, the operators S± obey a bosonic
commutation rule in the low excitation limit.

We can formalise this equivalence using the Holstein-Primakoff
representation [28] for the spin operator S. This transformation allows
us to linearise the spin model (1.15) around the unexcited state, which
is the state with

Sz|0〉 = −N
2
|0〉

S2|0〉 =
N

2

(

N

2
+ 1

)

|0〉.

The appropriate transformation, which expresses the operators for a
spin of magnitude S in terms of a bosonic annihilation operator D, is

S+ = D†
(
√

2S −D†D
)

(1.17)

S− =
(
√

2S −D†D
)

D

Sz = D†D − S.

In this representation, the ground state |0〉 is the vacuum state of these
new bosons, and D†D is the number of excited molecules. For weak
excitation we may retain only the leading terms in the expansion of the
square roots in (1.17). Inserting these leading terms into the Hamil-
tonian (1.15) recovers a bosonic model of the form (1.9-1.11). Note
that while we could perform this procedure at finite excitations, the
result would be a model of interacting bosons. The difference, (1.16),
between the operators S± and the bosonic creation and annihilation
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operators corresponds to interactions between the excitations.

1.4 Polaritons in Disordered Systems

We can generalise (1.15) to describe cavity polaritons in disordered
electronic systems. Provided the electronic excitations are small com-
pared with the wavelength of light, we can treat them as point-like
objects just like the molecular excitations discussed by Dicke. Each
two-level oscillator then corresponds to the presence or absence of a
particular localised excitation. For example, in a quantum well each
oscillator is associated with a particular eigenstate of the disorder po-
tential, labelled by the variable n. The interaction between different
excitations is irrelevant to the description of the weakly excited states
of the system, so can be ignored just as in (1.15). The restriction to
single occupancy may or may not be physical, but since it is irrelevant
to the weakly excited states we may retain it. The only generalisa-
tion we must make is to allow the energy of the two level oscillators,
and possibly the coupling strength, to vary between excitations. Thus
we allow Eg and g to depend on n. We change notation slightly by
expressing each two level oscillator in terms of two fermions with an-
nihilation operators a and b, subject to the constraint

a†a+ b†b = 1. (1.18)

The Hamiltonian describing cavity polaritons for localised excitations
is then

H =
∑ Eg(n)

2

(

b†b− a†a
)

+ ωcψ
†ψ +H ′, (1.19)

H ′ =
1√
N

∑

(

b†aψ + ψ†a†b
)

.

Note that we have redefined the coupling constants by substituting
g → g/

√
N . This redefinition is necessary for the limit of many elec-

tronic states in the cavity, N → ∞, to be well defined.
The model (1.19) was used to investigate polaritons in a disordered

system by Houdré et al. [29]. The central results of their paper are
that (1) an inhomogeneous linewidth has the same effect on the level
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splitting as a homogeneous linewidth (see the top panel of Fig. 1.5),
and (2) an inhomogeneous linewidth does not, in general, produce a
linewidth for the polaritons (unlike the bottom panel of Fig. 1.5). Both
of these can be understood on physical grounds. Recall that a driven
oscillator radiates at its driving frequency, with an amplitude deter-
mined by how far off resonance it is driven. Thus an inhomogeneous
broadening decreases the amplitude of the macroscopic polarisation
induced by the cavity mode in the microscopic oscillators, as the os-
cillators move out of resonance, but does not produce any linewidth
for this polarisation. Hence the polariton splitting is reduced by the
inhomogeneous broadening, but not, in general, broadened.

When the electronic system is not completely homogeneous on
the scale of the wavelength of light we expect some weak scattering of
the photon into other wavevectors. Therefore, when the correlation
length of the disorder is a finite fraction of the wavelength of light,
we would expect some contribution to the polariton linewidth beyond
that predicted by models like (1.19). However, even in the best quan-
tum wells, where the correlation length might be as high as a tenth of
the wavelength of the photon, this contribution is insignificant: treat-
ing the quantum well as macroscopically homogeneous gives a good
account of the experimental linewidths [30, 31]. This is hardly sur-
prising, since the radiative lifetime of a single localised exciton in a
GaAs quantum well is thought to be around 100ps [32], which corre-
sponds to an insignificant linewidth on the scale of the observed level
repulsions.

1.5 Interactions and Localised Excitations

We have already mentioned some of the nonlinearities for quantum
well excitons. Although the dominant nonlinearities in quantum wells
have a common origin in the fermionic structure of the excitons, a com-
plete theory of these nonlinearities is extremely difficult. In general,
this difficulty is compounded by the presence of disorder. However,
for some of the excitations in a disordered quantum well, and for the
excitations in many other dielectrics, the nonlinearities are much sim-
pler. These localised, physically separated, saturable excitations are
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described by straightforward generalisations of the model (1.19), even
at finite densities.

The most straightforward examples of such excitations are Frenkel
excitons bound on impurities, and molecular excitons in organics.
These are essentially electronic transitions between states of an impu-
rity or of a molecule. The classic example of the former is the lasing
transition in ruby [33], which is between the electronic states of the
Chromium impurities. So long as the overlap between the orbitals of
different impurities or molecules is small we can neglect the interac-
tion between excitations on different sites. In general there will be
several orbitals on each site, as well as a spin degeneracy, and possi-
bly some interaction between excitations on the same site. The result
of this will be a model which, like (1.19), comprises a set of sites,
each of which can contain some small number of excitations, with no
interaction between different sites.

A more subtle example is the low energy electronic excitations in
a disordered quantum well. In general, these are excitons bound to
traps in the disorder potential. The size of these traps is, at most,
the correlation length of the disorder potential, which is typically a
few times the exciton Bohr radius. Because of the fermionic structure
of the excitons, each of these traps can contain only a few low-energy
excitons.

A rather special example of excitons bound to traps in a disorder
potential is provided by narrow (∼ 30Å) GaAs quantum wells. In
such narrow wells, fluctuations in the thickness of the quantum well
are a significant source of disorder. These fluctuations have a natural
minimum amplitude corresponding to a single atom step in one of the
interfaces. This can actually split the exciton luminescence line into
two parts, with the lower line produced by excitons bound in rare
traps formed from monolayer fluctuations in the well thickness [19],
as illustrated in Fig. 1.6.

1.6 Quantum Statistical Effects in Cavities

The term quantum statistics refers to the quantum mechanical treat-
ment of indistinguishable particles. Since cavity polaritons are in-
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Figure 1.6: Illustration of low-energy excitons in a narrow quan-
tum well. These quantum wells are believed to contain island-like
structures produced by monolayer fluctuations in the thickness of
the well. The figure shows a cross section of a well contaning such
structures. The low energy excitons sit on these islands, producing
a separate luminescence line which is split off from the luminescence
line produced by excitons in the narrow part of the well.

distinguishable from one another, and may be considered as quan-
tum mechanical particles, they should display effects due to quantum
statistics.

Since cavity polaritons are photons coupled to other excitations,
they are bosons. The most basic quantum statistical effect for bosons
is stimulated scattering. According to the Fermi golden rule, the rate
of some transition is proportional to the squared matrix element of the
perturbation between the initial and final states. Thus a transition
which involves adding a boson to a single particle eigenstate, with
occupation N , occurs at a rate proportional to N + 1: the scattering
into an eigenstate is stimulated (i.e. enhanced) by the particles already
in that eigenstate. For photons this stimulation process is responsible
for lasing.

There have been many experiments attempting to observe stim-
ulated scattering for cavity polaritons. These experiments have fo-
cussed on the original system of a planar microcavity containing GaAs
quantum wells, although II-VI quantum wells and bulk GaAs have also
been used. In one type of experiment [34–36], a cavity is excited at en-
ergies above the energy of the low-wavevector polaritons. This highly
excited cavity relaxes, leading to some population of the low-energy
polaritons. This population is then observed as luminescence. For a
weakly excited system, the relaxation is very inefficient, and the in-
tensity of the luminescence at the energy of the k‖ = 0 polariton is
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rather small. Most of the excitation escapes from the cavity before
reaching these low energies. However, there is a threshold excitation
at which this luminescence becomes much more intense. This thresh-
old behaviour is interpreted as stimulated scattering enhancing the
relaxation towards the low energy polaritons.

A much cleaner approach to observing stimulated scattering in-
volves directly creating a large population of polaritons at a single
in-plane wavevector. This is done by exciting the cavity at a certain
angle with a laser tuned to the corresponding polariton energy. In
the presence of this population, a large gain is observed for a weak
probe beam at another wavevector [37]. This gain is interpreted as
stimulated scattering of the pump polaritons by the probe polaritons.
More recently, similar effects have been reported in the absence of a
probe beam [38].

These experiments, as well as lasers, involve stimulated scatter-
ing far from thermal equilibrium. In thermal equilibrium, stimulated
scattering produces the Bose-Einstein distribution, and is partly re-
sponsible for the celebrated phenomenon of Bose-Einstein condensa-
tion. Thus the existence of stimulated scattering for polaritons sug-
gests the possibility of a Bose-Einstein condensate of polaritons.

1.7 Bose-Einstein Condensation

A Bose-Einstein condensate [39] is a state of matter formed when a
liquid or gas of bosons is cooled below a certain critical temperature.
The classic example of Bose condensation is liquid Helium-4, which
becomes a Bose condensate at about 2K. It is the formation of a
Bose condensate in this liquid which is responsible for its celebrated
superfluidity property. A less obvious example is the superconducting
transition in conventional superconductors. Once again, the superflow
property in these materials is the result of Bose condensation. For
many years these two examples, along with Helium-3, have provided
the only realisations of Bose condensates. In the last few years a new
class of examples has been added to this short list by the realisation
of Bose condensation in atomic vapours.

