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Summary

In this thesis, we explore theoretically the thermodynamics of heat exchange in laser
driven solid state systems. In particular, we focus on the heat exchanged between
phonons and a semiconductor quantum dot exciton, driven by both shaped laser pulses
and continuous wave lasers, examining how the formation of strong-field dressed states
allows a solid state emitter to absorb or emit acoustic phonons in a controlled way.
We discuss these effects from the perspective of quantum thermodynamics and outline
the possibility of using them to implement controlled thermodynamic processes and for
optical cooling of solids to low temperatures, proposing a laser cooling protocol that
makes active use of strong coherent driving.

We derive a secularised Bloch-Redfield master equation to calculate the dynamics of an
exciton in a GaAs/InGaAs quantum dot, driven by a linearly chirped Gaussian laser
pulse. Using full counting statistics, we compute the statistics of the heat transfer
between the exciton and the phonon bath, along with the statistics of the work done
on the exciton by the driving laser. We construct a thermodynamic cycle, where the
laser driving of the exciton forms the hot stroke. Analysing the efficiency of this engine,
we identify parameter regimes of the driving laser which lead to quasi reversible heat
absorption from the phonons by the quantum dot exciton. We find that certain classes
of linearly chirped pulses result in isothermal heat transfers, with heat being absorbed
by the exciton when it has a temperature close to that of the phonon bath.

We extend the model of a heat engine composed of a laser driven exciton coupled to
phonons to include a driving laser which has a more complex time dependent driving
frequency, beyond that of simple linear chirping. Using numerical optimisation meth-
ods, we maximise the efficiency with respect to the temporal profile of the frequency
of the driving laser. We find that it is always possible to achieve higher efficiencies
compared to a linearly chirped pulse, with most improvement found for short Gaussian
pulses. Moreover, we find that the frequency profiles of the laser which maximise the
efficiency of the heat engine, also lead to increased heat absorption, when compared
to their linearly chirped counterparts. These optimised shapes all result in a longer
duration for isothermal heat transfer, leading to increased efficiencies.

To analyse the heat absorption that arises from steady state driving, we derive a

iii



secularised Bloch-Redfield master equation, which includes the dissipation due to the
spontaneous emission of photons by the quantum dot. We analytically solve for the
steady state of the system, and write an analytical expression for the power of the heat
absorption from the phonons. The dependence of the heat absorption is explicitly seen
in the analytical expression, where the role of the effective temperature of the photon
scattering processes is evident. We identify the region in the space of parameters of the
driving laser where heat absorption from the phonons is achieved. Finally, we calculate
the full probability distribution for the number of excitations exchanged between the
exciton and each bath, which appears to have a Gaussian structure at late times, with
a mean which shifts linearly in time.

We extend the quantum dot heat pumping model to treat heat pumping of phonons
using steady state laser driving of Silicon vacancy centres in diamond. We find that the
heat absorption from the phonons is strong enough to counteract the background heat-
ing of the material due to the driving laser. With this net heat absorption, we propose
a laser cooling protocol based on this driven silicon vacancy platform. In this instance,
we use a non-secular Bloch-Redfield master equation along with full counting statistics
to calculate the cooling spectrum. The cooling spectra exhibit significant changes with
increasing driving strength, where the cooling power is significantly increased and cool-
ing is sustained over a much larger range of driving frequencies. Finally, we compare
the cooling spectra from a secular, non-secular and phenomenological Lindblad model,
and identify regimes where each theory is appropriate. We find that the secular theory
is inappropriate at weak driving, where the secular approximation is invalid due to
degeneracies in the Hamiltonian. At strong driving, where the secular approximation
is valid, the secular and non-secular theories agree, and at weak driving the non-secular
theory and the phenomenological Lindblad theory agree.
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1 Introduction

Thermodynamics is a corner stone of classical physics, with four laws governing the
behaviour of heat, work and energy in any system. The theory makes no assumptions
about the microscopic details of the systems which it describes. Thermodynamics
has been the driving force behind technological marvels of the industrial revolution,
birthing engines and refrigerators. Now with the ability to create and manipulate
systems at the nanoscale which exhibit quantum mechanical features, the interplay be-
tween quantum mechanics and thermodynamics is now feasibly addressed in laboratory
experiments. Technical questions such as how heat and work are defined in a quantum
system and how the third law is satisfied in microscopic systems, which are subject
to quantum and thermal fluctuations, are currently active areas of research. Beyond
such theoretical questions, there is active research into building the next generation
of thermal machines, those composed of microscopic systems whose dynamics are gov-
erned by the laws of quantum physics. Such systems have been thriving in nature for
hundreds of millions of years, with claims that processes such as photosynthesis exploit
quantum coherence to achieve almost maximum efficiencies in the conversion of solar
energy to chemical energy [1]. An understanding of how this process works is still not
yet complete, and building equivalently efficient quantum thermal machines is in its
infancy. In this light, building models of elementary thermal machines composed of
simple quantum systems coupled to thermal baths can lead to insights into building
more complicated thermal machines.

In this thesis, we examine the thermodynamics of heat exchange between laser driven
solid state emitters and the phonons with which they interact. We begin by exploring
the potential for typical quantum control schemes used for the state preparation of
quantum dot excitons, to induce qausi-reversible heat transfer between the exciton
and phonons. Once we understand the role of the strong-field dressed state formation
on the control of the heat flows, we begin to design more efficient thermodynamic
protocols. We use numerical optimisation methods to show that, in principle, one can
achieve a significantly higher degree of reversibility in the transfer of heat with more
complex and non-trivial shaped laser pulses.

Moving from time dependent control of excitons in semiconductor quantum dots, we
focus on the steady state heat pumping that results from the action of a continuous
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wave driving laser. We consider the driven exciton as a heat pump, absorbing heat
from the phonon modes of the lattice and emitting this heat into the electromagnetic
environment, analysing the steady state mean heat power, along with the statistical
properties of the heat transfer.

We then extend our understanding of heat pumping in a quantum dot to the steady
state driving of silicon vacancy centres in diamond, where we find the heat absorption
from the phonons can overcome the background heating effect due to the driving laser.
We propose a laser cooling protocol which makes active use of the strong-field dressed
states, resulting from the strong coherent driving. This leads to increased cooling
powers and to an overall more robust solid state laser cooling mechanism. We comment
on the use of secular and non-secular master equations to model such laser cooling
processes, and present results which suggest the secular approximation may not always
be appropriate.

In the remainder of this chapter, we introduce the relevant concepts that underpin the
results presented. In section 1.1 we provide a general overview of the optical excitation
of quantum dots, in both an isolated setting and then in a more realistic environment
when the interaction between the exciton and the phonons is considered. In section 1.2
we introduce the basics of quantum thermodynamics. We discuss the elementary model
of a maser as a heat engine, which introduces the concept of a virtual temperature of
a qubit, before discussing a more dynamical perspective of quantum thermodynamics.
We introduce the field of master equations for open quantum systems, a methodology
which underpins all results in this thesis and finally discuss the concept of full counting
statistics, which allows for the study of the statistical properties of heat and work in
open quantum systems. We discuss the field of laser cooling of solids in section 1.3,
repeating a classic derivation of the four level model of laser cooling, which is a useful
comparison to the strongly and coherently driven silicon vacancy model we report in
the results. Lastly, in section 1.4 we give a detailed outline of the remainder of the
thesis.
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1.1 Semiconductor Quantum Dots and Excitons

The majority of the work in this thesis is concerned with the optical excitation of
self-assembled semiconductor quantum dots, with both conventional continuous wave
lasers and with more advanced excitation schemes that are generally encountered in
the context of quantum control experiments. It is then instructive to review both
semiconductor quantum dots themselves, their interactions with light, the intrinsic
electron-phonon interaction and the typical quantum control techniques used for state
preparation of quantum dot excitons. These will form the basic theoretical background
for our results on the thermodynamic properties of laser controlled heat flows in quan-
tum dots.

1.1.1 Introduction to Quantum Dots and Excitons

Semiconductor quantum dots (QD) are zero-dimensional heterostructures, meaning
they have a nanoscale extent in all three spatial dimensions. In this thesis, we con-
sider self-assembled semiconductor quantum dots, which are typically grown using the
Stranski-Krastanov mechanism. This involves of the deposition of the QD material on
a crystal substrate of the host material, layer by layer. Beyond a critical thickness of
the layers, growth continues through nucleation, where the formation of nano-islands
occurs. The islands are then embedded in the host medium [2]. Choosing a QD ma-
terial such that it has a lower band gap than the host medium results in a confined
system which has discrete states, instead of energy bands, as in conventional solid
state systems. These states are confined to the extent of the quantum dot, no longer
of the form of delocalised Bloch functions, resulting in a potential landscape sketched
in fig. 1.1 seen by the occupying electrons. This energy level structure can be tuned by
varying the materials used in order to alter the magnitude of the confining potentials,
or by varying the shape and size of the dot in the growth process. The tunability of
these heterostructures makes them very useful for many applications, e.g., quantum dot
lasers [3], single photon sources [4, 5], quantum information processing and quantum
computing [6, 7, 8, 9].

The lowest energy optically active excitation in a semiconductor quantum dot is known
as an exciton. The annihilation of an incoming photon, results in a promotion of an
electron from it’s valence state to the conduction state, which we regard as the creation
of an exciton. A bosonic quasi-particle, the exciton is composed of a Coulomb bound
electron-hole pair. Excitons are not unique to quantum dots, and also form in bulk
semiconductors, between carriers in the conduction and valence bands. However, their
binding energies in bulk tend to be very low, and the bound pair thermally dissociates
into free carriers [10]. In QDs however, excitons are much more stable, with binding
energies often on the order of meV [11]. This increased binding energy is due to the
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Figure 1.1: Schematic of band structure for a QD in the growth direction, with the
resulting discrete states (dashed)

confinement effect of the QD.

Typically, the lowest conduction state has a spin ±1/2, with the uppermost valence
state having a spin of ±3/2 [12]. This leads to four possible spin states for the exciton,
antiparallel spin with total spin ±1, and parallel spin with total spin ±2. Including
the ground state of the QD and the state with two excitons, there are six excitonic
states, which we refer to as the ground state |g⟩, the bright states |b±⟩, the dark states
|d±⟩ and the biexciton state |B⟩ [12]. The bright exciton state is named as such due
to the ability to create such a state through the excitation of the QD with circularly
polarised light. Correspondingly, it is not possible to create either of the dark states
through optical excitation.

The optical activity of these states allows for the optical control of the excitonic degrees
of freedom, a crucial ingredient in the development of quantum technologies built from
QDs. Beyond control of the excitonic degrees of freedom, quantum control experiments
have also been carried out using the internal spin states of QDs [13, 14, 15], with the
electron spin having much longer coherence time than that of the exciton in QDs,
typically over one microsecond. Quantum dots do however suffer from some limitations,
specifically in terms of scalability. If one is to use many QD qubits, single qubit
operations require the individual addressing of a single nanostructure with lasers, which
typically have beam waists on the order of several optical wavelengths, i.e. several
hundred nanometers. For sizeable qubit interactions, the inter-dot spacing needs to be
on the order of only several nanometers [16].
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1.1.2 Optical Excitation and Control of Semiconductor Quan-

tum Dots

In many applications of quantum dots in technology, the ability to prepare and control
excitonic states is required. This is generally achieved through the use of lasers. In
this thesis, we will be concerned with the use of lasers to control the flow of energy
from phonon modes to the quantum dot. With this in mind, it is useful to review the
fundamentals of the optical excitation of quantum dots, specifically under the influence
of quantum control based laser schemes. We will initially review optical control of
quantum dots in the ideal case of isolated electronic degrees of freedom. Later, we will
return to optical control methods, paying special attention to the interaction between
the exciton and the phonons.

In this thesis we will use optical excitation schemes exclusively, as such we can neglect
the dark state. Moreover, by choosing to work with lasers whose frequencies are not
tuned close to the biexciton transition frequency, we can neglect the biexciton states.
Lastly, we can specifically optically excite one of the bright states by using circularly
polarised light. As such, we can treat the excitonic degrees of freedom as a two level
system (TLS), with the ground state denoted |0⟩ and the single exciton state denoted
|1⟩. Driving the exciton transition with a constant frequency and constant amplitude
laser, we can write the Hamiltonian for the system as

H =
∆

2
(|1⟩ ⟨1| − |0⟩ ⟨0|)− Ω

2
(|0⟩ ⟨1|+ |1⟩ ⟨0|) (1.1)

in a frame rotating at the laser frequency and where we have made the rotating wave
approximation. ∆ = Ex − ωL, which we refer to as the detuning i.e., the differ-
ence between the exciton transition energy and the frequency of the applied field, and
Ω = E0 ⟨0| ⃗̂d · e⃗ |1⟩, which is known as the Rabi frequency. We assume an electric field
of the form E⃗(t) = e⃗E0 cos (ωt), with e⃗ the polarisation vector of the field. Note, a
detailed derivation of this Hamiltonian will be presented in chapter 2, where we explic-
itly perform the unitary transformation and rotating wave approximation mentioned
above.

The eigenstates of this Hamiltonian are known as laser dressed states, denoted as |+⟩
and |−⟩, with energies +Λ/2 and −Λ/2, where Λ =

√
∆2 + Ω2. Expanded into the

original basis states, these dressed states are of the form

|−⟩ = cos (ϕ) |0⟩+ sin (ϕ) |1⟩

|+⟩ = − sin (ϕ) |0⟩+ cos (ϕ) |1⟩ (1.2)

with tanϕ = Ω
Λ+∆

. For resonant excitation, we have ϕ = π/4, which results in perfectly
even superpositions of the original states, as expected.
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In the absence of any influence from the phonons, we can solve for the dynamics of the
exciton population p1,1 = ⟨|1⟩ ⟨1|⟩ and the polarisation p0,1 = ⟨|0⟩ ⟨1|⟩ using the optical
Bloch equations[17],

d

dt
p1,1 = −iΩ

2

(
p0,1 − p∗0,1

)
, (1.3)

d

dt
p0,1 = i∆p0,1 − i

Ω

2
(2p1,1 − 1) , (1.4)

where we have set ℏ = 1.

At this point, it is instructive to specifically examine three different methods of optical
excitation of quantum dots: continuous wave excitation, constant frequency laser pulses
and linearly chirped laser pulses. Some important changes occur when we consider laser
pulses. The electric field envelope as now time dependent, E0 → E0(t), and as such, so
too is the Rabi frequency, Ω → Ω(t). For laser pulses with time dependent frequency,
the detuning will also be time dependent, ∆ → ∆(t) = Ex − ω(t). Both of these
changes result in dressed states which now have time dependent decomposition into
the basis exciton states, and a time dependent dressed state splitting Λ(t). Eqns. 1.3
and 1.4 remain valid, the only changes being the time dependence of Rabi frequency and
detuning. Again, we will derive the Hamiltonian for laser pulses with time dependent
frequencies in full in chapter 2. With these optical Bloch equations, we can begin to
unwrap the basis of optical control of quantum dots.

From eqns. 1.3 and 1.4 we can see that under the influence of a resonant continuous
wave (CW) laser, the exciton population oscillates with a frequency Ω. These are the
well known Rabi oscillations, which are shown in fig. 1.2. Once the laser is switched
off, i.e. Ω = 0, the exciton population remains unchanged. The amplitude of the
occupation oscillation is one in the case of a resonant excitation, but decreases as the
laser is detuned further and further from the exciton transition frequency.

In practice, CW lasers are not used for state preparation in QD excitons, laser pulses
are often used instead. In this case, the Rabi frequency becomes a time dependent
quantity, Ω(t), due to the time dependence of the envelope function of the electric
field. Using a Gaussian laser pulse, the Rabi frequency will also have a Gaussian
temporal structure. In fact, not much is changed as we shift from a CW laser driving
to that of a laser pulse. We define a quantity known as the pulse area as the time
integrated Rabi frequency [12],

θ =

∫ +∞

−∞
Ω(t)dt.