Bose condensation is the result of the quantum mechanical treat-
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ment of identical particles. This is important for point-like bosons
with energy E when the spacing between particles is comparable to
the de Broglie wavelength λB ∼ ~/

√
mE. We can estimate the critical

temperature for a transition from a liquid or gas of point-like bosons
to a Bose condensate by equating the separation between particles at
a density ρ to the de Broglie wavelength at an energy kT . In three
dimensions this gives

T ∼ ~
2ρ

2

3

mkB
, (1.20)

Bose condensates of point-like bosons are so scarce because most Bose
liquids solidify long before the temperature (1.20) is reached. Only
Helium, with its small mass, remains a liquid.

There are three essential properties of real Bose condensates : (1)
a macroscopic occupation of one of the single-particle eigenstates, (2)
macroscopic phase coherence, and (3) broken gauge symmetry. The
first property marks Bose condensation as a separate state of matter,
since in the familiar states of matter the occupation of any single-
particle eigenstate is negligible compared with the total number of
particles. In an extended, homogeneous system, macroscopic occupa-
tion of a single-particle eigenstate implies that there are long range
correlations in the phase of the boson field ψ(r). This is the second
property of phase coherence, meaning that the wavefunction of the
macroscopically occupied state remains coherent over long distances.
It is implied by the third property of broken gauge symmetry , which
means that the local phase of the macroscopically occupied wavefunc-
tion acquires a well-defined value. In the absence of symmetry break-
ing, the number of particles in the macroscopically occupied eigenstate
would suffice as an order parameter for Bose condensation. Broken
gauge symmetry adds another component to this order parameter,
which is the local phase of the macroscopically occupied eigenstate.
The overall order parameter of the condensate is then the expectation
value of the annihilation operator 〈ψ(r)〉.

The broken gauge symmetry of a condensate is often compared to
the broken rotational symmetry in a ferromagnet [40]. Even though
the quantum mechanics of a magnet does not depend on its orienta-
tion, the direction of the magnetisation has a well-defined direction in
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the ferromagnetic state. Analogously: even though quantum mechan-
ics is independent of the phase of the wavefunction, for most purposes
a Bose condensate is a state in which this phase adopts a well-defined
value. This analogy assuages one difficulty with broken gauge symme-
try: the prejudice that the phase of the wavefunction is not a physical
quantity. It can be a physically meaningful quantity for certain classes
of states in the limit of large numbers of particles. The same difficulty
occurs in the magnetic case, since the direction of a microscopic an-
gular momentum is not a physical quantity. But we have no problem
with the direction of a macroscopic angular momentum.

Unfortunately, the standard textbook discussion of Bose conden-
sation is in terms of a non-interacting Bose gas, and this model does
not convincingly display any of the properties of real Bose condensates
discussed above. However, we can introduce interactions which are so
weak that they are irrelevant above the transition temperature, but
generate the three properties discussed above below it. This is the
weakly interacting Bose gas model studied by Bogolubov and others,
which was instrumental in developing the concepts of Bose condensa-
tion.

Since weak interactions have little effect in the normal state, the
instability of this state in the non-interacting gas remains instructive.
The single particle eigenstates in a non-interacting Bose gas have en-
ergies

Ek =
~

2k2

2m
.

Adopting the usual periodic boundary conditions on a cube of side L
restricts the wavevector k to lie on a cubic lattice of lattice constant
π/L. The occupation of a single eigenstate with energy Ek is given
by the Bose function

nk =
1

eβ(Ek−µ) − 1
.

Notice the singularity in the ground state occupation as µ → 0. In
three dimensions this singularity acquires a physical significance, be-
cause the chemical potential can be driven to zero by cooling the gas
or increasing its density. To see this, note that the number of particles
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in the gas is given by the sum over states of the occupation numbers,

N =
∑

k

nk. (1.21)

Assume for a moment that µ < 0. Then the variation in nk between
adjacent terms in the sum (1.21) is negligible in the thermodynamic
limit L → ∞. The sum may then be replaced by an integral in the
usual way, giving for the density of the gas

N

L3
=

1

(2π)3

∫

1

eβ(Ek−µ) − 1
dk. (1.22)

But for µ < 0, the density (1.22) has an upper bound ρc in three
dimensions. Above this critical density the assumption that µ < 0
breaks down.

This critical density is the point where the normal Bose gas be-
comes unstable. Above the critical density the distribution function
nk must vary quickly on the scale of the spacing between the levels, so
that the transition from the sum, (1.21), to the integral, (1.22), is not
valid. To construct such a distribution we must place a macroscopic
number of particles in a non-macroscopic number of states near to the
ground state. We could place all the excess density ρ − ρc into the
ground state, so that the putative condensate would have at least the
first two properties discussed above. However, there seems to be no
clear reason [41] why all the excess particles should occupy just one
of the single-particle states in this way.

This ambiguity is resolved by interactions [41, 42]. Because the sin-
gular states contain a macroscopic number of particles in a negligible
energy range, an arbitrarily weak interaction can create a macroscopic
energy difference between different singular states. In a simple Bose
gas the interaction must be repulsive to prevent the gas collapsing to
infinite density. Repulsive interactions select the singular distribution
in which only a single quantum state is macroscopically occupied and
push the other possibilities to macroscopically large energies. Attrac-
tive interactions, stabilised for example by a finite angular momentum,
could select a different state [43].
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Weak interactions also produce broken gauge symmetry [41, 42].
In the non-interacting model the ground state is a number state in
the lowest single-particle eigenstate

(ψ†)N |0〉. (1.23)

With weak interactions, the part of the ground state wavefunction
describing the occupation of this single-particle eigenstate is not a
number state like (1.23), but a coherent state

eφψ
† |0〉. (1.24)

Here φ is the expectation value 〈ψ〉, which is the order parameter for
the condensate. The basic reason why (1.24) is energetically favoured
is that a finite interaction term mixes coherent states in the other
single-particle levels into the coherent ground state (1.24). This leads
to interference terms which can lower the interaction energy below
that in a number state like (1.23). Furthermore, these interference
terms lock the relative phases of all the single particle levels together.
Once the coherent state is formed with a particular phase, it requires
a finite energy to change the phase of one of the single particle states,
and the gauge symmetry is broken.

While the weakly interacting Bose gas was instrumental in devel-
oping the concepts of Bose condensation, it has only found direct ap-
plication with the realisation of atomic condensates. The interactions
in superfluid Helium are far too strong to be treated by this theory,
while in superconductors the internal structure of the particles which
condense cannot be neglected.

None of the Bose condensates of condensed matter physics are
formed from structureless bosons, but from bound states of an even
number of fermions. If the density is sufficiently low that the spatial
separation of such bound states is much greater than their size, and the
temperature is low compared with their binding energy, the internal
structure of the bound states may be ignored. They may be treated
as simple, point-like bosons, as shown explicitly for excitons at zero
temperature by the commutation relation (1.5).

The condensate in superconductors is formed from weakly-bound,
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overlapping pairs of electrons known as Cooper pairs. These pairs
cannot be treated as structureless bosons, and so cannot be described
by the weakly-interacting Bose gas model. Nonetheless, they form a
state which displays all the essential properties of a Bose condensate.
But we must emphasise one important difference: while the transition
in a weakly interacting Bose gas is associated with the centre of mass
degree of freedom of the bosons, in the superconductor it is associated
with the internal degrees of freedom of the pairs.

1.8 Bose Condensation of Cavity Polaritons

In this thesis, we will consider Bose condensation of cavity polaritons
in the idealised model (1.19) of localised, physically separated, sat-
urable excitations. Since Bose condensation is a thermal equilibrium
phenomenon associated with conserved particles, we will consider the
thermal equilibrium of the model (1.19) at a fixed number of polari-
tons. Physically, this corresponds to a situation in which polariton
decay, arising from decay of the cavity mode and coupling of the
electronic excitations to modes other than the cavity mode, is slow
compared with the time required to reach thermal equilibrium at a
fixed polariton number.

Before we can begin to explore polariton condensation, we must
tackle the following inconsistency: Bose condensation is produced by
interactions, while polaritons are linear response excitations. To over-
come this inconsistency, we generalise the concept of a polariton to
be the quantum of excitation of the coupled matter-light system. The
polariton number is then the total number of photons and electronic
excitations in the system. It is given by

Npol = L+N/2,

where L is the operator

L = ψ†ψ +
1

2

∑

b†b− a†a.

L is a conserved quantity for the model (1.19).
We must also revisit our assumption that there is only a single
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relevant mode of the electromagnetic field in the cavity. When con-
sidering the linear-response dynamics of a cavity we gave two reasons
for this (page 17): interference effects, and the selection of field modes
by a cavity. When considering thermodynamics, we cannot apply the
argument based on interference effects, since as the microscopic ex-
citations thermalise their relative phases will be destroyed. However
the second argument, based on the selection of field modes by a cavity,
continues to apply.

For simplicity, we will take the coupling strengths g(n) in (1.19)
to be constant, g(n) = g. The expressions which we will derive may
be generalised in the obvious way to allow for a distribution of these
coupling strengths. To illustrate our results, we will take the energies
of the two-level oscillators either to be uniform, or to have a Gaussian
distribution centred on an energy E0 with variance σg.

The thermal equilibrium of the Dicke model, (1.15), in the absence
of an externally created population of polaritons, has been studied
extensively since the pioneering exact solution of Hepp and Lieb [44].
These authors showed that, even in the absence of external excitation,
the Dicke model has a phase transition to a Bose condensed state.
This equilibrium condensate is a static, coherent state of photons:
it is a ferroelectric [45]. The polariton condensate explored in the
present thesis is an oscillating, quasi-equilibrium generalisation of this
ferroelectric state.

In the next Chapter, we use a variational approach to find the
ground state of the model (1.19) at fixed excitation L. In Chapter
3, we show that such a variational approach actually gives an exact
description of the ground state at fixed excitation. We also consider
finite temperatures, and construct a phase diagram. In Chapter 4, we
use the expressions derived in Chapter 3 to study the excitations of
the quasi-equilibrium states of the model (1.19). Finally, in Chapter
5 we summarise the conclusions and implications of our work, and
suggest some problems for future study.
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Chapter 2

The Ground State

To begin our investigation of polariton condensation,
we use a variational approach to investigate the ground state

of the model (1.19) at fixed excitation number L. Our variational
wavefunction describes a Bose condensate of polaritons beyond the
low-density regime in which polaritons are conventionally understood.

2.1 A Variational Wavefunction

We must first guess a form for the variational wavefunction. To do
this, recall that in section 1.3 we argued that in the limit of weak exci-
tations the Dicke model is equivalent to a model of weakly-interacting,
bosonic polaritons. In this limit the ground state must be a coherent
state of polaritons. Beyond this limit we have generalised the concept
of a polariton to be an excitation of the coupled system, counted by L.
In general, such an excitation will be a superposition of an excitation
of the cavity mode and an electronic excitation. This suggests that
we try the variational wavefunction

|λ,w〉 = e
λψ†+ 1√

N

∑

n wnb
†a|vac〉, (2.1)

where λ and the wn are variational parameters, and |vac〉 is the state
which has a single fermion in the lower state of each two-level oscilla-
tor.

The variational parameters wn are the wavefunction for a collective
excitation of the electronic states. While in the Dicke model, where
the electronic excitations are all equivalent, this wavefunction must
be a constant, the distribution of energies in the model (1.19) could
produce non-trivial wavefunctions.
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The electronic part of the variational wavefunction (2.1) is of the
same form as the BCS wavefunction for a superconductor. This can
be seen by expanding the part of the exponential which involves the
fermionic operators. In this way we rewrite (2.1) as a superposition
of a coherent state of the photons and a BCS state of the fermions

|λ, u, v〉 = eλψ
†∏

n

(vnb
† + une

iφna†)|0〉. (2.2)

Here λ, un, vn, and φn are the variational parameters, and |0〉 de-
notes the vacuum state with no fermions in any of the levels. By
construction, this variational state obeys the single-occupancy con-
straints (1.18).

Since the overall phase of the state (2.2) is arbitrary, we will take
λ to be real. We have introduced the φn so that we may also take the
u and the v to be real.

The amplitude of the cavity mode is given by the expectation
value 〈ψ〉, and the polarisation of the nth two-level oscillator by the

expectation value 〈b†nan〉. In the state (2.2) we have 〈ψ〉 = λ and

〈b†nan〉 = unvne
iφn . Thus, in general, this state has both a finite am-

plitude of the cavity mode and a finite polarisation of the electronic
states. The φn are the phase differences between the electronic polar-
isations and the electromagnetic field in the cavity.

As well as its application to superconductors, the BCS wavefunc-
tion contained in (2.2) has been widely used to describe Bose con-
densed excitons, particularly by Comte and Nozières [46]. As these
authors stress, this wavefunction can describe Bose condensed excitons
away from the low-density limit in which excitons are simple bosons
(Eq. (1.5)): it allows for the fermionic structure of the exciton. In
a similar way, it allows for the fermionic structure of the electronic
excitations, i.e. the saturation nonlinearity, in the model (1.19).
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2.2 Minimising the Free Energy

To find the ground state of (1.19) at fixed total excitation, we intro-
duce a chemical potential µex to constrain the excitation, and minimise

〈H − µexL〉 = ω̃cλ
2 +

∑

n

ε̃n(v
2
n − u2

n)

+2
g√
N
λunvn cos(φn), (2.3)

ω̃c = ωc − µex,

ε̃n =
Eg(n) − µex

2
,

with respect to the variational parameters, subject to the normalisa-
tion conditions u2

n + v2
n = 1.

Although the overall phase of the condensate is arbitrary, the rela-
tive phases φn are not: there is only one order parameter. The relative
phases φn are fixed by the last term in (2.3), the dipole coupling. This
term ensures that all the two-level oscillators which have a finite dipole
moment(un 6= 0, 1) are mutually coherent, φn = φ, when the energy
is minimised.

Setting φn = 0 and defining an intensive λ by rescaling λ→ λ
√
N ,

the minima of (2.3) are given by the real solutions with λunvn < 0 to

ω̃cλ+
g

N

∑

n

unvn = 0, (2.4)

2ε̃nunvn − gλ(v2
n − u2

n) = 0.

We define an excitation density ρex = 〈L〉/N , which is the total
number of photons and electronic excitations, per two-level oscillator,
minus one-half. Since the numbers of photons and electronic exci-
tations are positive, the lowest excitation density is −0.5. Since the
number of electronic excitations is always less than N , the electronic
contribution to ρex is always less than 0.5.

µex is a Lagrange multiplier which constrains the excitation num-

33



Bose Condensation in a Model Microcavity

ber. It is related implicitly to the excitation density by

ρex =
1

N

〈

ψ†ψ +
1

2

∑

n

b†nbn − a†nan

〉

= λ2 +
1

2N

∑

n

v2
n − u2

n. (2.5)

Eliminating un and vn from (2.4) and (2.5) we can rewrite these
expressions as

ω̃cλ =
g2λ

2N

∑

n

1

|En|
, (2.6)

ρex = λ2 − 1

2N

∑

n

ε̃n
|En|

, (2.7)

where we define
En = sign(ε̃n)

√

ε̃2n + g2|λ|2. (2.8)

(2.6) is analogous to the BCS gap equation, with an order parameter
λ.

2.3 Results

To investigate the expressions (2.6–2.8) we replace the summations
over sites with an integral over an energy distribution for the two-level
oscillators. We take this distribution to be a Gaussian with mean E0

and variance σg. The remaining parameters in our quasi-equilibrium
problem are then the excitation density, ρex, and the dimensionless
detuning between the photon frequency and the centre of the energy
distribution of the two-level oscillators, ∆ = (ωc − E0)/g.

For a Gaussian density of states, the summation on the right of
(2.6) diverges as λ→ 0, and approaches zero as λ→ ∞. Thus for any
µex < ωc there is always a condensed solution, λ 6= 0, to (2.6): the
system is condensed at arbitrarily small excitation densities. This be-
haviour is produced by the tails of the Gaussian distribution. Because
of these tails, we have electronic excitations(“excitons”) at arbitrarily
low energies, and hence also bound exciton-photon states at arbitrarily
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Figure 2.1: Right panel: dependence of the chemical potential
on excitation density for detunings ∆ = 0, 1 and 3 and variances
σ = 0, 0.5 and 1. Left panel: absorption spectrum for a microcavity
at ρex = −0.5 and T = 0 for σ = 0.5 and the same three detunings.

low energies. It is impossible to populate just the excitons, because,
no matter how small µex is, there is always a bound state involving
photons below it. We expect that if the density of states has a lower
cut-off, and is continous at this cut-off, there would be a finite critical
µex below which there is no condensed solution to (2.6).

Let us investigate the dependence of µex on ρex in the absence
of inhomogeneous broadening, σ = 0. At low densities, ρex ≈ −0.5,
µex can be obtained from (2.6). Expanding this expression for small
λ and comparing the leading terms, we find that µex is given by the
conventional bosonic polariton energy µex = ELPB = 1

2 [(ωc + Eg) −
g
√

∆2 + 4]. This confirms that, at low densities, we are describing
a condensate of conventional bosonic polaritons. At finite densities
we calculate µex numerically, by solving (2.6) and (2.7) to determine
ρex(µex). The results are plotted in the right panel of Fig. 2.1, for
∆ = 0, 1 and 3. For a condensate of non-interacting bosonic polari-
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tons we would have µex = ELPB at all densities. Here however, the
electronic states saturate with increasing density, forcing the excita-
tions to become more photon-like. Thus the chemical potential ap-
proaches ωc at high densities. For ∆ > 2 the separation between the
exciton-like and photon-like excitations persists to ρex = 0.5, where
the electronic excitations are completely saturated. This results in a
discontinuity in µex at this point, since no further excitation can be
added to the electronic states.

The dependence of µex on ρex in the inhomogeneously broadened
case is also illustrated in the right panel of Fig. 2.1. It is qualitatively
rather similar to the homogeneous case. Instead of the finite intercept
of the homogeneous case we now have µex → −∞ as ρex → −0.5;
this behaviour is again caused by the tails of the Gaussian distribu-
tion. To demonstrate how µex approaches the conventional polariton
energy ELPB in the homogeneous, low-density limit, we compare the
behaviour of µex with the density of states for the linear-response ex-
citations of the empty(ρex = −0.5) cavity. This density of states is
the optical absorption spectrum of the cavity, and is plotted in the
left panel of Fig. 2.1 for σ = 0.5 and ∆ = 0, 1 and 3. We will describe
how it is calculated in Chapter 4. At very low densities, µex lies in the
tails of the exciton distribution. With increasing density, these states
quickly saturate, producing a sharp rise in µex. As µex reaches the
polariton peak, the sharp rise in the density of states for the coupled
modes produces a kink in the chemical potential. In the homogeneous
limit, this kink moves to zero density and corresponds to the usual
polariton energy. Since the density of states at this point is infinite in
the homogeneous limit, these polaritons are bosons.