The exciton occupation is an oscillatory function of the pulse area, identical to the
case of CW laser, the Rabi oscillations we mentioned above. To generate the single
exciton state, |1⟩, with unit probability, a pulse area which is an odd integer multiple
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of π is needed. This method of generating excitons is limited, with the final occupation
sensitive to fluctuations in both the frequency of the applied laser and to the pulse
area. Despite this sensitivity to both the pulse area and driving frequency, population
inversion of excitons has been achieved in QDs via Rabi rotations [18, 19, 20, 21]. If
one considers ensembles of quantum dots, population inversion of the entire ensemble
is impossible. This is due to the variation of the energy of the excitons and their
coupling to the laser, owing to inhomogeneities in the growth process [22]. This spread
of exciton energies is known as inhomogeneous broadening. When one considers the
effect of the phonons, this method is in general even further limited, as we will see
later. We note that the pulse area analysis breaks down in the limit of ultra-short
pulses [23, 24], where the slowly varying envelope approximation, used to derive the
coupled matter-Maxwell equations, is no longer valid.
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Figure 1.2: Exciton occupation as a function of pulse area for a resonant CW laser/pulse
(dashed) and for ARP protocol (solid).

Using chirped laser pulses, a significantly more robust method of optical excitation
can be constructed. This is known as the method of adiabatic rapid passage (ARP). A
linearly chirped laser pulse refers to one whose instantaneous frequency varies linearly in
time. Now, both the frequency of the laser and the Rabi frequency are time dependent
quantities, ωl(t) and Ω(t). To generate such pulses, a transform limited Gaussian
pulse is passed through a chirp filter. The result of this process is an increase in the
temporal width τ , from its original transform limited value τ0, and a frequency that
varies linearly in time. The complex electric field is

E(t) =
θ√

2πτ0τ
e−t2/2τ2e−i(ωlt+

1
2
at2). (1.5)

7



For the detuning and the instantaneous Rabi frequency, we have

∆(t) = − at

a2 + τ 40
(1.6)

Ω(t) =
θ√

2π
√
a2 + τ 40

e

t2τ20

2(a2+τ40) .

The temporal width of the chirped pulse is related to the temporal width of the
unchirped original pulse through [25]

τ 2 = τ 20 + a2/τ 20 .

Using a chirped pulse leads to a much more robust method for the creation of an
exciton in the QD. Fig. 1.2 shows the exciton occupation under the case of an ARP
protocol. The robustness is easily understood if we examine the structure of the dressed
states. We wrote the dressed states in eqn. 1.2. Writing them explicitly in terms of
the instantaneous detuning, ∆(t) and Rabi frequency, Ω(t), we have

|−⟩ =

√(
Λ(t)−∆(t)

2Λ(t)

)
|0⟩+

√(
Λ(t) + ∆(t)

2Λ(t)

)
|1⟩ (1.7)

|+⟩ = −

√(
Λ(t) + ∆(t)

2Λ(t)

)
|0⟩+

√(
Λ(t)−∆(t)

2Λ(t)

)
|1⟩ .

As t → −∞, Ω → 0 and the dressed states each map to one of the original exciton
basis states. For positive spectral chirp, a > 0, we have that |+⟩t→−∞ = |0⟩ and
|−⟩t→−∞ = |1⟩. For negative spectral chirp, we have the opposite. Similarly, long
after the pulse, as t → +∞, for the positive spectral chirp we have |+⟩t→+∞ = |1⟩
and |−⟩t→+∞ = |0⟩, while for negative spectral chirp we have the opposite. Crucially,
each of the dressed states map to a different original exciton state, before and after
the pulse. Fig. 1.3 shows dressed state energies under a generic ARP protocol, with
the mappings to the original exciton basis states indicated for both positive a negative
spectral chirp.

Under the action of such an ARP protocol, the system can adiabatically evolve along
one of the dressed state trajectories, taking the system from |0⟩ to |1⟩. The sign of
the chirping simply determines which of the dressed states the system evolves along.
Ignoring the effect of the phonons for now, we can see that this protocol always takes
the system from |0⟩ to |1⟩, regardless of the sign of chirp, as long as parameters are
chosen such that the adiabatic approximation is valid. The condition for the adiabatic
approximation is Λ(t) ≫ | d

dt
θphase(t)|, where θphase(t) = tan−1 (∆(t)/Ω(t)) is the phase

angle. [25]. Fig 1.4 shows a calculation of the final exciton probability as a function
of these two parameters, in the absence of the interaction between the exciton and
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Figure 1.3: Generic dressed state splitting during an ARP driving sequence. The blue
shaded region depicts the pulse amplitude. The states in blue (red) denote the dressed
state mappings before and after the pulse for the case of negative (positive) spectral
chirp.

phonons. This protocol is robust against fluctuations in both the pulse area θ and the
chirp a. This robustness is predicted to be a benefit for state preparation in ensembles
of QDs, which have a spread of exciton transition frequencies [22].
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Figure 1.4: A calculation of the final exciton occupation under the action of an adiabatic
rapid passage pulse, as a function of the spectral chirp, a and pulse area θ in a closed
system.

ARP with quantum dots has been achieved experimentally on the picosecond timescale
[26, 27, 28] and on the sub-picosecond timescale [29]. These experimental achievements
have paved the way for applications in efficient generation of single and entangled pho-
ton sources [5, 30, 31]. ARP has also been proposed for state preparation of multiple
interacting two level systems [32], as a method of generating entanglement in an inho-
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mogeneous ensemble of interacting quantum dots [33] and as a method for realising a
Bose Einstein condensate in ensembles of quantum dots [34].

1.1.3 Exciton-Phonon Interaction

Quantum dots are often referred to as artificial atoms, as they exhibit many of the
same features as atomic systems in terms of their discrete level structures. However,
important differences arise in the optical properties of quantum dots and atomic sys-
tems due to the embedding of the QD within a host crystal, leading to interactions
between the carriers and the phononic bath of the surrounding medium, an interaction
that is clearly absent in atomic systems. This difference manifests itself in the emission
and absorption spectra, which show features such as a sharp zero phonon line along
with phonon sidebands [35] due to the optical phonons and a broad background due
to the acoustic phonons [36, 37, 38]. This interaction also introduces new decoherence
channels, limiting their applicability in quantum technologies that rely on long-lived
coherences.

In semiconductor quantum dots made from materials such as GaAs, as considered in
this thesis, there are six phonon modes: one longitudinal acoustic (LA), two transverse
acoustic (TA), one longitudinal optic (LO) and two transverse optic (TO) modes.
Although the electrons in a semiconductor quantum dot exhibit confinement in all
three spatial dimensions, we can consider the phonons modes as bulk phonon modes,
due to the small lattice mismatch between the QD material and the material of the
host medium [12].

There are three electron-phonon coupling mechanisms present in semiconductor QDs.
The deformation potential coupling, which couples the exciton to the LA modes, the
piezoelectric coupling, which couples the exciton to all acoustic modes, and the Frölich
coupling of the exciton to the LO mode. For low energy states in qubits (long wave-
length states close to the band edge), the dominant coupling mechanism is deformation
potential coupling [14, 36, 37, 39, 40, 41, 42]. These states will have the largest in-
teraction with small wave vector phonons. A position dependent energy results from
inhomogeneous displacements of the lattice positions, which locally alter the band gap
of the electrons. The coupling of the phonons to the charge density results in a coupling
to the exciton, as the exciton states have different charge configurations. This coupling
is of a pure dephasing form, with a Hamiltonian

He−ph =
∑
q

(|1⟩ ⟨1| − |0⟩ ⟨0|) gq
(
bq + b†q

)
. (1.8)

When discussing electron-phonon interactions, we can use the spectral density to quan-
tify the electron-phonon coupling. Defined formally as J(ω) =

∑
q |gq|2δ (ω − ωq), the

spectral density can be calculated explicitly once a geometry is specified for the quan-
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tum dot. In the case of spherical and elliptical QDs, the spectral density has been
calculated analytically [43, 44]. It is useful however to use a simplified form,

J(ω) = Aω3e
−ω2

ω2
c ,

which has the same features seen in the calculations for both. For small energies the
spectral density increases as ω3, while for large frequencies, it decreases exponentially.
This exponential decay of the spectral density is captured by the cutoff frequency
ωc [42]. Fig. 1.5 shows the spectral density for the exciton phonon interaction in a
GaAs/InGaAs quantum dot as considered in this thesis. The parameters for this system
will be specified later in chapter 2. Qualitatively, the spectral density shows a peak
value at some energy, and remains finite over a small finite range of frequencies. From
this simple model, we can see that phonons of sufficiently large energy are essentially
uncoupled from the excitonic degrees of freedom of the quantum dot.
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Figure 1.5: Spectral density for the exciton-phonon interaction in a GaAs/InGaAs
quantum dot.

1.1.4 Influence of Phonons on the Optical Excitation of Semi-

conductor Quantum Dots

Returning to the state preparation schemes, the interaction between the excitons and
phonons will hinder the effectiveness of the optical excitation protocols we reviewed.
Although the interaction Hamiltonian is of a pure dephasing structure, when written
in the basis of the laser dressed states, it takes the form

He−ph =
(
cos2 θ |+⟩ ⟨+|+ sin2 θ |−⟩ ⟨−|+ sin 2θ (|−⟩ ⟨+|+ |+⟩ ⟨−|)

)∑
q

(
gqbq + g∗qb

†
q

)
.

(1.9)
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In this basis, the coupling has a pure dephasing term and also terms which lead to tran-
sitions between the dressed states. It is clear when we look at the interaction Hamil-
tonian in this basis that the laser field induces an energy flow between the phononic
and excitonic degrees of freedom.

If we include the effects of the phonons into the optical excitation schemes discussed
previously, we can understand the limitations on the optical state preparation schemes
we introduced. The pure dephasing terms in the interaction Hamiltonian lead to a
decay of the coherence that the laser driving will induce. Moreover, for the case of the
exciton occupation function, the Rabi oscillations will also be damped due to emission
and absorption of lattice phonons. Fig. 1.6 shows the damped Rabi oscillations as a
function of pulse area, illustrating the effect of the phonon induced damping on the
dynamics of the exciton. This was calculated using eqn. 2.24 which we will derive in
chapter 2, the master equation describing the dynamics of the laser driven excitonic
degrees of freedom under influence of the interaction with the phonons. For a CW
pumping scheme, the net effect of the interaction is to take the excitonic degree of
freedom to a thermal state in the basis of laser dressed states, at a temperature equal
to that of the host lattice, TL. The steady state of the exciton will then be

ρss = e−Λ/kBTL |+⟩ ⟨+|+
(
1− e−Λ/kBTL

)
) |−⟩ ⟨−| . (1.10)

In the case of the constant frequency Gaussian laser pulse, the interaction has the same
effect, to bring the system towards the thermal state written above. To circumvent
this, shorter pulses can be used, to limit the duration of time with which the exciton
and phonons interact. It is important to note, however, that by shortening the duration
of the pulse, larger Rabi frequencies may need to be used to generate the desired pulse
area. The exciton-phonon scattering rates are proportional to Ω2J (Λ), a result which
we derive later. Increasing Ω will initially act to increase the exciton-phonon scattering
rates, for small Ω. However, as Ω is increased such that bath is sampled at a dressed
state splitting, Λ, that is greater than the position of the peak in the spectral density,
the scattering rates then begin to drop off with increasing Ω.

The effect on of the phonons on the ARP protocol is more interesting. The ARP
protocol offered the most robust method of state preparation, and we saw the basic
principle of its operation in fig 1.3, in terms of the dressed state trajectories. In this
framework, the emission and absorption of phonons are associated with the system
jumping between these states. Now including the effect of the exciton phonon interac-
tion, fig. 1.7 shows a calculation of the final exciton occupation as a function of both
the chirp and the pulse area, after an ARP pulse, illustrating the damping effect of the
phonons at a temperature of 20 K. Again, this was calculated using 2.24 which we will
derive in chapter 2. We now see an asymmetry with respect to the sign of the chirp.
The protocol is practically useless in the case of negative spectral chirp, while for the
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Figure 1.6: A calculation of the exciton occupation as a function of pulse area for a
resonant CW laser of laser pulse (dashed) and for the ARP protocol (solid), including
the damping effect of the phonons at a temperature of 20 K.

positive spectral chirp we see that the final occupation is now less than unity. This
deviation from unity will depend on temperature.

As in the previous cases, the simplest approach to minimising the effect of the phonons
is to simply lower the temperature of the lattice. This is an effective method in the case
of ARP. As for the asymmetry in the chirp parameter, this can be explained by looking
at the composition of the dressed states at early times before the pulse. We saw that
for the negative spectral chirp, the |0⟩ state corresponded to the upper dressed state
at early times, with the converse being true for positive spectral chirp. The result is
that during the initial evolution, as soon as the pulse amplitude is non-negligible, the
system will attempt to thermalise with the lattice, in the basis of laser dressed states,
and so spontaneously emit phonons until the majority of the population is in the lower
dressed state, which for negative spectral chirp, corresponds to |0⟩ at late times. The
positive spectral chirp trajectories involve the system evolving along the lower dressed
state, the interaction with the phonons cause some population to be excited into the
upper dressed state, but at the end of the protocol, the majority of the population
resides in the lower dressed state, which is |1⟩. The effectiveness of this approach is
sensitive to temperature, and it works best at low temperatures [41, 45].

It is possible to make active use of the phonons for state preparation, in contrast to
their hindering effect on Rabi oscillations, as discussed above. It is actively used in
a protocol for robust, high fidelity and fast preparation of excitons and biexcitons
using off resonant strong laser pulses [46]. This method combines the simplicity of
the traditional Rabi oscillation methods with the robustness of adiabatic rapid passage
protocols, and not only performs well at strong exciton-phonon coupling (where other
schemes fail) but is instead improved. By driving the dot with a blue detuned laser
pulse, which is not so strong that the coupling to the phonons vanishes due to the
cutoff in the spectral density, the population of the system can incoherently relax from
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Figure 1.7: A calculation of the final exciton occupations under the action of an adi-
abatic rapid passage pulse, as a function of the spectral chirp, a and pulse area θ,
including the damping effect of the phonons at a temperature of 20 K.

the upper to lower dressed state via the emission of phonons. The blue detuning is key,
so that the lower dressed state has a significant excitonic fraction. It is necessary that
the pulse duration is long enough such that the population tends towards the thermal
occupation of the dressed basis that would be reached for a continuous wave driving
laser as shown in [47]. This proposal for incoherent population inversion has since been
experimentally verified for both the exciton and bi-exciton states [48, 49, 50]. These
processes are of course sensitive to the temperature of the lattice. This ability to control
the coupling between the exciton and the acoustic phonon has been dubbed dynamic
vibronic coupling and has also been used to incoherently depopulate the exciton on a
timescale of 20 ps, an order of magnitude faster than optical decay [51, 52].

An effective method to overcome the limitations induced by the phonons on state
preparation is to work in the so-called reappearance regime. We have mentioned that
with suitably large dressed state splittings, the spectral density J(Λ) is probed at
energies beyond its peak, thus resulting in reduced scattering rates. By observing Rabi
oscillations at increasing values of the Rabi frequency, the initially increasingly damped
oscillations begin to reappear. This is what is known as the reappearance phenomenon
[53]. Fig. 1.8 shows the reappearance phenomenon. For sufficiently large pulse area,
we see that the Rabi rotations reappear. This has been predicted for Rabi rotations
but has not yet been seen experimentally, due to large pulse areas that are needed. For
resonant pulses, the dressed state splitting will always cross the strong coupling region
of the spectral density. However, for ARP, this can be avoided. The chirping of the
laser frequency allows one to design laser dressed splitting profiles which are always
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Figure 1.8: Reappearance of the Rabi rotations for sufficiently large pulse areas, with
the phonon bath at a temperature of 50 K.

larger than the values for which the coupling is strong, avoiding increased scattering
rates. Reappearance in ARP has been reported [45, 54]. To achieve this, high chirp
rates are needed.
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1.2 Quantum Thermodynamics and Open Quantum

Systems

Quantum thermodynamics is fundamentally concerned with the thermodynamics of
single or few particle quantum systems. The laws of thermodynamics, the first two of
which are

dU = dQ+ dW,

∆S ≥
∫
dQ

T
, (1.11)

were originally derived for macroscopic systems. When we shrink thermal machines
down to the scale of atoms, fluctuations in these thermodynamic quantities, both quan-
tum and thermal, are no longer negligible, and quantities like heat and work become
stochastic. It is then natural to ask, is it possible to derive the laws of classical macro-
scopic thermodynamics from the principles of quantum mechanics, rendering thermo-
dynamics as emergent from quantum theory?