Figure 2.2 shows the occupation of the two-level oscillators in the
polariton condensate, for ∆ = 3, σ = 0.5 and various densities. The
occupation number of the nth two level oscillator is

1

2
(v2
n − u2

n + 1) =
1

2

(

1 − ε̃n
|En|

)

.

As is clear from the figure, this is a Fermi step broadened by the inter-
action with the photons, just as the electronic distribution in a BCS
superconductor is a Fermi step broadened by the pairing interaction.
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Figure 2.2: Occupation of the two-level oscillators at zero temper-
ature as a function of energy E for ∆ = 3, T = 0, σ = 0.5 and den-
sities ρex = −0.4,−0.2, 0, 0.2, 0.4, 0.6(dot-dashed curves, increasing
from left to right) and ρex = 100(dotted curve). The shaded region
shows the density-of-states for the bare electronic excitations.

The states in the broadened region of the step have a finite dipole
moment and are involved in the condensate. The Fermi step moves
up through the energy distribution of the two-level oscillators as the
excitation is increased from ρex = −0.5 and the low-lying electronic
states saturate. At very large densities there are a large number of
photons, and the Fermi step is almost completely flat. Rather than
the electronic system completely saturating in the high density limit,
it approaches half-filling. This is because the half-filled state max-
imises the polarisation of the electronic states and hence minimises
the dipole interaction between the electronic states and the macro-
scopically occupied cavity mode.

Careful inspection of Fig. 2.2 reveals that the broadening of the
Fermi step produced by the photons does not increase monotonically
with density. This corresponds to a non-monotonic dependence of the
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Figure 2.3: The order parameter λ as a function of density, for
σ = 0.5 and ∆ = 0, 1 and 3. λ2 is the photon number per two-level
oscillator in the condensed state.

rescaled field amplitude λ on density. This dependence is illustrated in
Fig. 2.3. The field amplitude is related to the electronic polarisation
by the first of the equations (2.4). It is proportional to the electronic
polarisation and inversely proportional to the separation between the
chemical potential and the cavity mode. The electronic polarisation
depends on the density of states in the vicinity of the chemical po-
tential(Fig. 2.2); the peak in the density of states at the centre of the
exciton line produces the peak in Fig. 2.3.

2.4 Conclusions

We have shown how the ground state of the Dicke model at low densi-
ties may be generalised to allow for the saturation nonlinearity and the
inhomogeneous broadening. We found that, for the Gaussian density
of states we have chosen, the ground state of the model at fixed L is
always a condensate: neither the saturation nor the Gaussian broad-
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ening prevent condensation. The condensed state we have found is
characterised by coherence in both the photons and the electronic ex-
citations. The latter is evident, for example, in the broadening of
the Fermi distribution in figure 2.2. The presence of coherence in
the electronic states is in marked contrast with a conventional laser,
which has coherence in the photons but not in the gain medium. The
rigid coherence which is characteristic of Bose condensates [41] is, in
the present example, produced by the dipole coupling between the
electronic excitations and the photons.
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Chapter 3

An Exact Solution at Finite

Temperatures

In this chapter, we investigate the thermal equilibrium of the
model (1.19) at fixed excitation using a path-integral technique.

In this technique, the partition function is written as a functional inte-
gral, which can be evaluated for large N using a standard saddle-point
approach1. This gives a more rigorous derivation of the variational
equations (2.6–2.8), and demonstrates that the variational description
is essentially exact in the limit N → ∞. Furthermore, it generalises
the variational equations to finite temperatures, and allows us to in-
vestigate the phase diagram of our quasi-equilibrium problem.

The path-integral techniques used in this Chapter have previously
been used [49, 51] to calculate the partition function and excitation
energies in the absence of a constraint on the excitation number of
a simplification of the Dicke model (1.15). While the Hamiltonian of
the simplified model discussed in Refs. [49, 51] is given by (1.19) with
Eg(n) = Eg, the local constraint prohibiting two fermions on the same
site, (1.18), is replaced with a global constraint. In contrast, we retain
(1.18) as local constraints, as well as including a distribution of Eg
and a constraint on the excitation number.

Physically, the reason why the variational approach of Chapter
2 becomes exact as N → ∞ is that it corresponds to a mean-field
treatment of the interaction between electronic excitations. This in-
teraction, between a large number (N) of electronic excitations, is
mediated by a small number (one) of cavity modes. In the mean-field

1For general discussions of path-integrals, and saddle-point techniques for their
evaluation, see e.g. Refs. [47–50]; for an introduction to their application to inter-
acting systems of light and matter, see Ref. [49].



Bose Condensation in a Model Microcavity

treatment, each electronic excitation is coupled to the average field
produced in the cavity by the other electronic excitations. Replac-
ing the field in the cavity with its average value is justified because,
when there are a large number of electronic excitations contributing
to a small number of field modes, the fluctuations of the field will be
negligible.

The basic idea behind the mathematics of this chapter is to con-
struct the free energy in powers of N . The mean-field equations (2.6-
2.8), generalised to finite temperatures, are obtained by considering
the terms in the free energy which are proportional to N .

3.1 Path-integral Formulation

As in the previous chapter, we work in a grand-canonical ensemble,
using a chemical potential µex to constraint the excitation L. We
consider the partition function associated with this ensemble,

Q = Tr e−β(H−µexL).

The coherent-state path-integral formalism expresses this partition
function, for the model (1.19), as the constrained functional integral

Q =

∫

Dψ
∏

n

[Dηnδ(η̄nηn − 1)]e−S ,

with the action

S =

∫ β

0
dτψ̄(∂τ + ω̃c)ψ +

∑

n

η̄nMnηn.

We have introduced Nambu spinors

ηn =

(

bn
an

)
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on each fermion site to simplify the notation. The matrix Mn is

Mn =

(

∂τ + ε̃n gψ/
√
N

gψ̄/
√
N ∂τ − ε̃n

)

.

Rescaling the boson field ψ →
√
Nψ and transferring the fermionic

integrals into the action gives

Q =

∫

Dψ|J |e−NSeff ,

with an effective action

Seff =

∫ β

0
dτψ̄(∂τ + ω̃c)ψ − 1

N

∑

n

Sf,n, (3.1)

Sf,n = ln

∫

Dηnδ(η̄nηn − 1)e−
∫ β

0
η̄nPnηn ,

in which the Pn are the matrix operators Mn after rescaling the boson
field, and J is the trivial Jacobian produced by this rescaling.

3.2 The Extremal Equation

For large N , the dominant contribution to the partition function Q
comes from the functions ψ0(τ) which minimise the functional Seff .
Provided that they are sufficiently smooth [52], such functions obey
the Euler-Lagrange equation. For the action (3.1), this takes the form

(∂τ + ω̃c)ψ0(τ) =
1

N

∑

n

δSf,n

δψ̄

∣

∣

∣

∣

ψ(τ)=ψ0(τ)

= − g

N

∑

n

〈ān(τ)bn(τ)〉, (3.2)

where the right-hand side of this expression is the polarisation of a set
of two-level oscillators in thermal equilibrium driven by an external
field ψ0(τ). This polarisation can be finite because the field ψ0(τ)
modifies the eigenstates [53] of the electronic system. A thermal pop-
ulation of these new eigenstates can correspond to a finite polarisation
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of the original fermions. Equation (3.2) is a self-consistency condition:
the electromagnetic field is driven by the polarisation of the fermions,
which itself arises from the renormalisation of the fermions produced
by the photons.

Assuming a stationary solution, ψ0(τ) = λ, we calculate the po-
larisation term on the right of (3.2) by making a Bogolubov transfor-
mation

ηn =

(

cos(θ)eiφ − sin(θ)
sin(θ) cos(θ)e−iφ

)(

δn
γn

)

(3.3)

from the an and bn fermions to new fermions γn and δn. This trans-
formation diagonalises Pn when φ = arg λ and tan 2θ = g|λ|/ε̃n. The
δn and γn quasiparticles then have energies ±En respectively, with
En defined by equation (2.8). Since (3.3) is a rotation in η space, it
preserves the single occupancy constraints. Thermally populating the
γn and δn in accordance with the single occupancy constraint we have

〈ānbn〉 =
1

2
eiφ sin(2θ)〈δ̄nδn − γ̄nγn〉

=
1

2
eiφ sin(2θ) tanh(βEn),

and (3.2) becomes

ω̃cλ =
g2λ

2N

∑

n

1

En
tanh (βEn) . (3.4)

Equation (3.4) is the finite-temperature generalisation of the vari-
ational result (2.6). This generalisation is rather straightforward: we
have just acquired a tanh(βE) factor to describe the thermal excita-
tion of the two-level oscillators.

If we remove the constraint on the polariton number, by setting
µex = 0, and set Eg(n) = Eg, then (3.4) is the form originally derived
by Hepp and Lieb [44], and since rederived by many others, for the
unconstrained equilibrium of the Dicke model (1.15).

In the unconstrained problem considered by Hepp and Lieb, the
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existence of a condensed solution, λ 6= 0, requires

ωcEg
g2

< 1, (3.5)

which follows from (3.4) with µex = 0 and Eg(n) = Eg. However, it is
shown in Refs. [54] and [55] that the A2 terms of the minimal coupling
Hamiltonian, neglected in the model (1.15), modify the inequality
(3.5) in a way which is inconsistent with the Thomas-Kuhn-Reich
sum rule. This sum rule requires κEg/g

2 > 1, where κ is the coupling
constant for the A2 term, while the modified inequality (3.5) reads

(ωc + 2κ)Eg
g2

< 1. (3.6)

Since this inequality cannot be satisfied, the phase transition in the
unconstrained case is an unphysical artifact of the model (1.15). How-
ever, we do not believe that the A2 terms will prevent condensation
in the constrained problem, because the inequality corresponding to
(3.6) will be

(ω̃c + 2κ)(Eg − µex)

g2
< 1,

and the parameter µex is not restricted by the sum rule.

3.3 Effect of Fluctuations

Let us now consider the effect of small fluctuations δψ(τ) around the
mean-field solution. Expanding Seff to second order in a functional
Taylor series around the mean-field solution we have

Q ≈ e−NS0

∫

D(δψ)|J |e−NS2[δψ,δ̄ψ]. (3.7)

Here S0 is the action evaluated on the extremal trajectory and S2 is
the quadratic action from the second order term in the Taylor series.
S2 is the effective action for small fluctuations of the electromagnetic
field. The kernel of S2, G−1, is the inverse of the thermal Green’s
function for the photons.
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The integral over fluctuations in (3.7) contributes a term

1

N
ln detG−1

to the free energy density. Since the mean-field solution should be
a minimum of the action, the eigenvalues of G−1 should be positive.
Then ln detG−1 is finite as N → ∞, there is no fluctuation contribu-
tion to the free energy density in this limit, and the mean-field theory
becomes exact.

3.4 Effective Action for Fluctuations

However, we have yet to check whether the solutions to (3.4) are
actually minima of the action or merely extrema, i.e. whether the
mean-field solutions are stable against fluctuations. To check this, we
will need the effective action S2, which we derive in this section.

To obtain S2, we calculate the (functional) second derivatives of
Seff , and evaluate them on the extrema ψ(τ) = ψ0(τ) = λ. This
relates S2 to the two-time correlation functions for a set of two-level
oscillators in an external field λ. We work in frequency space, using
ω and ω′ to denote bosonic Matsubara frequencies. Because we are
working with a condensed system we find both normal,

∂2Seff

∂ψ(ω)∂ψ̄(ω′)
= βδ(ω′ − ω)

[

iω + ω̃c (3.8)

−g
2

N

∑

n

∫ β

0
e−iωτ (〈σ−n (τ)σ+

n (0)〉

− 〈σ−n 〉〈σ+
n 〉)
]

dτ,

46



An Exact Solution at Finite Temperatures

and anomalous,

∂2Seff

∂ψ(ω)∂ψ(ω′)
= −βg2δ(ω′ + ω) (3.9)

× 1

N

∑

n

∫ β

0
eiωτ (〈σ+

n (τ)σ+
n (0)〉

− 〈σ+
n 〉〈σ+

n 〉)dτ,

contributions to S2. The latter describe fluctuations which do not
conserve the number of excitations out of the condensate; i.e. those
in which an excitation either enters or leaves the condensate. Here
σ+
n = b†nan excites the nth two-level oscillator.

The integrands in (3.8) and (3.9) are the self-consistent suscep-
tibilities of the electronic system; these equations describe coupled
fluctuations of the cavity field and the electronic polarisation. They
are analogous to the Dyson-Gor’kov-Beliaev equations [49] of super-
conductivity and the theory of weakly-interacting Bose gases.

Calculating the electronic susceptibilities which appear in (3.8)
and (3.9) by directly solving the imaginary-time Heisenberg equation
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using the transformation (3.3), we find for S2

S2[δψ, δ̄ψ] = β
∑

ω

(

δ̄ψ(ω) δψ(−ω)
)

G−1

(

δψ(ω)
δ̄ψ(−ω)

)

,

G−1 =

(

K1 K2

K∗
2 K∗

1

)

, (3.10)

K1 = iω + ω̃c +
g2

N

∑

n

[

1

En
tanh (βEn)

× iε̃nω − 2ε̃n
2 − g2|λ|2

ω2 + 4E2
n

+ δωαn|λ|2g2

]

,

K2 =
g4λ2

N

∑

n

[

1

En(ω2 + 4E2
n)

tanh (βEn)

+δωαn

]

,

αn = − β

4E2
n

sech2 (βEn) .

Note that, for the condensed state, G−1 takes different forms at ω = 0
and at finite ω. This is because thermal fluctuations at ω = 0 include
both fluctuations of the order parameter and quasiparticle excitations
[56]. Only the latter appear at finite ω. In the normal state, λ = 0,
the effective action simplifies to

S2 = β
∑

ω

δ̄ψ(ω) [iω + ω̃c

+
1

N

∑

n

g2i

ω − 2iε̃n
tanh (βε̃n)

]

δψ(ω). (3.11)

3.5 Nature of the Extrema

We now use the expressions (3.10–3.11) to investigate the nature of
the extrema for the homogeneous model Eg(n) = Eg.

Considering first a condensed solution, λ 6= 0, we use the extremal
equation (3.4) to eliminate 1

En
tanh (βEn) from the matrix G−1. The
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eigenvalues of the resulting matrix are all strictly positive provided
that ω̃c > 0, except for a single zero eigenvalue at ωn = 0. From (3.4)
we see that the condensed solutions always have ω̃c > 0. Thus we
conclude that, at a condensed solution, the action has a minimum in
all but one direction, and is locally flat in this one direction.

We show in Appendix A that the single zero eigenvalue describes
a change in the overall phase of the condensate. It is the Goldstone
mode corresponding to the broken gauge symmetry of the conden-
sate. Because we are considering a broken symmetry state, we should
not integrate over these fluctuations when calculating the partition
function. Since the other eigenvalues of G−1 are always positive for
the condensed solutions, these solutions are stable against physical
fluctuations, and the mean-field theory is exact2.

Turning now to the normal solution, λ = 0, we find from (3.11)
that this is a minimum of the action unless

ω̃c <
g2

2ε̃
tanh(βε̃). (3.12)

This is just the condition for the extremal equation (3.4) to have a
condensed solution. Thus we have the usual scenario of a continuous
phase transition: there is a phase boundary (3.12), at which the nor-
mal state becomes unstable and a stable, condensed solution appears.

3.6 The Density Equation

In addition to the mean-field equation (3.4), we need the equation
relating the density ρex to the corresponding chemical potential µex.
This is related to the partition function in the standard way,

ρex =
1

βN

∂

∂µex
lnQ. (3.13)

The asymptotic form for the partition function is Q ∼ e−NS0 , where
S0 is the minimal action. Inserting this asymptotic form in (3.13)

2In Appendix A, we give a formal demonstration that the zero mode does not
contribute to the free energy density as N → ∞, so that the discussion of section
3.3 continues to apply.
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gives, for the stationary solution ψ0(τ) = λ,

ρex = |λ|2 − 1

2N

∑

n

ε̃n
En

tanh (βEn) , (3.14)

which is the generalisation of (2.7) to finite temperatures.

The first term in (3.14) is the contribution to the excitation den-
sity from the macroscopic electromagnetic field, while the second term
is the contribution from the thermal population of renormalised elec-
tronic excitations. In the absence of a macroscopic electromagnetic
field, λ = 0, both the photon contribution to ρex and the renormali-
sation effects vanish. The expression (3.14) is then the familiar form
for the excitation of a set of two-state oscillators.

3.7 The Result: A Phase Diagram

From (3.12) and (3.14) we have the critical temperature for conden-
sation, as a function of the excitation density, in the homogeneous
model. This critical temperature is

βcg =
4 tanh−1(2ρex)

∆ ±
√

∆2 − 8ρex

. (3.15)

Note that the transition temperature depends logarithmically on the
density, and its scale is set by the interaction strength g. This is in
contrast to a model of propagating, weakly-interacting bosons. In that
model, the transition temperature varies as a power law of the density
and its scale is set by the mass of the bosons.

At low densities, (3.15) is the phase boundary separating a pop-
ulation of electronic excitations with energy E0 from a population of
conventional bosonic polaritons with energy

ELPB =
1

2

[

(ωc + E0) − g
√

∆2 + 4
]

.

To see this, note that this transition would occur when the chemical
potential for the electronic excitations reaches ELPB, corresponding
to a density ρex + 0.5 ≈ e−βc(E0−ELPB), which is the low-density limit
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Figure 3.1: Phase boundaries for ∆ = 0(left panel), ∆ = 1(centre
panel) and ∆ = 3(right panel), and variances σ = 0(solid lines),
σ = 0.5(dotted lines) and σ = 1(dashed lines). For ∆ = 3, σ = 1
the upper branch of the phase boundary lies off the scale, while
for ∆ = 3, σ = 0.5 the lower branch is indistinguishable from the
homogeneous case.

of (3.15).

From the discussion of equation (3.12), we know that the homo-
geneous model has a continuous transition between the normal and
condensed states. We can obtain the phase boundary for the inho-
mogeneous model by assuming that it too has a continuous phase
transition. With this assumption, the phase boundary µc(βc) is given
by demanding that (3.4) have a repeated root λ = 0. Equation (3.14)
then gives ρc(βc). We follow this procedure numerically, assuming the
same Gaussian distribution for the exciton states as in section 2.3.