Beyond such fundamental questions, there are many practical technological applica-
tions for which quantum thermodynamics can be deployed. Cutting edge quantum
technology, such as digital and analogue quantum computers, are by their very nature
composed of small interacting quantum systems, qubits. Much like classical compu-
tation, where Landauer showed in 1961 that the erasure of a single bit of information
must lead to the dissipation of heat, related to a change in information entropy [55], a
limiting factor of these quantum technologies is heat dissipation. Thermodynamic laws
can put fundamental bounds on the performance of these technologies. This is true
beyond just quantum computers, and holds for many quantum machines. Thermody-
namic arguments can be used to quantify the potential benefit that quantum thermal
machines may have over classical equivalents, that arise due to quantum mechanical
effects.

We begin by defining the concept of a thermal machine A thermal machine is a system
connected to a set of thermal reservoirs. The two most common situations we encounter
are the heat engine and refrigerator. In a heat engine, a thermal gradient across the
system, resulting from a difference in temperatures between the baths, drives a heat
flow across the system. This heat current is then used as a resource by the system
to generate work, which is in turn used to perform a task. The well known Carnot
efficiency is the fundamental upper bound on the efficiency of such a process, and
is

η = 1− TC
TH

. (1.12)
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Figure 1.9: Schematic of a heat engine (a) and a refrigerator (b). The green arrow
denotes a work flow out of/into the system.

A refrigerator operates in the reverse direction. Work is supplied to the system in order
to drive a heat current in the opposite direction, cooling the cold reservoir. Fig. 1.9
provides a general schematic of the operation of a heat engine and a refrigerator.

Shifting from a classical thermal machine to a quantum thermal machine, it is impor-
tant to understand which features of quantum systems change the behaviour of thermal
machines, and moreover, understand if these effects are always beneficial. The most
basic quantum feature that a quantum thermal machine may possess is coherence. The
extraction of work from a single heat bath has been predicted to benefit from quantum
coherence and quantum correlations [56, 57, 58, 59]. Quantum coherence has even
been suggested to increase the efficiency in solar cells [33, 60], which results in a quan-
tum limit for the photovoltaic operation that exceeds the classical limit. Similarly, it
has been proposed that noise induced coherence can increase the power of a photo-
cell quantum heat engine, by breaking detailed balance [60]. This coherence would be
induced through the thermal reservoirs driving the heat engine and is robust against
environmental decoherence.

However, many of the benefits seen in the above examples were attributed to effects
from non-thermal reservoirs [60, 61, 62, 63, 64], rather than from the intrinsic quantum
nature of the working fluid. Initial predictions were that quantum coherence would
generally act to reduce the performance [65, 66, 67, 68, 69, 70]. Subsequent study
revealed quantum coherence in the internal states of the system was predicted to have
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a measurable effect on the performance of QTMs in the limit of small engine action
[71]. This was demonstrated experimentally in a system of nitrogen vacancy (NV)
centres [72]. The authors reported a higher output power with respect to that of any
equivalent classical machine, and an equivalent output power for a continuous and two-
stroke heat engine, as predicted. The same effects were also reported in a heat engine
composed of a single atom [73].

There has been a variety of physical system which have been proposed, or in some
cases even realised, as a platform for various quantum thermal machines. These in-
clude optomechanical setups [74, 75, 76, 77], atom-cavity systems [78], trapped ions
[79], superconducting qubits [80, 81] and even single atoms [73, 82]. Many of these pro-
posals and realisations are cyclical thermal machines, analogous to those encountered
in classical thermodynamics. Particle exchange thermal machines have also been pro-
posed, composed of metallic quantum dots (QD) [83, 84, 85, 86, 87]. Metallic QDs are
quasi zero-dimensional quantum structures, coupled to two thermal reservoirs, which
can be at different temperatures and chemical potentials. These particle exchange pro-
posals use energy filtering to control the flow of particles [88]. These were predicted
to achieve efficiencies that could approach that Carnot limit [86]. Thermoelectric effi-
ciencies at maximum power were also predicted to approach the theoretical maximum,
a quantity known the Curzon-Ahlborn efficiency [83, 85, 88]. These predictions have
been verified in experimental realisations of quantum dot heat engines [89]. The clas-
sic thought experiment, known as Maxwell’s demon, was brought to life when it was
realised with a cavity coupled to a superconducting qubit [90]. Work was cyclically
extracted from the system, connected to a thermal reservoir, by exploiting informa-
tion about its microstate, revealing the interplay between quantum information and
thermodynamics.

We will consider the elementary example of a maser as a heat engine, to introduce
the idea of a quantum thermal machine. Following this, we will introduce the con-
cept of an open quantum system and quantum master equations, which provide the
natural language with which to discuss quantum thermal machines. From this dy-
namical perspective of an open quantum system, we will show how the first law of
thermodynamics can be derived, and how the traditional Carnot efficiency limit of a
heat engine arises. Lastly, we will introduce the field of full counting statistics (FCS), a
tool used to quantify the stochastic nature of the thermodynamic variables in quantum
thermodynamics.

1.2.1 The Maser as a Heat Engine

One of the first quantum systems to be explored from a thermodynamic perspective
was the maser, the microwave equivalent of a laser. Scovil and Schulz-DuBois analysed
the operation of a maser as a heat engine [91] in 1959. This was a pivotal work in
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Figure 1.10: Schematic of the maser as a heat engine.

the beginning of the field of quantum thermodynamics. The maser can be effectively
described as a three level system, connected to two heat baths, as shown in fig. 1.10.
Levels |1⟩ and |3⟩ are split by an energy ωh and connected to a thermal reservoir at
temperature Th. Levels |2⟩ and |3⟩ are split by an energy ωc and connected to a heat
bath at a temperature Tc. These pairs of levels are in thermal equilibrium with the
heat bath they are connected to, resulting in

n3

n1

= e
− ωh

kBTh (1.13)

n3

n2

= e
− ωc

kBTc (1.14)

Levels |1⟩ and |2⟩ are split by an energy ων = ωh − ωc. These levels are not connected
to any heat reservoir. Under appropriate conditions, the steady state of the system
can have a population inversion in levels |2⟩ and |1⟩, producing the masing effect. The
condition for population inversion, defined as n2 > n1, is

n2

n1

= e−(ωh/kBTh−ωc/kBTc) > 1

ωh

ωc

<
Th
Tc
. (1.15)

The exchange of energy between the reservoirs and the associated pairs of levels is
regarded as heat, and energy exchanged with the field, i.e., the microwave photons
emitted from the population inversion between |2⟩ and |1⟩, is regarded as work. From
this simple analysis, we have that a closed cycle obeys the first law:

ωh = ωc + ων . (1.16)

Moreover, we can calculate an efficiency for this engine. The efficiency is defined as
the ratio of the microwave photon energy and the hot reservoir excitation energy, the
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ratio of work done and the heat absorbed from the hot reservoir,

η =
ων

ωh

= 1− ωc

ωh

≤ 1− Tc
Th
. (1.17)

(1.18)

The maser can also be operated as a refrigerator. If we don’t work in the regime of
population inversion, and instead drive the transition |1⟩ to |2⟩ through some external
field, i.e., we perform work on the system, we can take heat from the cold reservoir
and dump it into the hot reservoir. The coefficient of performance of this refrigerator
is defined as the ratio of the heat absorbed from the cold reservoir and the work done
on the system.

COP =
Qc

W
≤ Tc
Th − Tc

(1.19)

This is the Carnot bound of a refrigerator. The maser obeys the Carnot bounds, and
obeys the second law.

1.2.2 Theory of Open Quantum Systems

The example of a maser as a quantum thermal machine is very simple. A more com-
plete analysis of a thermal machine involves knowledge of the state of the quantum
system which forms the "working fluid". The theory of open quantum systems pro-
vides the natural language and framework to deal with such situations. Open quantum
systems are systems which are coupled to large reservoirs or baths, with many degrees
of freedom. Typically, we only care about the dynamics of the system itself. As for the
reservoirs, these are usually thermal reservoirs, and we only care about their influence
on the dynamics of the central systems of interest, and not on their own dynamics.
This situation is commonplace in physics, for example, we may wish to model the op-
tical properties of an atom or an optically active defect in a solid. To do this, we must
include the spontaneous emission of photons into the electromagnetic environment,
and also the interaction of the electrons with the phonons in the case of the solid state
defect, but we do not care at all about the state of these fields themselves.

Fig. 1.11 shows a general schematic of an open system. The Hamiltonian for the
combined system and environment has many, potentially infinite, degrees of freedom
(DOF). However, we only wish to be able to model the dynamics of the small number
of DOF that describe the system. The tools we use to model these situations are
known as master equations. These are equations of motions of the state of the system,
which include the influence of the environment on the system, without capturing the
dynamics of the environments themselves.

To derive the quantum master equation for an open system, we begin by writing a
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Figure 1.11: Schematic of a system (S) coupled to an environment or bath (B)

general Hamiltonian for a quantum system coupled to an environment,

H = HS +HB +HI . (1.20)

HS is the Hamiltonian for the system, HB is the Hamiltonian for the environment, and
HI is the Hamiltonian for the system-bath interaction. The full state of this combined
system and environment will satisfy the unitary evolution

d

dt
ρ(t) = −i [H, ρ(t)] . (1.21)

Solving for the unitary dynamics of such a system is typically impossible, due to the
large number (potentially infinite) of degrees of freedom of the environment. The state
of such a combined system and environment, ρ, clearly contains information about
both the system and the environment. We define a reduced state, which describes only
the state of the system of interest,

ρS = TrB [ρ] , (1.22)

which satisfies
d

dt
ρS(t) = −iTrB [H, ρ(t)] . (1.23)

The Lindblad master equation,

d

dt
ρS(t) = −i [HS, ρS(t)] +

∑
k

γk

(
AkρS(t)A

†
k −

1

2

[
A†

kAkρS(t) + ρS(t)A
†
kAk

])
(1.24)
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is the most general master equation which is completely positive and trace preserving
for any initial condition. This master equation can be derived from rigorous quantum
dynamical semigroup arguments [92]. The first term represents the unitary dynamics.
The second term captures the effect of the environment on the reduced system. The
operators Ak are known as jump operators, and γk are the associated rates for these
jumps. Note that eqn. 1.24 was not derived from any microscopic theory, and is sim-
ply the most general trace-preserving and completely positive form for the equation
of motion of the state of the reduced system. With this master equation, one can
quickly phenomenologically model an open system by simply choosing the jump oper-
ators which have the desired effect, say pure dephasing or population relaxation. For
example, if the system of interest is a two-level system with levels |1⟩ and |2⟩ and we
want to model its dynamics under the influence of its interaction with an environment,
we can include effects of emission and absorption of excitations into and from the bath
by including two jump operators, A1 = |1⟩ ⟨2| and A2 = |2⟩ ⟨1|, as well as specifying
the rates for such processes.

It is often more insightful to derive the master equation from a microscopic theory,
starting from the Hamiltonian for the combined system and environment. Doing this
results in a master equation which can accurately describe real physical systems, rather
than a simple phenomenological model. Crucially, a master equation derived from a
microscopic theory is only valid under a strict set of conditions and approximations: the
condition of initial separability of the state of the total system, the Born approximation,
the Markov approximation and the secular approximation. The separability of initial
state of the total system ensures there are no initial system-bath correlations, i.e.
ρ(0) = ρS(0)⊗ρB(0). The Born approximation asserts that the state of the environment
is unchanged as a result of the interaction with the system. This means the state of the
total system is always uncorrelated, i.e. ρ(t) = ρS(t)⊗ρB. The Markov approximation
implies that the correlation functions of the environment decay much faster than the
timescale of the dynamics of the system. The secular approximation is used to discard
all fast rotating terms in the interaction picture, such that all transition frequencies
in the master equation that satisfy |ωa,b − ωc,d| ≪ 1/τsys are neglected. ωa,b is the
energy gap between levels a and b in the system, and τsys is the characteristic timescale
for the dynamics of the reduced system. The secular approximation is only strictly
necessary to obtain Lindblad master equations, which ensures positivity of the density
matrix. It is not necessary for all master equations, e.g., the Bloch-Redfield master
equation. The secular approximation is also not always valid, it breaks down when the
Hamiltonian of the system has degeneracies. We will encounter this scenario when we
discuss the silicon vacancy laser cooling protocol outlined in chapter 5, where we will
derive a Bloch-Redfield master equation that is not brought into Lindblad form.

It is useful to outline the general procedure for deriving a quantum master equation
from a microscopic theory, as we do so many times in this thesis. With a Hamiltonian
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partitioned as
Ĥ = ĤS + ĤB + ĤI , (1.25)

with ĤS the Hamiltonian for the system of interest, ĤB the Hamiltonian of the bath
and ĤI the Hamiltonian describing their interaction. We define the free Hamiltonian
of the system and bath as Ĥ0 = ĤS+ĤB. We move to the interaction picture, defining
H̃I = eiĤ0tĤIe

−iĤ0t. Note: Operators in the Schrödinger picture will be denoted as Ô
and the corresponding operators in the interaction picture as Õ. The density matrix
in the interaction picture evolves according to,

∂

∂t
ρ̃(t) = −i

[
H̃I(t), ρ̃(t)

]
, (1.26)

which has the formal solution

ρ̃(t) = ρ̃(0)− i

∫ t

0

ds
[
H̃I(s), ρ̃(s)

]
. (1.27)

Upon substituting this solution back into eqn. 1.26 we get

∂

∂t
ρ̃(t) =

[
H̃I(t), ρ̃(t0)

]
−
∫ t

0

ds
[
H̃I(t),

[
H̃I(s), ρ̃(s)

]]
. (1.28)

Taking the trace over the bath degrees of freedom we find

∂

∂t
ρ̃S(t) = TrB

[
H̃I(t), ρ̃(0)

]
−
∫ t

0

dsTr
[
H̃I(t),

[
H̃I(s), ρ̃(s)

]]
, (1.29)

for the reduced system density matrix.

At this point, we make the approximations mentioned above. Separability of the initial
state, means that

ρ̂(0) = ρ̃(0) = ρ̂S(0)⊗ ρ̂B(0). (1.30)

We can set the first term on the right-hand side of eqn. 1.29 to zero, which can be
justified by removing a term TrB

[
ĤI , ρB(0)

]
from the interaction picture Hamiltonian

and including it instead in the system Hamiltonian, and we are left with

∂

∂t
ρ̃S(t) = −

∫ t

0

dsTrB

[
H̃I(t),

[
H̃I(s), ρ̃(s)

]]
. (1.31)

We then make the Born approximation, which assumes that the state of the environ-
ment remains unchanged and the density matrix of the total system then factorises at
all times as

ρ̃(t) ≈ ρ̃S(t)⊗ ρ̃B. (1.32)

This approximation essentially neglects correlations that build up between the system
and bath. It is only valid in the limit of a weak system bath interaction. Lastly,
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we introduce the Markov approximation, which makes the integro-differential equation
time local. At the moment the evolution equation is time non-local as ρ̃(t) depends on
its past history through the integration over ρ̃(s). To make this time local, we make
the replacement ρ̃(s) → ρ̃(t) on the right-hand side of eqn. (1.31). The Markovian
master equation in the interaction picture can then be written

∂

∂t
ρ̃S(t) = −

∫ t

0

dsTrB

[
H̃(t),

[
H̃I(s), ρ̃(t)

]]
. (1.33)

We decompose the Hamiltonian as ĤI =
∑

α Âα⊗B̂α where Âα and B̂α are system and
bath operators respectively. In the interaction picture, this Hamiltonian becomes

H̃I =
∑
α

Âα(t)⊗ B̂α(t)

=
∑
α

eiĤstÂαe
−iĤst ⊗ eiĤBtB̂αe

−iĤBt. (1.34)

Expanding the commutators of eqn. (1.33) gives

∂

∂t
ρ̃S(t) = −

∫ t

0

dsTrB {H̃I(t)H̃I(s)ρ̃S(t)ρ̃E

− H̃I(s)ρ̃S(t)ρ̃BH̃I(t)

− H̃I(t)ρ̃S(t)ρ̃BH̃I(s)

+ ρ̃S(t)ρ̃EH̃I(s)H̃I(t) } . (1.35)

The master equation can then be written as

∂

∂t
ρ̃S(t) = −

∑
α,β

∫ t

0

ds
(
[ Âα(t), Âβ(s)ρ̃s(t)

]
Cα,β(t− s)

+
[
ρ̃s(t)Âβ(s), Âα(t) ]Cβ,α(s− t)

)
, (1.36)

where we define the correlation functions as

Cα,β(t, s) = ⟨B̂α(t)B̂β(s)⟩B = TrE

[
B̂α(t)B̂β(s)ρ̂B

]
. (1.37)

In the case that the environment is in a stationary state we can write these more simply
as

Cα,β(t, s) = TrE

[
B̂α(t− s)B̂β ρ̂E

]
≡ Cα,β(t− s). (1.38)
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Transforming back into the Schröodinger picture, we get a master equation

∂

∂t
ρ̂S(t) =− i

[
Ĥs, ρ̂S(t)

]
−

∑
α,β

∫ t

0

ds
(
[ Âα(t), Âβ(s)ρ̂s(t)

]
Cα,β(t− s)

+
[
ρ̂s(t)Âβ(s), Âα(t) ]Cβ,α(s− t)

)
. (1.39)

Specifying a Hamiltonian, and calculating the corresponding correlation functions, this
master equation can be used to calculate the dynamics of the system. With further
approximations, eqn. 1.39 can give master equations which are of Lindblad form. We
will derive a master equation in such a way when we discuss a laser driven quantum
dot coupled to the phonon reservoir in chapter 2.

1.2.3 Dynamical Perspective of Quantum Thermodynamics

Returning to thermodynamics, we can now understand some of the fundamental princi-
ples of thermodynamics from the perspective of the dynamics of these systems, rather
than just a steady state analysis as we saw with the maser. We saw that the gen-
eral dynamical equation of motion for the state of an open quantum system is of the
form

˙ρ(t) = −i [H, ρ(t)] +D [L] ρ(t), (1.40)

where D is the dissipator describing the interaction between the system and the envi-
ronment, and L is some jump operator which models the relevant transition. In 1979
Alicki wrote down a simple but powerful description of heat and work from this dynam-
ical equation [93]. Working in the Heisenberg picture, so that any coherent evolution
is captured by the time dependence of the Hamiltonian, and not of the state, the rate
of change of the total energy of the system is partitioned as follows:

d

dt
U =

d

dt
⟨H⟩ = Tr

[
ρ(t)

∂H

∂t

]
+ Tr

[
H
d

dt
ρ

]
, (1.41)

d

dt
⟨H⟩ = Tr

[
ρ(t)

∂H

∂t

]
+ Tr [HD [L]ρ] , (1.42)

d

dt
⟨H⟩ = d

dt
⟨W ⟩+ d

dt
⟨Q⟩. (1.43)

This partition has a clear interpretation. Changes in work are associated with changes
in the driving Hamiltonian. Changes in heat are associated with a change in the
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state,

⟨W ⟩ =
∫
dtTr

[
ρ(t)

∂H

∂t

]
(1.44)

⟨Q⟩ =
∫
dtTr

[
H
d

dt
ρ

]
. (1.45)

We now consider a cyclical process, with a system connected to two reservoirs, with a
Hamiltonian H(t) = H0 + H ′(t). A cyclical process implies H ′(t0) = H ′(tf ) = 0, for
a cycle operating from time t0 to time tf . Crucially, the change in total energy of the
system must satisfy ∆U = ∆W +∆Q = 0. From this condition, we can write

−∆W = −
∫ tf

t0

Tr
[
ρ
∂H(t)

∂t

]
(1.46)

=

∫ tf

t0

Tr [H(t)ρ̇(t)] (1.47)

= ∆Q1 +∆Q2, (1.48)

where ∆Qi are the heats exchanged between the system and bath i in the time t0 to tf .
The total work done must equal to the sum of the changes of heat in the baths. At this
point, we can introduce the concept of the entropy production rate, σ(t). It is defined
as the difference between the rate of change of entropy for the baths, JS = JS

1 + JS
2 ,

and the rate of change of the entropy of the system, dS(ρ)/dt,

σ(t) =
dS(ρ)

dt
− JS

1 − JS
2 . (1.49)

Alicki proved that this quantity, must satisfy

σ(t) ≥ 0, t ≥ 0. (1.50)

This is simply a statement that the total change in entropy of the universe must not
be negative. We note here, to calculate the entropy of a quantum system, we can use
the von Neumann definition,

S(ρ) = −kBTr [ρ ln ρ] . (1.51)

For a thermal reservoir, we know from conventional classical thermodynamics that

JS
i =

1

kBTi

dQi

dt
. (1.52)

As we are considering a cyclical process, by definition we have ∆Scycle = 0. As such,
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we can assert that

0 =

∫ tf

t0

dS

dt
dt =

∫ tf

t0

σ(t) +
1

kBT1

dQ1

dt
+

1

kBT2

dQ2

dt
, (1.53)

which leads to the inequality,

1

kBT1
∆Q1 +

1

kBT2
∆Q2 ≤ 0. (1.54)

Combing this with eqn. 1.48, we can write the efficiency for this cyclical process,
as

η =
−W (tf )

Q1(t0)
≤ 1− T2

T1
. (1.55)

We thus retrieve the Carnot efficiency bound from a completely general description
of the dynamics of an open quantum system weakly coupled to two thermal reser-
voirs.

1.2.4 Full Counting Statistics

We have seen how to define heat and work in a driven open quantum system. Fun-
damentally, however, when we are dealing with systems composed of single or few
quantum objects, the fluctuations of thermodynamic quantities become important. At
the scale of atoms at low temperatures, both quantum and thermal fluctuations can
have significant effects. Maxwell’s demon, for example, extracts work by exploiting
thermal fluctuations [94, 95]. Thermodynamic quantities such as heat and work are
then treated as stochastic variables, in what is known as stochastic thermodynamics.
Stochastic thermodynamics has been a powerful tool in predicting the role of fluctu-
ations in small thermodynamic systems, providing fluctuations theorems which such
systems must obey [96, 97, 98, 99]. Full counting statistics provides the framework
to calculate not only the mean value of thermodynamic quantities as in the previous
section, but higher order cumulants, or even a direct calculation of the full probability
distribution for heat and work [100, 101].

In this thesis, we will be considering driven quantum systems. As such, we will intro-
duce the method of full counting statistics in this context. Following the treatment
outlined in [102], we start with a Hamiltonian partitioned into its system, bath and
interaction components Ĥ(t) = ĤS(t) + ĤSB + ĤB, where we assume that the inter-
action term is small compared to both the system and bath free Hamiltonians, i.e.
the weak coupling approximation. We define a complete set of projection operators,
composed of the instantaneous eigenstates of the free system and bath Hamiltonians,
Pi,α(t) =

∣∣eiS(t)〉 〈eiS(t)∣∣ ⊗ |eα⟩ ⟨eα|. These projection operators then satisfy the fol-
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lowing,
ĤS(t)Pi,α(t) = eSi (t)Pi,α(t), (1.56)

ĤBPi,α(t) = eBαPi,α(t), (1.57)

P †
i,α(t) = Pi,α(t), (1.58)∑
i,α

Pi,α(t) = I, (1.59)

Pi,α(t)Pi′,α′(t) = δi,i′δα,α′Pi,α(t). (1.60)

If we perform a measurement of the energy of the system and of the environment at
time t0, the starting time of some driving protocol, we can write the joint probability
for measuring system and environmental energies eSi (t0) and eBα (t0) as

pi,α = Tr {Pi,α(t0)ρ̂(t0)} . (1.61)

Measuring the outcomes eSi (t0) and eBα (t0) for the energy of the system and bath, (as-
suming a non-degenerate spectrum for both the system and bath) the state of the
combined system is then projected onto the corresponding state, with the post mea-
surement state given by

ρ̂i,α = p−1
i,αPi,α(t0)ρ̂(t0)Pi,α(t0). (1.62)

Performing a second measurement then at tf , after the driving protocol we are consid-
ering, the density matrix has undergone a unitary evolution to

ρ̂i,α(tf ) = Ûtf ,t0 ρ̂i,αÛ
†
tf ,t0

. (1.63)

We can use the conditional probability distribution function (PDF) to characterise the
probability of finding the system and environment in energy eigenstates eSi′(tf ) and
eBα′(tf ) given the results of the first measurements, i.e., having measured the system
and bath energies eSi (t0) and eBα (t0). This PDF is written as

ptf ,t0(i
′, α′ | i, α) = Tr {Pi′,α′(tf )ρ̂i,α(tf )} . (1.64)

Rewriting this as a conditional PDF for measuring changes in energy of the system
and environment ∆eS and ∆eB, we have

ptf ,t0(∆eS,∆eB) =
∑

i,i′,α,α′

δ(∆eS − (eSi′(tf )− eSi (t0)))

δ(∆eB − (eBα′ − eBα ))ptf ,t0(i
′, α′ | i, α)pi,α. (1.65)

28



For a change ∆eS of the system, we can associate −∆eB as the amount that corresponds
to heat exchanged with the environment. We neglect any small contribution of energy
that is stored or released from the interaction Hamiltonian, a valid assumption given
the weakly coupled system-bath approximation. The joint PDF of internal energy
E = ∆eS and heat exchange Q becomes

ptf ,t0(E,Q) =
∑

i,i′,α,α′

δ(E − (eSi′(tf )− eSi (t0)))×

δ(Q− (eBα′ − eBα ))ptf ,t0(i
′, α′ | i, α)pi,α. (1.66)

Integrating over E, we get the PDF of exchanging an amount of heat Q with the
environment, after a time t during the protocol,

p(Q, t) =
∑
α,α′

δ(Q− (eBα′ − eBα ))p(α
′, t | α, t0)p(α, t0). (1.67)

We now write p(α′, t | α, t0)p(α, t0) explicitly in terms of the density matrix, evolution
operators, and projection operators, as

p(α′, t | α, t0)p(α, t0) = Tr
{
Pα′Û(t, t0)Pαρ̂(0)PαÛ

†(t, t0)Pα′

}
, (1.68)

and we can then define the characteristic function for heat:

GQ(u, t) =

∫ ∞

−∞
dQp(Q, t)eiQu =

∑
α,α′

p(α′, t | α, t0)p(α, t0)eiu(eα′−eα). (1.69)

Assuming the total density matrix factorises at the initial time, and that the initial
density matrix of the environment is given by a thermal state,

ρ̂B(0) =
e−βĤB

ZB

, (1.70)

we have that all environmental projectors commute with ρ̂(0) and that∑
α,α′

Pαe
±iueα = e±iuĤB . (1.71)

Then we can write the characteristic function as

GQ(u, t) = Tr
{
U †(t, t0)e

iuĤBU(t, t0)e
−iuĤB ρ̂(0)

}
, (1.72)

= Tr
{
eiuĤB/2U(t, t0)e

−iuĤB/2ρ̂(0)e−iuĤB/2U †(t, t0)e
iuĤB/2

}
. (1.73)
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or more compactly as
GQ(u, t) = Tr {ρ̂u(t)} (1.74)

with
ρ̂u(t) = Ûu/2(t, t0)ρ̂(0)Û

†
−u/2(t, t0), (1.75)

Ûu/2(t, t0) = eiuĤB Û(t, t0)e
−iuĤB , (1.76)

as in [100].

We can use the same formalism, namely the two point projective measurement for-
malism [102, 103], to calculate the statistics of the work done on the system by some
external force. This is only valid in the weak coupling regime, where the interaction
energy ĤSB can be neglected. This two point projective measurement involves a pro-
jective measurement of the energy of the system before some external force implements
a control sequence, and a second projective measurement after the control sequence.
Including both the projective measurements of the bath, which count the change in
heat, and projective measurements of the energy of the system, we can compute the
work, simply using the first law of thermodynamics. We can then rewrite eqn. 1.73 for
work as

GW (u, t) = Tr
{
e−iuĤS(t)/2 eiuĤB/2U(t, t0)e

iuĤS(0)/2e−iuĤB/2ρ̂(0)

× e−iuĤB/2eiuĤS(0)/2U †(t, t0)e
iuĤB/2e−iuĤS(t)/2

}
(1.77)

GW (u, t) = Tr
{
e−iuĤS(t)eiuĤB/2U(t, t0)e

−iuĤB/2eiuĤS(0)ρ̂(0)e−iuĤB/2U †(t, t0)e
iuĤB/2

}
(1.78)

as in [101], where u in this instance is now the Fourier conjugate variable to work
and not heat, and where we have made the assumption that

[
ĤS, ρ̂(0)

]
= 0. The

characteristic function for work can be written more compactly as

GW (u, t) = Tr
{
e−iuĤS(t)ρ̂u(t)

}
(1.79)

ρ̂u(t) = Ûu/2(t, t0)e
iuĤs(0)ρ̂(0)Û †

−u/2. (1.80)

To apply the method of FCS to an open quantum system, we simply follow steps
outlined in section 1.2.2, for the modified counting field density matrix ρ̂u(t). We will
derive such a master equation explicitly in the results, for the case of a laser driven
exciton coupled to a phonon reservoir.
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1.3 Laser cooling of solids

1.3.1 History of laser cooling of solids

Laser cooling of gasses was a pivotal achievement in the late 70s that paved the way for
many of the landmark quantum physics breakthroughs of the last 50 years. Demon-
strated in 1978, when David Wineland and colleagues cooled ions to 40 K [104], rapid
progress over the following ten years lead to laser cooling of neutral atoms to 2 µK
[105]. The concept of using light to cool solids was proposed nearly 100 years ago,
in 1929, by Pringsheim [106]. This proposal was based on the observation that some
materials emitted light at shorter wavelengths than with which they were illuminated
with, a process that was dubbed anti-Stokes fluorescence. While Stokes fluorescence
refers to the emission of light by a material which has a shorter wavelength than which
it was illuminated with, with the excess energy dumped into the phonon modes of the
material, anti-Stokes fluorescence then involves the removal of energy from the phonon
modes of the material. These processes are mediated by the interaction between the
optically active electronic degrees of freedom and the phonon modes of the material.
Such a laser cooling protocol is typically realised in rare-earth (RE) doped glasses and
has been explored in semiconductors.

Fig. 1.12 shows a schematic of the basic cooling mechanism for both RE doped glasses
and semiconductors. In the case of RE doped glasses, the lowest energy optically
active transition, typically from the top of a ground state manifold to the bottom
of an excited state manifold, is pumped with a laser. Fast thermalisation with the
lattice leads to a thermal population in the higher lying states in the excited manifold.
Spontaneous emission returns the system to the bottom of the ground state manifold,
where again thermalisation with the lattice results in a population of the higher lying
ground state manifold levels. The heat absorption is entirely due to this thermalisation
of the cold population distributions of the levels within each manifold. Similarly, in
the semiconductor model, the system is pumped at the band gap energy, where a
cold distribution of carriers is generated. Interactions with the phonon modes result
in thermalisation of these excited charge carriers, such that their distribution in the
conduction band is that of a Fermi-Dirac distribution at a temperature equal to that of
the lattice temperature. These carriers then recombine, emitting photons, which carry
away the excess energy.

This process of anti-Stokes cooling was somewhat controversial, with claims that ex-
citation and subsequent fluorescence was a reversible cycle, and thus any energy yield
greater than unity would be a complete transformation of heat into work [107, 108].
These controversies were only laid to rest when Landau eventually developed a ther-
modynamic theory to describe the entropy of the input beam and fluorescent light,
which proved that the fluorescence carried much higher entropy than the pump laser
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Figure 1.12: Laser cooling scheme for (a) RE doped glasses and (b) semiconductors.
Wavy black arrows indicate phonon absorption processes.

beam, and that the process was irreversible [109]. We note here that this description
of laser cooling is essentially the reverse of the model of the maser as a heat engine.
In the maser, incoherent energy from a thermal bath was used to generate a coherent
work output.

As early as 1950, RE doped solids were suggested to be used as the medium for anti-
Stokes based optical refrigeration [110]. The advantage of these materials was the
shielding of the optically active 4f electrons by the filled 5s and 5p outer shells. This
shielding limited the electron-phonon interaction, thus suppressing nonradiative decay.
It wasn’t until 1995 that laser cooling of RE doped glasses was achieved [111], when
ytterbium-doped fluorozirconate was cooled 0.4 K below room temperature. Over the
following twenty years, the field progressed more slowly than laser cooling of gasses,
with the cooling record of 91 K achieved in 2015 with Yb doped YLiF4 [112]. It is
accepted that RE doped glasses ultimately have a minimum cooling temperature of
50-100 K [113, 114]. Once the temperature of the medium reaches of order kBT = ∆E,
with ∆E the width of the ground state manifold, the cooling drops off rapidly due to
a thermal depletion of the population at the top of the manifold.