In Fig. 3.1 we plot the homogeneous phase boundaries (3.15), along
with our numerical results for the inhomogeneous model with σ = 0.5
and 1. On resonance, ∆ = 0, the transition temperature monoton-
ically increases with density. The system is always condensed for
ρex > 0, because to exceed this density would require a chemical po-
tential above the centre of the energy distribution of the electronic
excitations, and hence above the bosonic cavity mode. While for
∆ < 0(not illustrated) the phase boundary is qualitatively unchanged
from the resonant case, for ∆ > 0 we find reentrant behaviour. This
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Figure 3.2: Dependence of the critical density on the inhomoge-
neous broadening σ, for ∆ = 0(left panel) and ∆ = 1(right panel),
and β = 1(top curve), 3, 5, 7, 9, 11, 13(lowest curve).

behaviour is the result of the saturable nature of the electronic states.
It can be understood by considering the limits ρex → ±0.5 when
∆ � 0. Near the ρex = −0.5 limit, the normal state consists of a
small number of electronic excitations weakly interacting through the
cavity mode. They condense when their density exceeds a critical
value set by the strength of the effective interaction, determined by ∆
and g. Near the ρex = 0.5 limit, the electronic system is constrained
to be fully occupied, and the normal state consists of a small number
of holes in an otherwise completely excited electronic system. These
holes again interact through the photon field, and so the transition
occurs when the density of holes, 0.5 − ρex, exceeds a critical value.
For ∆ → ∞ the critical densities of holes and excitons are identical,
so the phase diagram is symmetric about ρ = 0. For finite ∆ the effec-
tive interaction is stronger for the holes than for excitons, since they
are nearer in energy to the cavity mode, and so the phase boundary
becomes skewed to the forms illustrated.

At temperatures which are high compared with the inhomogeneous
broadening σg, thermal fluctuations dominate over the inhomogeneous
linewidth. Thus at these temperatures the inhomogeneous broaden-

52



An Exact Solution at Finite Temperatures

ing has little effect, as can be seen in Fig. 3.1. However, at low tem-
peratures the inhomogeneous broadening suppresses condensation by
increasing the energy separation between the material excitations and
the photon mode, and so collapsing the phase boundaries towards
ρex = 0. The effects of inhomogeneous broadening are further illus-
trated in Fig. 3.2, which shows the dependence of the critical density
on σ at various temperatures for detunings ∆ = 0 and ∆ = 1.

3.8 Conclusions

By rederiving the variational equations (2.6–2.8) from an expansion
of the partition function in 1/N , we have generalised these equa-
tions to finite temperatures, and shown that they become exact as
N → ∞. We have seen that the polariton condensate is formed from
a thermalised population of electronic excitations, whose energies are
renormalised by the self-consistent field in the cavity. We have con-
structed the phase diagram of the model (1.19) at fixed excitation,
and found a phase boundary which is very different from that of the
weakly-interacting Bose gas; in particular, the scale of our critical
temperature is set by the interaction strength g. The phase boundary
displays unusual features (reentrance) due to the saturable nature of
the electronic states.
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Chapter 4

The Excitation Spectra

In this Chapter, we use the expressions derived in section 3.4
to study the excitation spectrum of the quasi-equilibrium states of

the model (1.19). The excitation spectra we calculate explain the form
of the phase diagrams in figure 3.1. The excitation spectra of the two
quasi-equilibrium states are different from each other, and also from
the excitation spectrum of a conventional laser. Since the excitation
spectrum is directly related to the optical absorption spectrum of the
cavity, which is an experimentally accessible quantity, these spectra
offer a clear experimental signature of polariton condensation.

The matrix G−1, given by (3.10), is the inverse of the thermal
Green’s function for the photons. We use the standard relations [50,
56] between thermal Green’s functions, retarded Green’s functions,
and excitation spectra, to extract the excitation spectra from (3.10).

4.1 Homogeneous Model

We begin with the normal state of the homogeneous model. The
inverse of the normal state Green’s function contained in (3.11) can
be written as a sum of simple poles

G(ωn) =
C+

iωn + E+
+

C−
iωn + E−

. (4.1)

The structure of this Green’s function is clear: we have two excita-
tions, with quasiparticle energies

E± + µex = [(ωc + Eg) ± g
√

∆2 − 8ρex]/2,
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and corresponding weights

C± = ±(2ε̃− E±)/(E− − E+).

These normal-state excitations are polaritons in the sense of Hop-
field [1]: coupled modes involving the linear response of the electronic
system around its equilibrium state. The gap in the spectrum is in-
creased over the bare detuning ∆ owing to the dipole coupling between
the excitons and the cavity mode. The presence of excitation in the
ground state, either driven by finite temperatures or by finite µex,
causes the two polariton branches to attract. This attraction is due
to the decrease in the polarisability of the electronic states as their
population increases and saturation occurs. It can also be understood
in terms of an angular momentum representation [26] for the collec-
tive states of the electronic system. The excitation of the electronic
states Sz forms the z component of an angular momentum and their
polarisation forms a raising operator S+. Thus the polarisability of
the electronic states is maximised at 〈Sz〉 = −N/2.

Since condensation is a phase transition, we expect a qualitatively
different excitation spectrum in the condensed state. From (3.10) and
(3.4), we find for the leading component of the matrix thermal Green’s
function

G11(iωn) =
ω̃c(ω

2 + 2g2|λ|2) − iω(ω2 + 4E2 + 2ω̃cε̃)

(iωn)2(iωn + ξ)(iωn − ξ)(1 + δωnα)
, (4.2)

with ξ =
√

(ω̃c + 2ε̃)2 + 4g2|λ|2.
The interpretation of this Green’s function is complicated because,

as we have already mentioned, it describes both quasiparticle excita-
tions and fluctuations of the order parameter. To rigorously obtain
the quasiparticle spectrum, we should extract the contribution to (4.2)
from the order parameter fluctuations, and analytically continue the
remainder to obtain the retarded Green’s function. Rather than fol-
low this procedure, we propose the following physically appealing if
mathematically näıve interpretation of (4.2): the Kronecker delta and
the (iωn)

2 terms in the denominator describe the condensate response,
leaving quasiparticle excitations at energies ±ξ. The (iωn)

2 is clearly

56



The Excitation Spectra

associated with the phase mode of the condensate, discussed in Ap-
pendix A, while the Kronecker delta is related to number fluctuations
of the condensate [57]. The excitations at energy ±ξ are coupled
exciton-photon modes in the presence of the macroscopic electromag-
netic field of the condensate. ξ is analogous to the pair breaking energy
in a superconductor: it is the energy required to extract an exciton-
photon complex from the condensate. Note that if we remove the
photon contribution to this energy, by setting ω̃c = 0, ξ becomes the
familiar expression [53] for the energy of an electron-hole pair in the
presence of an external macroscopic electromagnetic field at frequency
µex.
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Figure 4.1: Excitation energies and normal state chemical poten-
tial as a function of density for the homogeneous model at ∆ = 0
(left panel) and ∆ = 2 (right panel), both with gβ = 2. Thin solid
lines: normal state excitation energies. Thick solid lines: condensed
state excitation energies. Dashed lines: normal state chemical po-
tential. Dot-dashed line: condensed state chemical potential. The
shading marks the condensed region for this β.

In Fig. 4.1, we illustrate the evolution of the excitation energies of
the microcavity with increasing density. To explain the relationship
between the excitation energies and the phase diagram, we also plot
the chemical potentials for the normal and condensed states on this
figure. The left panel of this figure should be compared to the gβ = 2
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line of the corresponding phase diagram in Fig. 3.1.

When ∆ = 0 and ρex = −0.5 the system is in the normal state. In-
creasing ρex populates the electronic excitations, increasing the chem-
ical potential and decreasing the polariton splitting. Eventually the
chemical potential crosses the lower polariton branch from below and
the system condenses. At the critical density, the lower polariton
branch joins to the phase mode at the chemical potential, while the
upper branch joins to the “pair breaking” excitation. The excitation
which appears below the chemical potential has zero weight at the
transition. It corresponds to an excited state to ground state transi-
tion, where an exciton-photon complex is absorbed into the conden-
sate. There is no corresponding excitation in the normal state Green’s
function, because the ground state of the N +1 particle system(N +1
excitons) cannot be reached from the excited states of the N particle
system(N − 1 excitons and 1 polariton) by adding a photon.

The relationship between the excitation spectrum and the phase
diagram is slightly different when the transition occurs for ρex > 0.
For example, in the right panel of Fig. 4.1 the chemical potential
crosses the lower polariton branch at ρex = 0 without the condensate
appearing. It is not until the chemical potential crosses the upper
polariton branch that the transition occurs. This can be understood
by considering the signs of the quasiparticle weights C±. A positive
quasiparticle weight corresponds to absorption of an external field(a
particle-like transition), whereas a negative quasiparticle weight corre-
sponds to gain(a hole-like transition). For ρex > 0, the lower polariton
branch has a negative weight: it has become hole-like, and must be
below the chemical potential for stability. At the transition it is now
this lower branch which joins to the “pair forming” excitation of the
condensate, while the upper branch joins to the phase mode and the
“pair breaking” excitation appears above the phase mode.

4.2 Inhomogeneous Model

In the inhomogeneous model, the discrete excitation spectrum of the
homogeneous model is replaced by a continuous distribution of excita-
tion energies. Thus we study the spectral density of excitations, A(ω).
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The spectral density is related to the imaginary part of the retarded
Green’s function by

A(ω) = 2=GR(−ω + µex). (4.3)

It is proportional to the linear absorption coefficient of the cavity at
frequency ω, i.e. the imaginary part of the dielectric susceptibility.

To obtain A(ω) we require the retarded Green’s function GR. In
the normal state this is given by the straightforward analytical con-
tinuation

GR(ω) = lim
η→0+

G(iωn = ω − iη). (4.4)

However, in the condensed state we face the mathematical difficulties
already discussed for the homogeneous case. We avoid these difficulties
by simply assuming that the continuation (4.4) of the normal state
Green’s function also applies in the condensed state.

Inverting the G−1 contained in (3.10) and using (4.3) and (4.4)
expresses A(ω) in terms of integrals over the exciton distribution. We
evaluate these integrals in the limit η → 0 by setting η = 0 in the in-
tegrands and deforming the contour of integration around the poles of
the integrand on the real axis. The contribution to the integrals from
the detour around the poles can be performed analytically, leaving
a principal value integral which we evaluate numerically1. We again
assume a Gaussian distribution for the exciton energies.

Figure 4.2 shows the evolution of our calculated absorption spec-
tra, A(ω), as we increase the density through the transition, for gβ =
2, σ = 1, and ∆ = 0. The corresponding chemical potential is marked
as the dashed line. Near to zero density our calculations reproduce
the broadened polariton spectrum of Houdré et al.[29]. Comparison
with Fig. 4.1 emphasises that the positions of the polariton peaks
are largely unchanged from the homogeneous case. However, since
the polariton energies are now resonant with a significant density of

1This is the same procedure that leads to the standard identity

lim
η→0+

1

x ± iη
= P

1

x
∓ iπδ(x).
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Figure 4.2: Spectral functions A(ω) for ∆ = 0, gβ =
2, σ = 1 and chemical potentials (µex − Eg)/g =
−5,−1.5,−1.0,−0.76,−0.75,−0.70, increasing from top left to bot-
tom right through the transition at (µex − Eg/g = −0.76). The
top row of plots(red curves) are in the normal state, the bottom
left hand plot(green curve) at the transition and the remaining
plots(blue curves) in the condensed state. The dashed lines mark
the chemical potential.

electronic states they become broadened. Increasing the chemical po-
tential, but remaining in the normal state, we observe the thermal
occupation factors producing gain below the chemical potential and
increased absorption just above. The collapse of the polariton split-
ting evident in Fig. 4.1 is hardly noticeable at these low densities. As
the density is increased still further a pole appears in A(ω) at the
chemical potential; this marks the onset of condensation. Above the
critical density the coherent photon field, oscillating at frequency µex,
produces a gap of magnitude 4g|λ| in the spectrum. The peak on the
high energy side of the gap connects smoothly to the upper polariton
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peak of the normal state, just as in the homogeneous case. In the ho-
mogeneous case we noted the appearance of an excitation below the
chemical potential as we crossed the transition. This is still present
in the inhomogeneous case, but in Fig. 4.2 it is far too weak to be
visible.

4.3 Conclusions

We have calculated the excitation energies, and hence the absorption
spectra, of the quasi-equilibrium states of the model (1.19). In the
normal state the absorption spectrum resembles the conventional two-
peaked polariton spectrum, although the splitting may be reduced due
to the saturation nonlinearity and gain can appear below the chemical
potential due to the thermal occupations of the electronic states.

The absorption spectrum in the condensate displays a gap, of mag-
nitude ∼ g|λ|, around the chemical potential. This gap is a manifes-
tation of the renormalisation of the electronic states produced by the
coherent photons. In a conventional laser this renormalisation is neg-
ligible, and there is no gap in the spectrum. Thus the presence or
absence of a gap in the absorption spectrum is a clear, experimentally
accessible, distinction between condensation and lasing.

It is interesting to note that the non-equilibrium analog [58] of the
crossover illustrated in Fig. 4.1 and Fig. 4.2, from a two-peaked polari-
ton spectrum to a “Stark triplet”, has been observed experimentally
in Ref. [59]. In this experiment, the gapped absorption spectrum is
observed simultaneously with a short-pulse excitation. Thus there is
no thermalisation involved in producing this spectrum. It is the result
of coherence in the excitation pulse, rather than the spontaneous co-
herence of condensation. Nonetheless, these experiments demonstrate
that the renormalisation of the electronic states which is essential to
the present work can be realised experimentally.
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Chapter 5

Concluding Remarks

Real microcavities are far more complex than the ide-
alised model (1.19). However, like our model, they consist

of photons coupled to electronic excitations which are bosons at low
densities, but reveal their fermionic internal structure at high densi-
ties. Our work shows how the polariton condensate can be generalised
to allow for such fermionic internal structures. Away from the low-
density limit our generalised polaritons are not simple bosons. Their
fermionic internal structure, i.e. the saturation nonlinearity, produces
phenomena including (1)a collapse of the splitting between the peaks
in the absorption spectrum of the normal state with increasing density,
(2)a shift of the chemical potential of the condensate away from the
conventional bosonic polariton energy, and (3)an unusual reentrant
phase boundary for condensation. But it does not preclude conden-
sation.

The experimental work reported in Refs. [34–38, 60], on the quan-
tum statistical behaviour of polaritons, has focussed on low densities.
This is to avoid effects due to the fermionic structure of the excita-
tions. We hope that our work will stimulate interest in quantum sta-
tistical behaviour away from the low density limit. Indeed, because
Bose condensates are stabilised by interactions, i.e. nonlinearities, it
is necessary to go beyond the low-density, linear regime if a polariton
condensate is ever to be observed. While the idea of a Bose conden-
sate of cavity polaritons has been discussed for many years, this fact
seems to have largely been overlooked; only very recently [37, 38] have
bosonic effects been considered for interacting polaritons.

Experimental work has also concentrated on microcavities contain-
ing high-quality GaAs quantum wells. In these systems, the excitons
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are weakly-bound, and rather delocalised. Thus, while the saturation
nonlinearity discussed in this thesis is present for these excitations, it
will be accompanied by other nonlinearities produced by the overlap
of the wavefunctions of different excitons and the ionisation of exci-
tons [10, 11]. These effects may well prevent condensation, but can
be separated from the saturation nonlinearity of the present work by
considering systems with localised, tightly-bound excitons. Note also
that tightly-bound excitons have a large dipole coupling g, and hence
the transition temperature will be larger.

For real examples of localised oscillators, there will be some energy
Em above which delocalised states exist. The picture of a condensate
formed from localised oscillators then only holds when Em−µex is large
compared with β−1 and g. By considering Fig. 4.1, we deduce that to
completely realise a reentrant phase diagram like that shown in Fig.
3.1 requires an energy gap ∆E separating the localised excitations
from the delocalised excitations; this gap must be large compared
with g and β−1. Such a gap could occur in organic semiconductors
[15, 16]. In these systems, excitons are strongly bound and therefore
small(Frenkel). They readily self-trap on local lattice distortions and
on impurities in these, often highly disordered, materials. An energy
gap ∆E could exist in inorganic quantum wells if the excitons move in
a potential containing deep, well-separated traps, perhaps associated
with interface islands in narrow quantum wells [19, 61, 62]. However,
in both these examples it is likely that there will be several exciton
states on each site, rather than a single state as we have assumed.

The disordered quantum wells studied by Hegarty et al. [21] pro-
vide an example of a system without a gap separating the localised
from the delocalised excitations. These systems show a single inhomo-
geneously broadened exciton line, unlike the quantum wells mentioned
above. The “mobility edge” Em lies near to the centre of the exciton
line. One may be able to form a condensate which does not involve
delocalised excitations using this type of quantum well if the inhomo-
geneous broadening is large compared with g and β and the cavity
mode is placed low down in the exciton line. The transition would
then occur when the chemical potential is well separated from Em.

The Dicke model (1.15) is one of the basic models of laser physics.

64



Concluding Remarks

Similar two-level models have also been proposed to explain the co-
herent microwave emission from Josephson junction arrays [63]. Since
the signature of a Bose condensate is coherence, and in a polariton
condensate this coherence will appear in the photons, it is important
to understand the distinction between lasing and polariton condensa-
tion. The distinction is that, unlike the laser, the polariton condensate
has coherence in the electronic states [64]. As we have shown, the ab-
sorption spectrum in the condensed state of the model (1.19) has a
gap. This gap is absent in a conventional laser, and so provides a clear
experimental signature of polariton condensation.

5.1 Future Directions

5.1.1 Relation to Lasers

In a conventional laser, the gap in the absorption spectrum is de-
stroyed because the polarisation in the gain medium is assumed to
be very heavily damped [65]. We suggest that the relationship be-
tween polariton condensation and lasing should be explored by adding
processes which damp the polarisation of the electronic states to the
model (1.19). Such processes are analogous to the phase-breaking pro-
cesses familiar in superconductors, which are usually associated with
magnetic impurities [66, 67]. These impurities can actually produce a
regime of gapless superconductivity, where there is an order parameter
but no gap in the excitation spectrum. This suggests that the rela-
tionship between polariton condensation and lasing may be analogous
to the relationship between normal and gapless superconductors.