This limitation on the minimum cooling temperature does not exist in semiconductors,
with theoretical predictions of cooling to temperatures as low as 10 K in bulk GaAs
[115, 116]. Electrons and holes obey Fermi-Dirac statistics, which results in a full
valence band at temperatures below the band gap, in contrast to the thermal depletion
of the higher lying ground state levels we saw in the case of RE doped glasses. Although
the density of electrons (holes) can be much higher in semiconductors than the density
of RE dopants in glasses, many body processes restrict the densities which will lead
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to cooling [117], to those of moderately doped glasses. Despite this limitation in the
density of carriers, the net cooling power in semiconductors can still be up to 6 orders
of magnitude higher due to the increased radiative recombination rates [118]. In 2013,
laser cooling of CdS nanobelts to 250 K was reported. The validity of this report has
since been questioned, however, and laser cooling in semiconductors remains an elusive
goal [113]. The limitations of semiconducting media come from the need for almost
perfect materials, to minimise non-radiative relaxation. Moreover, the high refractive
index of semiconductors results in total internal reflection of the light, which may result
in re-absorption of the emitted phonons [117].

1.3.2 Four Level Model of Laser Cooling of Solids

Laser cooling of RE-doped solids can be modelled using an effective 4 level structure.
Although simple, this model captures the relevant physics, through a simple rate equa-
tion approach, describing resonant pumping of the RE dopants. As mentioned above,
the RE doped systems are typically composed of a ground state manifold and an ex-
cited state manifold of levels. Fig. 1.13 provides a schematic of this cooling scheme,
with the excited state manifold split by an energy gap Ee and the levels in the ground
state manifold split by an energy Eg.

|1〉

|2〉

|3〉

|4〉

ωp

Ee

Eg

WNRWR

We

Wg

Figure 1.13: Schematic of the four level model of laser cooling RE doped glasses.

For laser cooling, we drive the |2⟩ → |3⟩ transition resonantly. This driving acts to
equalise the populations in states |2⟩ and |3⟩. Spontaneous emission acts to take the
populations from the excited state manifold to the ground state manifold. We refer to
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these as radiative relaxation transitions, which proceed with a rate WR. For simplicity,
we assume that all of the radiative relaxation rates are the same. There are also non-
radiative relaxation processes that take the populations in the excited states back to the
ground state levels. These non-radiative transition occur with a rate WNR, which we
also assume to be equal, for simplicity. Lastly, there are thermalisation processes within
each manifold, which act to bring the populations within a manifold to a Boltzmann
distribution at a temperature equal to the lattice temperature. These arise from the
electron-phonon interaction in the medium. These thermalisation processes occur with
rates Wg and We, for the ground and excited states, respectively.

Using a rate equation model, we can write a set of coupled differential equations for
the populations of the four levels. This type of model has been considered by many
authors [114, 117, 119, 120]. Here we repeat this derivation, writing the set of coupled
differential equations for the populations of each of the four levels,

dN2

dt
= −σ (N2 −N3)

I

ωp

+ (N3 +N4) (WR +WNR) +
(
e−Eg/kBTN1 −N2

)
Wg, (1.81)

dN3

dt
= σ (N2 −N3)

I

ωp

− 2N3 (WR +WNR) +
(
N4 − e−Ee/kBTN3

)
We, (1.82)

dN4

dt
= −2N4 (WR +WNR)−

(
N4 − e−Ee/kBTN3

)
We, (1.83)

N = N1 +N2 +N3 +N4. (1.84)

We have set ℏ = 1 and assume that the degeneracy of all the levels is 1. We can
write down the difference between the absorbed power and the emitted power, which
we denote PNet,

PNet = [σN2 + αb] I − {[(N3 +N4) (2ωp + δEg) + 2N4δEe]WR + σN3I} . (1.85)

We have introduced αb, the parasitic background absorption of the pump laser, which
heats the solid. Taking the steady state limit, this can be expressed more succinctly
as

PNet = (αres + αb) I − αresηq
νf
ωp

I, (1.86)

where we have ignored saturation. αres is the ground state absorption, ηq the quantum
efficiency and ωf the mean fluorescence energy, defined as

αres =
σN

1 + eEg/kBT
, (1.87)

hωf = ω +
Eg

2
+

Ee

1 +
(

2(WR+WNR)
We

+ 1
)
e

Ee
kBT

, (1.88)

ηq =
WR

WR +WNR

. (1.89)
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Dividing the net power by the total absorbed power, Pabs = (αres + αb) I , results in
an expression for the cooling, efficiency

ηC = ηqηabs
ωf

ω
− 1. (1.90)

This four level model allows us to understand the temperature dependence of the
cooling. We can see from eqn. 1.87 the absorption quickly decreases as kBT < Eg.
In order to cool to lower temperatures, a narrow ground state manifold splitting is
needed. The mean fluorescence energy also decreases as the temperature is lowered,
reducing the cooling rate. This is a result of the decreasing thermal population of
the upper level excited state as the temperature decreases. Moreover, if the electron-
phonon interaction rate is smaller than the spontaneous emission rate, this redshift of
the emitted photons is enhanced. Electron phonon thermalisation cannot occur, and all
spontaneous emission is due to cold electrons. In fact, this cold electron recombination
is also a problem for semiconductors at low temperatures, where carriers primarily
interact with the low energy slow phonon modes [116].
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1.4 Outline of the Thesis

In this thesis, we will explore the thermodynamics of heat exchanges in laser driven solid
state systems. Specifically, we examine how the formation of strong-field dressed states
allows a solid state emitter to absorb or emit acoustic phonons in a controlled way.
We investigate how the form of the driving field can be tailored to produce different
thermodynamic processes, including both reversible and irreversible heat absorption.
This leads to an understanding of the origin of reversibility for time dependent laser
controlled heat transfer. We discuss these effects from the perspective of quantum
thermodynamics and outline the possibility of using them for optical cooling of solids
to low temperatures, proposing a laser cooling protocol that makes active use of strong
coherent driving.

In chapter 2 we introduce the laser driven quantum dot exciton-phonon model. We
write the Hamiltonian for a quantum dot exciton, driven by a linearly chirped Gaussian
laser pulse, including the interactions with the phonons of the surrounding medium. We
derive both a secularised Bloch-Redfield master equation for this system and the cor-
responding counting field master equation, which we use to calculate the full counting
statistics of the heat absorption. We investigate the dependence of the heat absorbed as
a function of the laser parameters and introduce a toy model to calculate the efficiency
of these heat transfers. We explain the results through the introduction of effective
temperatures to describe the excitonic degrees of freedom. Finally, we present the
probability distribution of the heat exchanged between the exciton and the phonons,
and the probability distribution of the work done on the exciton.

In chapter 3 we extend the model of a heat engine composed of a laser driven exciton
coupled to phonons to include more complex temporal profiles for the frequency of
laser, beyond that of simple linear chirping. We use numerical optimisation methods
to maximise the efficiency with respect to the temporal profile of the driving laser
frequency.

In chapter 4 we present a steady state heat pumping model based on the same driven
quantum dot-phonon model. We include the effects of spontaneous emission of pho-
tons by the exciton, and derive the Bloch-Redfield master equation and counting field
master equation for the system with the added exciton-photon interaction terms in the
Hamiltonian. We derive analytical expressions for the heat pump power, as a function
of the laser parameters, and use full counting statistics methods to calculate the full
probability distribution of the number of excitations transferred between the exciton
and each bath.

In chapter 5 we extend the quantum dot heat pumping model to treat heat pumping
of phonons using steady state laser driving of silicon vacancy centres in diamond,
and propose a laser cooling protocol which is not impeded by the background heating
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effects of the driving laser. We calculate the cooling power as a function of the laser
parameters, and examine the effects of the strong coherent driving, in comparison to the
weak driving regime, as is conventionally considered in laser cooling protocols. Finally,
we compare the cooling spectra from a secular, non-secular and phenomenological
Lindblad model, and identify regimes where each theory is appropriate.

37



38



Part I

Quantum Controlled Heat Absorption
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2 Reversible Heat Transfer in Laser
Controlled Excitons

In sections 1.1.2 and 1.1.6 we introduced the concept of adiabatic rapid passage in
quantum control experiments on quantum dots. Specifically, we considered the effect
of the phonons during the ARP state preparation protocol. The net effect was to limit
the effectiveness, reducing the probability of preparing the exciton state of the quantum
dot. We can view the exciton-phonon interactions during the ARP pulse as a driven
system exchanging heat with a bath. In the case of CW laser driving, this problem
was examined by Gauger and Wabnig [121], in their treatment of a laser driven exciton
as a heat pump. They found that by using a red detuned laser, it was possible to
continuously extract heat from the phonon reservoir, and use spontaneous emission of
light from the exciton to discard the excess energy extracted from the lattice.

In this chapter, we extend this treatment to the case of chirped laser pulses. We
consider the flow of heat between the exciton and phonons, under the action of an
ARP laser pulse driving the exciton. Using a time-dependent field allows for the
control of the temporal structure of the dressed state splitting, and thus control over
the instantaneous exciton-phonon scattering rates. Such control will, in principle, allow
for the design of a quantum thermal machine, where the excitonic degrees of freedom
play the role of the working fluid, and the phonon reservoir plays the role of a thermal
reservoir.

Such a treatment will require the use of quantum master equation techniques, to write
down the equations of motion of the laser driven exciton under the influence of its
interaction with the phonons. We follow the procedure outlined in [122] and derive a
secular Bloch-Redfield master equation of Lindblad form, which enables us to numer-
ically solve for the dynamics of the exciton. In order to compute the thermodynamic
properties of the system, we follow the steps outlined in [100, 101] to write down the
equivalent counting field master equation for this problem. With these tools, we can
solve for the dynamics of the heat and work probability distributions.
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2.1 Theoretical Methods

2.1.1 Model of Exciton-Laser-Phonon Interaction

We begin by deriving the Bloch Redfield master equation, which captures the dynamics
of the laser driven exciton-phonon problem. In the absence of a driving laser, the
Hamiltonian of the quantum dot is simply given by

Ĥ0 = Egŝz, (2.1)

with Eg denoting the energy gap between the 0 and 1 exciton states. Here we have
used the pseudo spin 1/2 operators defined as ŝz = 1

2
(|1⟩ ⟨1| − |0⟩ ⟨0|) to simplify the

notation, and introduce ŝ+ = |1⟩ ⟨0|.

To include the interaction between the exciton and driving laser field, we add a dipole
coupling term, Ĥdrive = − ˆ⃗

d · E⃗(t). For a laser with a time-dependent frequency and
amplitude, the electric field has the form

E⃗(t) = e⃗E0(t) cos

(∫ t

ω(τ)dτ

)
, (2.2)

with ω(τ) the time-dependent frequency of the laser. Inserting this electric field into
the driving Hamiltonian, we have

Ĥdrive =−
(
⟨0| ⃗̂d · e⃗ |1⟩ |0⟩ ⟨1|+ h.c.

)
× E0(t)

2

[
ei

∫ t ω(τ)dτ + e−i
∫ t ω(τ)dτ

]
=− Ω(t)

2
(|0⟩ ⟨1|+ |1⟩ ⟨0|)×

[
ei

∫ t ω(τ)dτ + e−i
∫ t ω(τ)dτ

]
, (2.3)

with Ω(t) = E0(t) ⟨0| ⃗̂d · e⃗ |1⟩. Moving to the interaction picture, operators will have a
time-dependence governed by

i
d

dt
O =

[
O, Ĥ0

]
. (2.4)

For the Schrödinger picture operator ŝ− = |0⟩ ⟨1|, we have its interaction picture coun-
terpart s̃−(t), which is governed by

i
d

dt
s̃−(t) =

[
s̃−(t), Ĥ0

]
(2.5)

= Egs̃
−(t). (2.6)

We then have that ˜̂s−(t) = e−iEgtŝ−. Writing the driving Hamiltonian in the interaction
picture, we have,

Ĥdrive = −Ω(t)

2

[
|0⟩ ⟨1| e+i

∫ t(ω(τ)−Eg)dτ + h.c.
]
, (2.7)
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where we have ignored terms which have factors e±i
∫ t(ω(τ)+Eg). This amounts to neglect-

ing fast oscillating terms, and is known as the rotating wave approximation [17]. Undo-
ing the interaction picture transformation, the driving Hamiltonian in the Schrödinger
picture then becomes

Ĥdrive = −Ω(t)

2

[
|0⟩ ⟨1| e+i

∫ t ω(τ)dτ + h.c.
]
. (2.8)

We perform one last transformation to a rotating frame, which helps remove the time-
dependence from the exponential terms. This transformation amounts to re-defining
the zero of energy. We use a unitary operator Û = e+iϕ(t)sz , where ϕ(t) =

∫ t
ω(τ)dτ .

States and operators in this new frame can be expressed as∣∣∣ψ̃〉 = hatU |ψ⟩ , (2.9)

Õ = ÛÔÛ †, (2.10)

where the tilde now signifies states and operators in the rotating frame, not the inter-
action picture as above.

Taking the derivative with respect to time, we have i d
dt
Õ = ω(t)

[
Õ, sz

]
. For the

Hamiltonian, we have

H̃ → ÛHÛ † + i
˙̂
UÛ †, (2.11)

= ÛHÛ † − ω(t)sz. (2.12)

Finally, we can write the Hamiltonian for the exciton driven by a laser field with a
time-dependent amplitude and time-dependent frequency as

H = ∆(t)ŝz − Ω(t)ŝx, (2.13)

where ∆(t) = Eg −ω(t). For brevity, we have dropped the tilde, and for the remainder
of the chapter we will work in this rotating frame.

As in the introduction, we introduce the eigenstates of the Hamiltonian of the system
as |+⟩ and |−⟩, the laser dressed states, with eigenvalues ±Λ(t)/2, where Λ(t) =√
∆(t)2 + Ω(t)2. These dressed states, expanded in the basis of the original states |0⟩

and |1⟩, are

|−⟩ =

√(
Λ(t)−∆(t)

2Λ(t)

)
|0⟩+

√(
Λ(t) + ∆(t)

2Λ(t)

)
|1⟩ , (2.14)

|+⟩ = −

√(
Λ(t) + ∆(t)

2Λ(t)

)
|0⟩+

√(
Λ(t)−∆(t)

2Λ(t)

)
|1⟩ .
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In this dressed state basis, we define new pseudo-spin operators, defined as

Rz =
1

2
(|+⟩ ⟨+| − |−⟩ ⟨−|) ,

R+ = |+⟩ ⟨−| . (2.15)

We can view these new spin operators, ˆ⃗
R, as generated from the original spin operators,

ˆ⃗
S, by a rotation about the y-axis by an angle θ = arctan (Ω(t)/∆(t)). This angle is
time-dependent due to the time-dependence of the frequency and amplitude of the
driving laser. This rotation can be expressed as

R⃗ =

 cos θ 0 sin θ

0 1 0

− sin θ 0 cos θ

 S⃗ =

 ∆/Λ 0 Ω/Λ

0 1 0

−Ω/Λ 0 ∆/Λ

 S⃗.

The original pseudo spin operators can be expanded into this new rotated basis as

sz =
∆

Λ
Rz +

Ω

2Λ
(R+ +R−) ,

s+ =
Ω

Λ
Rz +

(
∆+ Λ

2Λ

)
R+ +

(
∆− Λ

2Λ

)
R−,

s− =
Ω

Λ
Rz +

(
∆− Λ

2Λ

)
R+ +

(
∆+ Λ

2Λ

)
R−. (2.16)

The Hamiltonian of the exciton can then be expressed compactly as

ĤS(t) = Λ(t)R̂z. (2.17)

The exciton interacts with the longitudinal acoustic phonons of the host medium, which
can be accurately modelled by a deformation potential coupling [14]. This coupling
can be qualitatively viewed as a shift in the position of the harmonic potential of the
oscillators, HI = gŝz ⊗ x̂, with the direction of the shift depending on the state of
the QD, where g is the coupling constant of the interaction. Adding in both the free
phonon Hamiltonian and the phonon-exciton deformation potential interaction term,
we have the full Hamiltonian for the system and bath,

Ĥ = ∆(t)ŝz − Ω(t)ŝx +
∑
k

ωkb̂
†
kb̂k + ŝz ⊗

∑
k

(gkb̂k + g∗k b̂
†
k). (2.18)

This Hamiltonian is known as the spin-boson Hamiltonian, and is a quintessential
model in the field of open quantum systems. In this exciton-phonon problem, the
phonons play the role of the reservoir, whose dynamics are unimportant. As such, we
can derive a Bloch Redfield master equation, which describes only the dynamics of the
exciton, retaining the effects of the interaction with the phonons.
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2.1.2 Bloch-Redfield Master equation

We can follow the steps in [122] and in the introduction, to derive the Bloch-Redfield
master equation. We use eqn. 1.33 from the introduction as our starting point,

d

dt
ρ̃(t) = −

∫ t

−∞
dt′TrB

[
H̃I(t),

[
H̃I(t

′), ρ̃(t)⊗ ρ̃B

]]
, (2.19)

where H̃I(t) = P (t)Φ(t), is the exciton-phonon coupling Hamiltonian. The opera-
tors P (t) and Φ(t) are the system and bath interaction operators, respectively, in the
interaction picture, defined as

P (t) = eiHS(t)tsze
−iHS(t)t

= eiΛ(t)tRz

[
∆

Λ
Rz +

Ω

2Λ
(R+ +R−)

]
e−iΛ(t)tRz

=
∆

Λ
Rz +

Ω

2Λ

(
R+e

iΛ(t)t +R−e
−iΛ(t)t

)
,

Φ(t) = eiHBt
∑
k

(
gkb̂k + g∗k b̂

†
k

)
e−iHBt

=
∑
k

(
gkb̂ke

−iωkt + g∗k b̂
†
ke

iωkt
)
. (2.20)

The interaction picture transformation above is not generally valid when the Hamilto-
nian has an intrinsic time-dependence. A true interaction picture transformation is ob-
tained via a time ordered exponential unitary operator, U = T

(
e−i

∫ t ĤS(t
′
)dt′

)
⊗e−iHBt.

We use a much simpler unitary operator, given simply by the exponentiated system
Hamiltonian, U = e−iΛ(t)R̂zte−iHBt. Clearly this does not generate the correct dynamics
for the system, however we only use this form of unitary operator to calculate the effect
of the phonons on short time scales, tc ∼ 1/ωc, with ωc the cut off frequency in the
spectral density. The final master equation for the density matrix of the exciton will be
obtained by undoing this transformation. The dissipative part of the dynamics should
be well approximated in the limit that tcd∆(t)/dt, tcdΩ(t)/dt ≪ Λ(t) [122], as is the
case in this work. Expanding out the commutators in eqn. 2.19, we get

d

dt
ρ̃(t) = −

∫
dωJ(ω)

∫ t

dt′ ([ P (t)P (t′)ρ̃(t)− P (t′)ρ̃(t)P (t)]×[
(n(ω) + 1) e−iω(t−t′) + n(ω)e+iω(t−t′)

]
+

[−P (t)ρ̃(t)P (t′) + ρ̃(t)P (t′)P (t)]×[
(n(ω) + 1) eiω(t−t′) + n(ω)e−iω(t−t′) ]

)
(2.21)

with n(ω), the Bose-Einstein occupation function and where we have replaced the
summation over modes by an integration over ω with the spectral density function,
J(ω).
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We can simplify eqn. 2.21 to

d

dt
ρ̃(t) = −

∫
dωJ (ω) (P (t)P+(t)ρ̃(t)− P+(t)ρ̃(t)P (t)− P (t)ρ̃(t)P−(t) + ρ̃(t)P−(t)P (t))

with the operators P± obeying P−(t) = P †
+(t) and given by

P+(t) =

∫ t

dt′P (t′)
[
(n(ω) + 1) e−iω(t−t′) + n(ω)eiω(t−t′)

]
= (n(ω) + 1)

[
∆

Λ

Rz

−ω + 0
+

Ω

2Λ

(
R+e

+iΛ(t)t

i (ω + Λ(t)) + 0
+

R−e
−iΛ(t)t

i (ω − Λ(t)) + 0

)]
+ n(ω)

[
∆

Λ

Rz

−ω + 0
+

Ω

2Λ

(
R+e

+iΛ(t)t

i (−ω + Λ(t)) + 0
+

R−e
−iΛ(t)t

i (−ω − Λ(t)) + 0

)]
. (2.22)

It is possible to write P±(t) more succinctly as P+(t) = ΓcRz +ΓaR+ +ΓbR− with the
coefficients Γα defined as

Γa =
Ω

2Λ(t)

∫
dωJ(ω)

[
n(ω) + 1

i (ω + Λ) + 0
+

n(ω)

i (−ω + Λ) + 0

]
e+iΛ(t)t,

Γb =
Ω

2Λ(t)

∫
dωJ(ω)

[
n(ω) + 1

i (ω − Λ) + 0
+

n(ω)

i (−ω − Λ) + 0

]
e−iΛ(t)t,

Γc =
∆

Λ(t)

∫
dωJ(ω)

[
n(ω) + 1

iω + 0
+

n(ω)

−iω + 0

]
. (2.23)

Using the identity limη→0
1

x±iη
= P

(
1
x

)
∓ iπδ(x), the integrals can be computed. Fi-

nally, we perform the secular approximation, discarding terms with fast oscillating
coefficients, and transform back to the Schrödinger picture. We are left with the mas-
ter equation for the dynamics of the driven quantum dot in contact with the phonon
bath,

d

dt
ρ̂(t) =− [γa (Ω(t),∆(t)) /2]

({
R̂−R̂+, ρ̂(t)

}
+
− 2R̂+ρ̂(t)R̂−

)
(2.24)

− [γe (Ω(t),∆(t)) /2]

({
R̂+R̂−, ρ̂(t)

}
+
− 2R̂−ρ̂(t)R̂+

)
− i

[
Ĥs(t), ρ̂(t)

]
.

This is a time-dependent Bloch-Redfield master equation in Lindblad form, obtained
from the secularized Born-Markov approximation in the interaction picture. A phononic
Lamb shift has been omitted from this master equation, as its effects are negligible in
the parameter regimes that we examine in this work [122]. The master equation ex-
plicitly shows the origin of the decay terms. Phonon absorption and emission events
are accompanied by transitions between the two laser dressed states of the quantum
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dot. The rates in the above equation are given by

γa = 2

(
Ω(t)

2Λ(t)

)2

πJ(Λ(t))n(Λ(t)) (2.25)

γe = 2

(
Ω(t)

2Λ(t)

)2

πJ(Λ(t)) [n(Λ(t)) + 1] (2.26)

We have yet to specify a spectral density function. In general, the spectral density of
the bath is given by J(ω) =

∑
q gqδ (ω − ωq). For this work we take the model used in

[123] for an GaAs/InGaAs quantum dot, J(ω) = Aℏ
kBπ

ω3e−ω2/ω2
c , with cutoff frequency

ℏωc = 2 meV and A = 11.2 fs K−1. We plot the spectral density in fig (2.1). The
Markov approximation remains valid when the spectral density is relatively flat over
the linewidth of the system, which is satisfied at the temperatures we consider in this
work [122]. For the control field, as in [54, 122] we use a pulse of the form:

∆(t) = − a

a2 + τ 40
t+ δ (2.27)

Ω(t) =
Θ0√

2π
√
a2 + τ 40

e
− t2τ20

2(a2+τ40) .

The parameters used to specify the pulse are the spectral chirp a, pulse area Θ0,
unchirped pulse duration τ0 and the detuning between the central frequency of the
laser and the exciton transition frequency δ.
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Figure 2.1: Spectral density for the exciton-phonon interaction in a GaAs/InGaAs
quantum dot.
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2.1.3 Counting Field Master Equation

To generate the probability distribution of the heat exchanges between the system and
bath, along with the probability distribution for the work performed on the system
via the control field, we must derive the counting field master equation. As we saw in
the introduction, this involves introducing counting fields into the definition of both
the density matrix and the evolution operators. We follow the procedure outlined in
[100, 101].

In the interaction picture, the state of the full system plus bath, which we denote ρ,
can be expressed through the use of interaction picture evolution operators UI . We
begin with the known equation for the total density matrix of the system plus bath in
the interaction picture, ρ̃, which will be denoted simply as ρ from here onward,

ρ(t) = ÛI ρ̂0Û
†
I ,

with UI the interaction picture evolution operator. We then introduce the counting
fields to ÛI , as described in section 1.2.2, and arrive at

ρ̂u(t) = ÛI,u/2(t, t0)ρ̂
u(0)Û †

I,−u/2(t, t0) (2.28)

ÛI,u/2(t, t0) = eiuĤB ÛI(t, t0)e
−iuĤB , (2.29)

for the counting field evolution operator and the counting field density matrix.

We take the time derivative of both sides of eqn. 2.28, and note that i
˙̂
UI,u/2 =

Ĥ
u/2
c (t)ÛI,u/2, where ĤI(t) the interaction Hamiltonian coupling the exciton and phonons

and is defined as Ĥu
I (t) = eiuĤBĤI(t)e

−iuĤB . This results in

∂

∂t
ρu(t) = −iĤu/2

I (t)ρu(t) + iρu(t)Ĥ
−u/2
I (t),

which is the equivalent of the standard von-Neumann equation for the density matrix
of the quantum dot system. Formally integrating the above equation, we substitute
the result back into itself and take the trace over the degrees of the freedom of the
bath, leaving

∂

∂t
ρuS(t) = TrB { −

∫ t

−∞

(
Ĥ

u/2
I (t)Ĥ

u/2
I (s)ρus (t)⊗ ρB − Ĥ

u/2
I (t)ρus (t)⊗ ρBĤ

−u/2
I (s)

)
+

∫ t

−∞

(
Ĥ

u/2
I (s)ρus (t)⊗ ρBĤ

−u/2
I (t)− ρus (t)⊗ ρBĤ

−u/2
I (s)Ĥ

−u/2
I (t)

)
} ,

(2.30)

for the counting field density matrix of the exciton.

We repeat the derivation carried out in section 2.1.2, which includes the process of
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secularisation to ensure positivity of the density matrix, and we obtain the counting
field master equation for the state of the exciton in the Schrödinger picture

∂

∂t
ρ̂uS(t) =− i

[
Ĥs(t), ˆρuS(t)

]
− γe

({
R̂+R̂−, ρ̂

u
S(t)

}
+
− 2e+iuΛ(t)R̂−ρ̂

u
S(t)R̂+

)
− γa

({
R̂−R̂+, ρ̂

u
S(t)

}
+
− 2e−iuΛ(t)R̂+ρ̂

u
S(t)R̂−

)
(2.31)

where, once again, the Lamb shift term has been neglected.

The full counting statistics of the work and heat can be derived directly from the
modified density matrix, ρ̂us (t), through the characteristic functions, defined as

GQ(t, u) = Trρ̂uS(t) (2.32)

GW (t, u) = TreiuEG|1⟩⟨1|ρ̂uS(t). (2.33)

These characteristic functions, each have a different initial condition, ρ̂uS(−∞) =

ρ̂S(−∞)∀u and ρ̂uS(−∞) = e−iuEg |1⟩⟨1|ρ̂S(−∞), for the case of heat and work respec-
tively [101]. Solving for the characteristic function numerically, we can get the full
probability distributions for the heat and the work.

The role of the operators, e±iuEg |1⟩⟨1|, in the definition of the work distribution, is
to carry out a two-point projective measurement. This amounts to measuring the
quantum dot for the presence of exciton before and after the protocol, in essence
measuring the total change in the energy of the system. This in essence computer the
change work done on the exciton by the driving laser through the first law, subtracting
the change in heat from the change in total energy.

Alternatively, we can compute the moments of the heat and work distributions directly
from the characteristic functions. For the first moment of the heat distribution, the
mean heat exchanged between system and bath, we have

⟨Q⟩ = 1

i

∂GQ(u, tf )

∂u

∣∣∣∣
u=0

=
1

i

∂

∂u
Tr [ρ̂(t, u)]

∣∣∣∣
u=0

=
1

i

∂

∂u
Tr

[∫ t

−∞

ˆ̂
Lu [ρ̂(t′, u)]

]
dt′

∣∣∣∣
u=0

,

with ˆ̂
Lu the counting field Liouville superoperator which generates the dynamics of

ρ̂(t, u) as in eqn. 2.31, ∂ρ̂(t, u)∂t = ˆ̂
Luρ̂(t, u). Inserting in the Liouville superoperator,
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we have

⟨Q⟩ = −1

i
Tr

∫ t

−∞
dt′γa/2

({
R̂−R̂+,

ρ̂(t, u)

∂u

}
− 2e+iuΛ(t)R̂+

∂ρ̂(t, u)

∂u
R̂−

−iΛ(t)2e+iuΛ(t)R̂+ρ̂(t, u)R̂−

)
γe/2

({
R̂+R̂−,

ρ̂(t, u)

∂u

}
− 2e−iuΛ(t)R̂−

∂ρ̂(t, u)

∂u
R̂+

+iΛ(t)2e−iuΛ(t)R̂−ρ̂(t, u)R̂+

) ∣∣∣∣
u=0

. (2.34)

Terms with R̂±
∂ρ̂(t,u)

∂u
R̂∓ cancel and ρ̂(t, 0) = ρ̂(t),

⟨Q⟩ = Tr
∫ ∞

−∞
dt′Λ(t′)

(
γa(t)R̂+ρ̂(t)R̂− − γe(t)R̂−ρ̂(t)R̂+

)
, (2.35)

=

∫ ∞

−∞
dt′Λ(t′) (γa(t)P↓(t)− γe(t)P↑(t)) (2.36)

where we have used Tr
[
R̂±ρ̂R̂∓

]
= P↓/↑, with P↓/↑ as the probability of being in the

lower/upper dressed state respectively.

This result for the mean heat can also be found using the formula put forward by Alicki
in 1979 [93]:

Q̇ = Tr
[
˙̂ρ(t)Ĥs(t)

]
. (2.37)

The benefit of the full counting statistics approach comes in the calculation of higher
order moments, beyond the mean, and in the ability to calculate of the full probability
distribution.

Similarly, for the work, we follow the same procedure and recover the first law.

⟨W ⟩ = 1

i

∂GQ(u, tf )

∂u

∣∣∣∣
u=0

=
1

i

∂

∂u
Tr

[
eiuĤ0 ρ̂(t, u)

]∣∣∣∣
u=0

=
1

i

∂

∂u
Tr

[∫ t

−∞
eiuĤ0 ˆ̂Lu [ρ̂(t′, u)]

]
dt′

∣∣∣∣
u=0

⟨W ⟩ =
[
Ĥ0, ρ̂(t, 0)

]
+

1

i
eiuĤs

∂

∂u

∫ t

−∞

ˆ̂
Lu [ρ̂(t′, u)]

∣∣∣∣
u=0

⟨W ⟩ = ⟨Ĥ0⟩+ ⟨Q⟩. (2.38)

The expressions for the mean heat and work involve only ρ̂(t, 0). We need to only
solve the much simpler standard Bloch Redfield master equation (2.24) to calculate
these quantities. A calculation of the full distributions involves numerically solving the
counting field master equation (2.31).
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2.2 Results

Before analysing the results of the heat flows between the system and environment, it
is instructive to re-examine the dressed states of the exciton, and the effect of the sign
of the chirp. The purple dotted line in fig. 2.2 depicts energy level structure of the
dressed states over time, in the limit that the field of the driving laser goes to zero.
This leads to dressed states which are, at all times, the bare |0⟩ and |1⟩ exciton basis
sates. The dressed state splitting in this case is simply Λ(t) = |∆(t)|.

t

Λ(t)

|1〉

|1〉

|0〉

|0〉

|0〉

|0〉

|1〉

|1〉 |-〉

|+〉

Figure 2.2: Generic dressed state splitting during an ARP driving sequence. The blue
shaded region depicts the pulse amplitude. The states are the dressed state mappings
before and after the pulse for positive spectral chirp. The states in blue denote the
dressed state mappings before and after the pulse for the case of negative spectral
chirp.

With a non-zero laser field amplitude, the degeneracy of the levels at the crossing
is lifted and results in two distinct non degenerate dressed states, whose structure
we wrote down in section 2.1.1. At early and late times, i.e., before and after the
driving sequence, both of the dressed states each map exactly to one of the exciton
basis states. This designation will depend on the sign of the chirp, as indicated in the
figure. For positive spectral chirp, we have |−⟩t→−∞ = |0⟩ and |−⟩t→+∞ = |1⟩. In an
isolated setting, the system would adiabatically evolve along |−⟩ in time, effectively
inverting the population from |0⟩ to |1⟩. Conversely, for negative spectral chirp, we
have |+⟩t→−∞ = |0⟩ and |+⟩t→+∞ = |1⟩. Identical to the case of positive spectral chirp,
the system would adiabatically evolve along the upper dressed state to effectively invert
the population of the QD exciton to |1⟩.