5.1.2 Non-equilibrium: Finite Lifetimes

More generally, we note that the most serious difficulty in making a
polariton condensate experimentally is likely to be achieving thermal
equilibrium before the excitation escapes from the cavity. To help to
establish whether this is possible, we suggest that a non-equilibrium
generalisation of the present theory should be constructed. Such a
theory should be constructed by adding reservoirs [68] to the model
(1.19), to represent, for example, the electromagnetic field outside the
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cavity, and solving the dynamics of the model in the presence of these
reservoirs. This theory could be used to explore the effects of finite
lifetimes of the excitations on the polariton condensate.

While we leave a detailed investigation of whether the polariton
condensate survives away from equilibrium for future work, we sug-
gest one straightforward inequality which can be used to rule out the
possibility of polariton condensation in some cases. The condensate
has a natural energy scale g|λ|. A lifetime τ for the excitation corre-
sponds to an energy h/τ . Thus we suggest that to realise the polariton
condensate will require

g|λ| � h/τ. (5.1)

The lifetime of an excitation in the condensate, τ , is unknown. In
principle it could be different from the lifetime of an excitation in
the normal state, and should be calculated using the non-equilibrium
theory. But it seems unlikely that it could exceed τc, the lifetime
of the cavity mode produced by the finite reflectivity of the mirrors.
Recall also that |λ|2 is the number of photons per possible electronic
excitation in the cavity, which must be less than d = ρex + 1/2, the
total number of excitations per possible electronic excitation. Using
these two bounds in (5.1) we see that the condensate cannot exist
unless

g
√
d� h/τc. (5.2)

5.1.3 Non-equilibrium: Coherent Pumping

As well as coupling the model (1.19) to thermal reservoirs, it would
be useful to develop a non-equilibrium theory which allowed for co-
herent external fields. Such a theory would permit the study of driven
analogs [58, 64] of Bose condensation in microcavities [37, 38, 59]. In
such analogs, the coherence does not appear spontaneously, but is,
at least partly, inherited from an external pump. A theory of such
driven condensates would also help to elucidate the connections be-
tween Bose condensation of polaritons and classical nonlinear optics
[69].
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5.1.4 Equilibrium Generalisations

Returning to the equilibrium condensate, there are several generalisa-
tions which would make the model (1.19) more realistic for particular
systems. For high-quality quantum wells, one could incorporate direct
interactions between excitons at a mean-field level [66]. For organics,
and other materials with Frenkel excitons, one could allow for the
possibility that there are several excitations on each site, rather than
the single excitation of the model (1.19). Similar generalisations could
also be made for disordered quantum wells; however, the structure of
the electronic states in these systems is not yet fully understood, so
quantitative generalisations are unlikely to be possible.

Finally, it would be interesting to study the model which corre-
sponds to (1.19) with propagating photons which have a very small
mass. We suspect that this problem could be solved by using the
mass of the photons to construct a small parameter, and that this will
give a mean-field theory identical to the one given in this thesis but
controlled by the mass of the photon rather than 1/N . This would
provide a rigorous justification for our neglect of propagating photons
in the model (1.19), even in a perfect, infinite planar cavity.

5.2 Concluding Summary

We have studied Bose condensation of cavity polaritons using the ide-
alised model (1.19). Using a variational approach similar to the BCS
theory of superconductivity, we have shown that the ground state of
(1.19), in the presence of a chemical potential to constrain the polari-
ton number, is a polariton condensate. This polariton condensate is a
superposition of coherent photons and coherent electronic excitations,
and is favoured over the normal state by the dipole interaction. We
have shown

• How to generalise the concept of a polariton condensate from
the low-density regime to include the fermionic structure of the
electronic excitations.

• How to include an energy distribution for the electronic excita-
tions in the description of the polariton condensate.
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• That, in general, neither the fermionic structure nor the energy
distribution of the electronic states precludes the existence of a
polariton condensate.

We have also applied a path-integral technique to investigate the ther-
modynamics of the model (1.19), again using a chemical potential to
produce a population of polaritons. The path-integral technique be-
comes exact in the limit N → ∞; such exact solutions are rather un-
usual in models with local constraints like (1.18). The path-integral
technique has shown

• That the variational approach was an exact description of the
ground state when there are a large number of electronic oscil-
lators in the cavity.

• That, at finite temperatures, there is a phase boundary separat-
ing the polariton condensate from an incoherent population of
electronic excitations.

• That this phase boundary has unusual reentrant behaviour pro-
duced by the fermionic structure of the electronic excitations.

• That the scale of the critical temperature for condensation is set
by the strength of the dipole interaction g.

• That the polariton condensate is constructed from a thermalised
population of electronic excitations, renormalised by the electro-
magnetic field in the cavity.

Finally, by studying the excitation spectra, we have

• Explained the origin of the phase diagrams, and

• Shown that the absorption spectrum of the condensate has a
gap, and could therefore be used to distinguish condensation
from lasing.
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Appendix A

The Goldstone Mode

In this appendix, we investigate the zero eigenvalue of G−1 that
appeared while studying the stability of the condensate in the

homogeneous case. We show that this zero is also present in the
inhomogeneous model, and that it describes phase fluctuations of the
condensate. It is thus the Goldstone mode reflecting the degeneracy
of the ground state with respect to the phase of the order parameter.
We then argue that this zero eigenvalue does not contribute to the free
energy density in the thermodynamic limit. Although the physics we
discuss in this appendix is well understood in general, it is particularly
transparent in our simple model.

We note that, at ω = 0, K1 is real and positive. The eigenvalues of
G−1 are then K1 ± |K2|. Since from the explicit forms of K1, K2 and
the extremal equation (3.4) we have |K2| = K1, as required in general
by the Hugenholtz-Pines relation [49, 70], G−1 has a zero eigenvalue.

To illustrate that the zero eigenvalue is the phase mode of the
condensate, note that since argK2 = 2 arg λ = 2φ we can write

G−1 ∝
(

1 e2iφ

e−2iφ 1

)

.

The eigenvector of this matrix with zero eigenvalue is perpendicular
in the complex plane to the order parameter λ.

Since we are considering a broken symmetry system, we should not
include states with different phases of the order parameter when cal-
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culating the partition function. Thus on physical grounds, we should
discard this zero mode when computing the partition function.

A formal approach which allows calculations in the presence of
this zero eigenvalue is to introduce symmetry breaking terms which
are taken to zero after the thermodynamic limit. This is the standard
method for applying statistical mechanics to broken symmetry sys-
tems [50]. The appropriate symmetry breaking terms for a Bose con-
densed system pin the phase of the order parameter. They are sources
and sinks for the photons, and appear in the effective action Seff as

1√
N

(

ψ̄J + J̄ψ
)

. These terms do not contribute directly to (3.10), but

appear as a source term in (3.4). The original zero eigenvalue of G−1

is now K1 − |K2| = −J/(ψ0

√
N). Since for the equilibrium solution

we must have φ − arg J = π, the contribution of the original zero
eigenvalue to the free energy density is proportional to

lim
J→0

lim
N→∞

1

N
ln

( |J |
|λ|

√
N

)

= 0.
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A. Imamoğlu, “Transition from a Microcavity Exciton Polariton
to a Photon Laser”, Phys. Rev. A 55(6), 4632–4635 (1997).

[61] D. Gammon, E. S. Snow, B. V. Shanabrook, D. S. Katzer, and
D. Park, “Fine Structure Splitting in the Optical Spectra of
Single GaAs Quantum Dots”, Phys. Rev. Lett. 76(16), 3005–
3008 (1996).

[62] N. H. Bonadeo, G. Chen, D. Gammon, D. S. Katzer, D. Park,
and D. G. Steel, “Nonlinear Nano-Optics: Probing One Exciton
at a Time”, Phys. Rev. Lett. 81(13), 2759–2762 (1998).

[63] P. Barbara, A. B. Cawthorne, S. V. Shitov, and C. J. Lobb,
“Stimulated Emission and Amplification in Josephson Junction
Arrays”, Phys. Rev. Lett. 82(9), 1963–1966 (2000).

[64] S. A. Moskalenko and D. W. Snoke, Bose-Einstein Condensation
of Excitons and Biexcitons, CUP, Cambridge, U.K., 2000.

77



Bose Condensation in a Model Microcavity

[65] H. Haken, “Cooperative Phenomena in Systems Far From Ther-
mal Equilibrium and in Nonphysical Systems”, Rev. Mod. Phys.
47, 67 (1975).

[66] P. B. Littlewood and P. Eastham, Exciton Condensation, in
Optical Properties of Semiconductor Nanostructures, edited by
M. L. Sadowski, M. Potemski, and M. Grynberg, volume 81 of
NATO Science High Technology, pages 133–141, Dordrecht, The
Netherlands, 2000, Kluwer.

[67] K. Maki, “Gapless Superconductivity”, in Superconductivity,
edited by R. D. Parks, volume 2, chapter 18, pages 1035–1105,
Marcel Dekker, Inc., New York, 1969.

[68] A. O. Caldeira and A. J. Leggett, “Influence of Dissipation on
Quantum Tunnelling in Macroscopic Systems”, Phys. Rev. Lett.
46(4), 211–214 (1981).

[69] L. V. Keldysh, “Macroscopic Coherent States of Excitons in
Semiconductors”, in Bose-Einstein Condensation, edited by
A. Griffin, D. W. Snoke, and A. Stringari, Cambridge Univer-
sity Press, Cambridge, U.K., 1995.

[70] N. M. Hugenholtz and D. Pines, “Ground-state Energy and Ex-
citation Spectrum of a System of Interacting Bosons”, Phys. Rev.
116(3), 489–506 (1959).

78