We know this inversion is limited in practice due to the interaction with the phonons.
The emission and absorption of phonons into/from the bath prompts transitions be-
tween the dressed states. Taking a generic chirped Gaussian laser pulse with a central
frequency resonant with the exciton transition frequency, the effect of the phonons is
to reduce the final occupation from unity. For positive spectral chirp, if we measure
the QD to start and end in 0, we know a transition from |−⟩ to |+⟩ must have taken
place, which we associate with the absorption of a phonon. Likewise, for negative spec-
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Figure 2.3: Exciton-phonon heat flow for laser-driven excitons. Predicted heat ab-
sorbed (ℏ/ps) by a quantum-dot exciton transition, initially in its ground state, driven
by a chirped laser pulse with a given spectral chirp (horizontal axes) and pulse area
(vertical axes). Results are shown for different detunings of the exciton from the pulse
centre frequency, δ = ωx − ω(t = 0): (a) 0 (b) −2.5 ps−1 (c) 2.5 ps−1. The contour
spacing is 0.2ℏ/ps.

tral chirp, such a measurement would indicate that a phonon emission event has taken
place. It is important to note that the energies of the emitted and absorbed phonons
will depend on the time at which the transition occurs, due to the time-dependence of
the splitting Λ(t).

2.2.1 Mean Heat Abosrbed

Fig. 2.3 is a plot of the mean heat transferred from the phonon reservoir at T = 20 K,
to exciton, for pulses with a range of values of spectral chirp a, pulse area Θ0 and for
different values of fixed detuning δ = EX − ω0. In panel (a) we have plotted the mean
heat absorbed for a pulse with a central frequency resonant with the exciton transition.
There is a net absorption of heat from the phononic environment for positive spectral
chirp and emission of heat from the QD to the bath for negative values of the spectral
chirp. Panel (b) is a plot of the heat absorption for a chirped Gaussian pulse with
some negative fixed detuning, i.e. Eg − ωl = δ < 0. Such pulses lead to an emission of
heat into the phonon environment for all values of a and Θ considered. Positive fixed
detuning δ, shown in panel (c), leads to net heat absorption for all pulse parameters
in the range considered. The dependence of the direction of the heat flow on the sign
of the spectral chirp is clear from our discussion of the dressed state structures above.
The fact that the direction of heat flow also depends on the sign of the fixed detuning
is not quite as apparent, and will become more obvious when we consider the effective
temperature of the exciton later in this chapter.
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2.2.2 Completing the Cycle

In principle, there are two possibilities of using this heat transfer as a stroke in a thermal
machine. The first option is to simply build a chiller. The goal of such a machine would
be to simply cool the environment to which it is coupled. To do this with our quantum
dot system is trivial. We need only use spontaneous emission of photons to take the
quantum dot back to |0⟩ after each driving pulse. Neglecting background heating due
to the driving laser, the cooling power would be limited by the emission lifetime of the
dot, which is on the order of nanoseconds [124].

The second option is to use this heat transfer as the hot stroke of a heat engine. In order
to close the cycle, we would need to add in a cold stroke. If we close this cycle with some
ideal, generic and completely reversible cold stroke, then investigating the performance
of the entire cycle would provide us with a way to investigate the reversibility of the
hot stroke. Fig. 2.4 shows a schematic of the chiller and heat engine cycles. We will
refer to these later in the chapter and discuss how we compute the temperature and
entropy during the cycles.

To complete the cycle, we must specify a second thermal bath, which will play the
role of the cold reservoir. For this cold stroke, we take a completely reversible heat
transfer between system and cold bath, at a temperature TC . Any deviations from the
Carnot efficiency of this engine must then come exclusively from the hot stroke. In
order to calculate such an efficiency, we must calculate the heat and work exchanges
during each stroke. To do this, we calculate the changes in entropy of the system and
bath.

∆Sh
sys =

Q

Th
+∆Sirr

∆Sh
Bh

= −Q

Th

To complete the thermodynamic cycle, the system must return to its initial state,
implying the change in entropy of the system due to the cold stroke must be the negative
of the change in entropy of the system due to the hot stroke and with a completely
reversible cold stroke this also gives the change in entropy of the cold bath,

∆Sc
Bc

= ∆Sh
sys.

The total change in entropy during the entire cycle is given by

∆S = ∆Sirr = ∆Sh
sys +∆Sh

Bh
= −kBTr [ρ̂ log ρ̂]−

Q

Th
,

where we have computed the change in entropy of the system using the Von Neumann
definition. From the first law of thermodynamics, the net work out of the system is
simply given by the difference between the heat in and the heat out of the system,
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Wout = Qin −Qout, resulting in

η =
−Th∆Sh

Bh
+ Tc

(
∆Sirr −∆Sh

Bh

)
−Th∆Sh

Bh

, (2.39)

for the efficiency of the entire cycle We are using the sign convention that Q is the heat
exchanged during the hot stroke, transferred from hot bath to the quantum dot.
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Figure 2.4: Heat engines and chillers. a The cycle for a quantum-dot chiller. The solid
curve in the temperature-entropy plot shows these quantities for the quantum-dot as
it is driven by a laser pulse and absorbs heat from the phonon bath. The temperature
shown is defined by eqn. 2.40. The wavy lines depict the subsequent radiative decay,
which returns the quantum dot to its ground state. The upper (lower) square box
in the engine diagram represents the phonon (electromagnetic) environment, and the
circle the quantum dot. b The cycle for a quantum-dot heat engine. This comprises
the same heat-absorption stroke as the chiller, but the cycle is then closed by a partial
Carnot cycle, which implements a reversible heat transfer to a bath at a temperature
Tc < Tph
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2.2.3 Efficiency

Fig. 2.5 shows the efficiencies for such cycles for a range of values of spectral chirp and
pulse area, for two values of detuning, δ, and two values of unchirped pulse duration,
τ , with the cold bath set at a temperature of TC = 2.7 K and the phonon reservoir
at T = 20 K. The efficiency is shown as a fraction of the Carnot efficiency, which in
this case is ηC = 1 − Tc/Th = 0.87. The efficiency for a resonant pulse, with τ0 = 2

ps, is shown in Panel (a). The peak efficiency here is about 0.61ηC at a = 8.0ps2 and
Θ0 = 6.3π. This efficiency is not close to the Carnot efficiency, but it is 80% of the
Chambadl-Novikov efficiency, or the endoreversible efficiency at maximum power [125]
which is also often referred to as the Curzon-Ahlborn efficiency. For these temperatures,
this would be η = 1−

√
Tc/Th = 0.73ηC .

Panel (b) shows the effect of introducing positive detuning (E − ωL = δ > 0), again,
onto the longer (τ0 = 2 ps) pulse. Similar to the resonant case, as the chirp is increased
from zero to finite positive values, the efficiency rapidly increases before approaching a
limit. This behaviour is also seen in the heat absorption map fig. 2.3(c). This saturation
can be attributed to the way the temporal chirp, α = d∆(t)/dt = a/ (a2 + τ 40 ), and
pulse duration τ = τ 20 + a2/τ 20 , depend on the spectral chirp. For large a, the temporal
chirp α decreases with a, while τ increases, such that the product ατ asymptotes to
1/τ0. We see non-zero efficiencies for most of the parameter space, negative chirp
sector included. This is a consequence of the net heat absorption seen over the same
parameter region, observed in the associated heat absorption map.

Panels (c) and (d) show the corresponding results for a smaller value of τ0, i.e., a higher
bandwidth driving pulse. This leads to higher efficiencies which, for the positively-
detuned case shown in fig. 2.5(d), reach 0.95ηC . This maximum is achieved at the
upper boundary of the plot Θ0 = 9π, in the region of positive chirp a ≳ 5 ps2. We
conclude that such pulses lead to reversible exciton-phonon heat transfers.

The reversibility of the heat transfer process can also be quantified by the entropy
generation. Fig. 2.6 shows the entropy of the exciton for two choices of pulse param-
eters, as a function of time. One of these, which we refer to as the Carnot pulse,
corresponds to a point in fig. 2.5 (d) in the maximum efficiency region, Θ0 = 9π, a
= 10 ps2. The other, which we choose for comparison with the chirped case, is the
point of maximum efficiency in fig. 2.5 (b) along the line of zero chirp (Θ0 = 6.0π,
η = 0.84ηC , Q/ℏ = 0.62ps−1). We also plot, as the dashed line, the corresponding
entropy decrease of the phonon reservoir, Q/Tph. The gap between the two curves is
the overall entropy generation. These choices will show us the effects of including chirp
into the driving protocol on the performance of the thermal machine. As one would
expect from the difference in efficiencies, the entropy generation in the Carnot pulse is
lower than that of the unchirped comparator. It is also evident that the chirped pulse
exceeds the unchirped pulse in the heat absorbed per driving cycle.
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Figure 2.5: Efficiency as a fraction of the Carnot efficiency for an exciton heat engine.
Results are shown as functions of the spectral chirp (a, horizontal axes) and the pulse
area (Θ0, vertical axes) of the driving pulse used for the heat absorption stroke. The
panels correspond to different values of the detuning, δ, and unchirped pulse duration,
τ0. (a) 0 ps−1 and 2 ps, (b) +2.5 ps−1 and 2 ps, (c) 0 ps−1 and 0.5 ps, (d) 2.5 ps−1 and
0.5 ps.

2.2.4 Effective Temperature

To understand the reduced entropy production in the case of a chirped pulse relative
to an unchirped pulse, we can examine the effective temperature of the quantum dot
exciton as a function of time. Driven systems are by definition out of equilibrium and
cannot be described by a Gibbs state of the form ρ̂ = e−βĤ , but in our model it is clear
from the master equation that governs the time local dynamics of the system density
matrix, that the interaction between the system and the bath tends to thermalise
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Figure 2.6: Entropy gained by the quantum dot (solid) and entropy lost by the phonon
reservoir (dashed) as functions of time for two different driving pulses. a Unchirped
pulse with δ = 2.5ps−1 and other parameters as indicated. b Chirped pulse with
δ = 2.5ps−1 and other parameters as indicated. Time is given in units of the pulse
duration, τ , in each case.

excitonic degrees of freedom in the basis of laser dressed states with the phonons; as in
[47], where it was shown that a quantum dot driven by a constant laser field reaches a
steady state well described a by a thermal occupation of the dot-laser dressed states.
This is due to the transition rates in the master equation obeying the detailed balance
relation γa/γe = e−ℏΛ/kBTh . This implies that the dressed state population, p+ and p−
can be used to define a temperature of the QD, Teff , which is defined by

p+
p−

= e−ℏΛ/kBTeff . (2.40)

Fig. 2.7a shows the temperature of the dot, as a function of time, for the chirped
Carnot pulse and the unchirped comparator pulse. We also show, in fig. 2.7b, the
corresponding heat absorption currents. For the unchirped pulse the temperature of
the exciton, which varies during the pulse, is significantly different from that of the bath
while the heat is flowing, leading to irreversible entropy generation. For the chirped
Carnot pulse, however, there is an interval of time during which heat flows and the
temperature of the dot is relatively constant. During this interval, any heat absorbed
from the bath, is absorbed isothermally. Moreover, this isothermal heat absorption
occurs when the temperature of the exciton is close to that of the bath, T = 20 K.
This isothermal heat absorption at the bath temperature produces little entropy and is
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quasi-reversible. This isothermal part of the heat absorption process can also be seen
on the temperature-entropy plots in fig. 2.4, where the solid lines are results obtained
for the chirped Carnot pulse.

It may be noted that the duration of the chirped Carnot pulse, τ = 20 ps, is significantly
greater than that of the unchirped comparator, τ = 2 ps. However, we have calculated
the maximum efficiency for an unchirped pulse of these two durations, and find in
both cases the same value (0.82 ηC). Thus, the increased duration associated with the
chirping does not account for the change in efficiency.

The reversible isothermal part of the heat absorption process is made possible by
the time-dependence of the dressed-state energies, which are shown for both pulses
in fig. 2.7c. For the chirped Carnot pulse, the energy splitting is reducing during the
heat transfer. This would, for an adiabatic process, reduce the temperature in line with
eqn. 2.40. Here, it compensates for the increase in temperature that would be expected
as heat flows from the phonons to the exciton. The result is an isothermal heat transfer,
which can occur at the bath temperature and hence be reversible. An alternative
view is in terms of the scattering rates: reducing the splitting increases the ratio
between phonon absorption and emission, moving the detailed-balance equilibrium for
the dressed-state populations, and driving a heat flow over a negligible temperature
difference.
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Figure 2.7: Results showing how chirping of the driving pulse leads to a reversible heat
transfer. (a) Effective temperature of the dot as a function of time for the chirped
Carnot pulse (solid) and unchirped comparator pulse (dashed). (b) Corresponding
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2.2.5 Probability Distributions For Heat and Work

For the sake of convenience in analysing the heat and work distributions together,
we change convention here and regard Q as the heat emitted by the exciton into
the phonons, such that Q < 0 is interpreted as heat absorbed from the phonons.
With this in mind, the probability distribution for the heat absorbed after the driving
sequence is shown in fig. 2.8, for both the Carnot pulse and the unchirped comparator
pulse we introduced above. The key differences between the two distributions are the
behaviour at Q = 0, and the total weight in the Q < 0 sector. The corresponding work
distributions are shown in fig. 2.9.

Before analysing these distributions, we note that the heat and work distributions
are related. it is easiest to consider these distributions from the point of view of
the set of possible trajectories which the system can take, evolving throughout the
driving protocol. These trajectories generally involve the system evolving along the
lower dressed state, with possible jumps between the dressed states occurring with
the associated emission or absorption of phonons. Naturally, we can partition the
trajectories into the set which take the exciton state from |0⟩ to |1⟩, and the set which
takes the exciton from |0⟩ to |0⟩. Partitioning the set of trajectories like this also results
in partitioning the distribution functions similarly.

The work distribution is essentially generated by shifting the portion of the heat dis-
tribution function corresponding to the set of trajectories |0⟩ → |1⟩ by an amount EG.
The portion of the heat distribution corresponding to the set of trajectories |0⟩ → |0⟩, is
shifted by 0, i.e., unchanged. This is seen clearly from the plots, but is easily understood
from the eqn. 2.33 for the characteristic function of work. The characteristic function
for work and heat only differed in the projective measurement e+iuEG|1⟩⟨1| on the state
at time t = −∞ and e−iuEG|1⟩⟨1| on the state at t = +∞. The initial measurement, at
the start of the protocol, always returns a phase factor e0, since ρ(−∞) = |0⟩ ⟨0|. The
final measurement, after the protocol, then adds a phase factor e+iEGu in the charac-
teristic function for all trajectories which end with the exciton in the state |1⟩. Taking
the Fourier transform to get P (W ), this results in a shifting of this portion of the
distribution.

Unchirped Pulse Heat Distribution

Looking first at the comparator pulse, the peak at Q = 0 in the heat distribution func-
tion indicates a high probability that there is no heat exchange with the environment.
In terms of the dressed state trajectories, this would correspond to a perfect adiabatic
evolution along the lower dressed state, with no transitions between the dressed states.
We also see shoulders either side of this Q = 0 peak in the distribution. These fluctu-
ations around Q = 0 come from trajectories where the exciton begins and ends in |−⟩,
but which include transitions between the dressed states during the driving sequence.
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Figure 2.8: Probability distribution function for the heat transferred from the quan-
tum dot to the phonon reservoir for the Carnot pulse (dashed) and the unchirped
comparator pulse.

Crucially, an even number of transitions are needed, such that the exciton ends back
in the lower dressed state, |−⟩. The fluctuations of the energies of emitted/absorbed
phonons, due to the time-dependent dressed state splitting Λ(t), result in some small
net heat emitted or absorbed by the exciton.

For the comparator pulse, we see a portion of the distribution weighted in a finite
region in the Q < 0 sector. This portion of the distribution is due to the set of
trajectories which leave the state of the dot as |+⟩, at the end of the driving sequence.
Such trajectories necessarily involve the net absorption of phonons. This follows as
the system is initially in |0⟩, corresponding to |−⟩ for this chirpless, red detuned pulse.
From the distribution, we can see that this region is bounded such that there is a
maximum amount of heat that can be absorbed. This maximum heat that can be
absorbed is simply the maximum of the dressed state splitting, as seen in fig. 2.7(c)
as the splitting at t = 0 ps. for a trajectory for which there is only a single jump,
the minimum heat absorption is simply the fixed detuning of the laser pulse 2.5ps−1.
Smaller quantities of heat can be absorbed through trajectories with more jumps. For
example, a phonon can be absorbed at some intermediate dressed state splitting, with a
subsequent phonon emission at the maximum dressed state splitting and a final phonon
absorption at the minimum splitting. This can be seen in the distribution, where the
probability of absorbing a quantity of heat smaller than the fixed detuning drops off
rapidly due to the need for multiple exciton-phonon scattering events.
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Figure 2.9: Probability distribution function for the work done on the quantum dot by
the Carnot pulse (dashed) and the unchirped comparator pulse. Left of the vertical
line is the distribution from −6 ps−1 to +3 ps−1 and right of the line is the portion of
the distribution from EG − 3 ps−1 to EG + 6 ps−1.

Chirped Pulse Heat distribution

For the distribution function of the Carnot driving sequence, we see that most of the
distribution is weighted in the Q < 0 sector. There is no discernable peak at Q = 0.
The dominant structure in the distribution is the presence of two broad peaks. We can
get more of an insight into the heat distribution of the Carnot pulse, by first examining
the probability distribution for work, as the heat distribution is not so easily partitioned
as it was for the comparator pulse.

Chirped Pulse Work distribution

To unpack the work distributions, it is best to again treat the unchirped pulse and
chirped pulse separately. Starting with the chirped Carnot pulse, if we take a trajectory
where 0 jumps occur, and the system adiabatically follows along |−⟩, ending in |1⟩,
this would contribute to the heat distribution function as some weight at Q = 0. This
weight would then be shifted to EG in the work distribution, through the phase factor
in the characteristic function. We can intuitively regard this as the laser performing EG

worth of work on the excitonic degrees of freedom. If we now include trajectories which
have jumps, but still leave the QD in |−⟩, any deviations from W = EG arise from the
phonon absorption and emission events during the driving protocol, with the deviation
being equal to the heat absorbed or emitted. This is seen in the distribution, which
has a large weight centred slightly left of EG. This portion of the distribution suggests
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that the majority of such trajectories actually involve the absorption of heat, such that
W < EG. This can be understood from the temporal structure of the dressed state
splitting for Carnot pulse, as seen in fig. 2.7 (c). The splitting has a general tendency
to decrease, at least while the heat flow is significant, seen in panel (b) of the same
figure. Any phonon absorption jump which takes the system from |−⟩ to |+⟩, can only
be followed by a phonon emission jump from |+⟩ to |−⟩, with the emitted phonon
then having less energy than the absorbed phonon, resulting in a net heat absorption.
However, it is not impossible for W > EG, which would arise through the absorption
of a phonon at the minimum Λ(t), and subsequent emission of a phonon with a greater
energy, such that heat is emitted into the phonons, rendering W > EG.

The portion of the heat distribution which is attributed to measuring the dot in the
|0⟩ state after the pulse, does not acquire this phase factor and so is not shifted, and
remains the same in the work distribution. To measure |0⟩ at the end of the protocol, a
jump from |−⟩ to |+⟩ with phonon absorption is required. In such trajectories, we can
use the first law, ∆E = 0 = ∆W+∆Q, to say negative work is performed in a sense, by
an amount equal to the heat transferred from phonons to exciton, as seen in the work
distribution, where the weight of the distribution is supported over negative values.
This portion of the distribution is peaked, and has a sharp cutoff suggesting that there
is a minimum amount of work done, or in terms of heat, a minimum amount of heat
that is absorbed from the phonons. This is due to the minimum possible energy that an
absorbed phonon can have, as seen in the dressed state splitting structure in fig. 2.7(c),
much like the case of the unchirped pulse. In principle, there is no strict maximum
amount of heat absorbed, where we see a soft decay in the probability distribution.
Increasingly large values of Λ(t) for the phonon energies, become decreasingly likely,
as these values occur when Ω(t) tends to 0, i.e., as t→ −∞, where the scattering rates
also tend to 0.

Unchirped Work Distribution

For the unchirped pulse, |−⟩t→−∞ = |−⟩t→+∞ = |0⟩, and so any trajectories which
have no jumps but simply involve the system adiabaticaly evolving along |−⟩, will
contribute weight to Q = 0 and to W = 0. Fluctuations around W = 0 in this case,
again correspond to trajectories which contain a set of jumps between the dressed states
but which overall return the system to |−⟩. We see this in the work distribution, with
a large peak at W = 0, which has shoulders either side. The work distribution only
has finite values close to W = EG for trajectories which take the system from |−⟩ to
|+⟩. Such trajectories necessarily involve the absorption of a phonon. This is clearly
seen in the distribution, which satisfies W < Eg.
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2.3 Conclusions

We have shown that a theory of open quantum systems [122] can be extended to allow
the calculation of quantum thermodynamic quantities. Unlike previous work [101]
our theory applies to time-dependent Hamiltonians and, therefore, quantum-control
experiments. Using this approach we have studied the thermodynamics of a quantum-
dot exciton driven by a chirped laser pulse, and evaluated the exciton-phonon heat
flow, entropy generation, and effective exciton temperature during the pulse. We have
predicted that certain pulses, which are readily accessible experimentally, induce heat
transfers from the phonons to the excitons, and that, in some cases, this heat transfer
approaches the ideal reversible limit. In the context of a heat engine, such a process
gives an efficiency close to the Carnot limit.

More generally, our results show that shaped laser pulses can be used to implement
controlled thermodynamic processes for a single exciton transition interacting with the
heat bath of phonons. The laser pulse amplitude allows for modulation of the heat
flow, a feature which is essential for the implementation of thermodynamic cycles, yet
is lacking in physical implementations of quantum thermodynamic machines. The pulse
profile also allows simultaneous, yet independent, control over the effective temperature
of the dressed-exciton system.

64



3 Optimal Heat Transfer in Quantum
Dots

In the previous chapter, we developed a theory of controllable heat transfer between a
laser driven quantum dot and the phonon modes of the host environment. We saw the
benefit of the effect of the linear chirp on the temporal structure of the dressed state
splitting, which was to effectively perform a compression stroke and an expansion stroke
resulting in isothermal heat transfer. It stands to reason, then, that by shaping the
temporal structure of the dressed state splitting beyond that of a simple linear chirp, it
should be possible to increase the efficiency of the heat stroke. We simply need to ensure
that the dynamics of the level splitting is such that the effective temperature of the
system in the basis of the dressed states always remains close to the bath temperature.
Although this requirement is simple to state and intuitive, finding such a dressed state
structure is tricky. Changing the dressed state splitting to compensate for changes
in the populations involves changing the structure of the dressed states themselves.
This in turn will further affect the dynamics of the populations. In order to solve this
problem, we can make use of numerical optimisation methods. We can maximise the
efficiency in the space of dressed state splitting temporal profiles. This allows us to
probe how close to the Carnot efficiency this model can get to, in a finite time. The
results presented in this chapter are a proof of principle, and lay the foundation for a
more rigorous and in depth analysis on the topic.

3.1 Pulse Shaping

The dressed state splitting, Λ(t), is a function of both the detuning, ∆(t) and the
Rabi frequency Ω(t). To explore the space of possible dressed state splitting profiles,
we must first define these quantities. For a completely general shaped laser pulse, we
would optimise over the shape of both the Rabi frequency (electric field amplitude)
and the detuning. This can lead to unphysical laser profiles. In order to simplify
the problem, we restrict our analysis to that of a Gaussian laser pulse, with a shaped
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detuning profile. We take the Rabi frequency to be of the form

Ω(t) = Ω0e
−t2/(2τ2) (3.1)

with two parameters, the amplitude Ω0 and pulse duration τ . We define the detuning as
a linear interpolation between N points, (∆1,∆2, ...,∆N), defined on the time interval
t ∈ [−4τ, 4τ ]. We vary the shape of the detuning profile by varying the values of the
points on this time interval. By shaping the detuning, we can control the shape of
the dressed state splitting structure. We can then maximise the value of any quantity
with respect to the shape of the detuning and the parameters of the Gaussian pulse
using a local optimisation algorithm. In this work, we perform the optimisation using
an unconstrained principle axis local optimisation algorithm. Specifically, we use the
in-built "FindMaximum" function in Mathematica.

This algorithm requires a seed value for the detuning profile and pulse parameters.
For this seed, we use the Rabi frequency Ω(t) and detuning ∆(t) of a linearly chirped
Gaussian laser pulse, which maximises the quantity of interest. The linearly chirped
pulse here is defined through

∆(t) = αt+ δ, (3.2)

Ω(t) = Ω0e
−t2/(2τ2). (3.3)

We note that the coefficient α is known as the temporal chirp, which we wrote explicitly
as a function of the spectral chirp a in the previous chapter. We use the same optimi-
sation algorithm to optimise the efficiency over a, Ω0 and δ. We use α = −0.004 ps−2

and Ω0 = 6ps−1 as seed values, for a range of values of τ . Doing this, we generate a set
of starting values for the shape optimisation, for a set of pulses with increasing values
of τ .

3.2 Optimised Efficiency

We are interested in maximising the reversibility of the heat absorption. To achieve
this, we can maximise the efficiency of the model heat engine described in the previous
chapter. Fig. 3.1 shows maximised efficiencies, relative to the Carnot efficiency, for
both the optimised linearly chirped pulse and the shaped pulse as a function of the
laser pulse duration τ . These results were generated using N = 15 points to define the
temporal profile of the detuning. We note, that these results were generated, with the
initial condition ρ(−∞) = 0.001 |1⟩ ⟨1|+0.999 |0⟩ ⟨0|. We add a small occupation to the
|1⟩ state, so that the optimiser can always define a finite positive temperature for the
exciton in the dressed state basis. Immediately from the results, we can state that it is
always possible to improve the efficiency, by using a shaped laser pulse over a linearly
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Figure 3.1: Efficiency for optimised linearly chirped pulse (solid) and optimised shaped
pulse (dashed) as a function of the pulse duration τ .

chirped laser pulse. Moreover, we can see that simply increasing the duration of the
laser pulse has the largest effect on improving the efficiency, with longer linearly chirped
pulses achieving high efficiencies. For both the optimised linearly chirped pulse and the
optimised shaped pulse, increasing τ results in efficiencies which are arbitrarily close to
the Carnot efficiency, which for this set of parameters is ηC = 1− 2.7/20 = 0.865. The
relative improvement in the efficiency due to the shaping is much greater for shorter
pulses, with a decreasing benefit as we increase the pulse duration, however for shorter
pulses, the overall efficiencies are furthest from the Carnot efficiency.

For the longest pulse, τ ≈ 300 ps we reach 99.1% of the Carnot efficiency, an unsurpris-
ing result. Basic thermodynamics tells us that each stroke in a Carnot engine needs to
be performed adiabatically, which can only be achieved in the infinite time limit. Sur-
prisingly, we achieve such efficiencies without a reduction in the total amount of heat
absorbed. Fig. 3.2 shows the heat absorbed for both the optimised linearly chirped
pulse and the shaped pulse, as a function of pulse duration τ . We see that the heat
absorption increased with increased pulse duration. One would expect that, in prin-
ciple, one could maximise the efficiency by moving to a regime where almost no heat
is exchanged between the system and the bath, reducing the entropy production to
zero. This is obviously problematic in the limit where no heat is absorbed, in which
case the efficiency is defined as 0/0. We would however expect the optimiser to at
least approach this solution. That we find these increasing optimised efficiencies with
increasing heat absorption is almost certainly a feature of the optimisation algorithm
finding local maxima. We start each run with a linearly chirped seed. It is likely the
optimiser is then finding a locally optimal solution, close to that of the linear chirped
seed.

In principle, the limit of zero heat absorption can be reached by either choosing Ω0 to
be small such that the rates γa/e are negligible, or by choosing Ω0 to be so large that
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Figure 3.2: Heat absorption for optimised linearly chirped pulse (dashed) and optimised
shaped pulse (solid) as a function of the pulse duration τ .

the dressed state splitting lies beyond the peak of the spectral density and the rates
are again negligible.

3.3 Optimised Detuning Profile
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Figure 3.3: The optimal detuning shape for the case of the linear chirped pulse (solid)
and shaped pulse (dashed) for four different values of pulse length

We now compare the detuning of the linearly chirped pulse and the shaped pulses
along with the resulting dressed state splitting, we can get a sense of what shapes the
optimization algorithm is finding. Fig. 3.3 compares the detuning for two short pulses
and two longer pulses, with the associated dressed state splitting plotted in fig. 3.4. We
see that the optimised detuning shape has different characteristic features for the short
and long pulses. For the short pulses, the linear detuning is modified such that before
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Figure 3.4: The optimal dressed state splitting for the case of the linear chirped pulse
(solid) and shaped pulse (dashed) for four different values of pulse length

the peak of the pulse amplitude, the system reduces the detuning, then increasing after
the peak of the pulse. The result in the dressed state splitting profile is slightly lower
splitting at close to the centre of the pulse (the equivalent of an expansion of a gas),
with the levels expanding towards the tail end of the pulse (compression).

In contrast, for the longer pulses, we typically only see this accelerated reduction of
the dressed state splitting, an expansion stroke, resulting in an overall reduction in
the dressed state splitting compared to the case of the linearly chirped pulse. As time
progresses, the rate of this expansion decreases and the detuning reaches a fixed value,
with the dressed state splitting also remaining constant, in comparison to the linearly
chirped case, which has diverging levels in the tail end of the pulse.

3.4 Effective Temperature

To understand the effects of these shaped detunings on the efficiency, we can examine
the corresponding effective temperature plots. As in the previous chapter, we define
the effective temperature of the system through the ratio of the dressed state popula-
tions.

p+
p−

= e−Λ(t)/kBTEff . (3.4)

Fig. 3.5 shows the effective temperature of the system as function of time. The common
feature of all four shaped pulses is a plateau in the effective temperature at times t > 0,
in contrast to the linearly chirped case. Here the system is exchanging heat with the
phonons, at a constant temperature, an isothermal heat transfer. The plateau of the
temperature is different for the short and long pulses. For short pulses, we see the
isothermal heat exchange at about T = 15 K, and a value of T = 20 K for the
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Figure 3.5: The resulting effective temperature of the exciton as function of time for
the case of the linear chirped pulse (solid) and shaped pulse (dashed) for four different
values of pulse length. The bath temperature at T = 20 K is indicated in red.

longer pulses. This explains the difference in efficiency between the long and short
pulses.

Although these shorter pulses are producing isothermal heat transfer, the temperature
gap between the system and bath is always finite, leading to an increased entropy
production. Comparing the temperature profile of the linearly chirped pulse and the
longer shaped pulse, we note that the system reaches T = 20 K more quickly and stays
at 20 K for longer. This is a result of the decreasing expansion rate we saw in the
detuning structure (slowing down of the reduction of the level reduction). As it stands,
the linear chirped pulse is quite good. Where the temperature differs from 20 K at late
times, Ω(t) is sufficiently small such that the heat absorption powers are negligible. Any
heat transfer occurring here, at this point of high temperature difference, is small, and
has a minor contribution to the entropy production. This explains the small increase
in efficiency we see when we shape the detuning of longer laser pulses.

3.5 Conclusions

We have shown that it is possible to increase the control of thermodynamic processes
through shaping of the temporal profile of the frequency of driving laser. In the quan-
tum dot exciton model we investigate, this increased control lead to increased effi-
ciencies for a heat engine cycle, compared with the case of a simple linearly chirped
Gaussian pulse. These locally optimal shapes resulted in an increase in the duration
of the isothermal heat absorption from the phonon bath, which increased the overall
efficiency of the cycle. Moreover, these increasingly efficient pulses also lead to an in-
crease in the heat absorbed per pulse. This work is a proof of principle, and lays the
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foundation for a more thorough examination of optimised thermodynamic processes in
laser controlled quantum dots.
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Part II

Steady State Heat Pumping
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4 Steady State Heat Pumping with
Quantum Dots

In chapter 2 we developed a theory to capture the thermodynamic properties of laser
induced heat flows when driving a quantum dot exciton with linearly chirped Gaussian
pulses. The steady state equivalent of this model was considered by Gauger and Wab-
nig [121], where the authors considered the potential to use semiconductor quantum
dots as a platform for optical refrigeration. In this chapter we treat the same steady
state problem, extending the work by writing an analytical expression for the heat ab-
sorption power, as a function of the laser parameters and solving for the full probability
distribution of both the number of phonons absorbed, and the excess excitation emitted
into the photon reservoir. To do this, we write a master equation for the quantum dot
exciton coupled to two reservoirs, the phonon bath already considered, and now also
the electromagnetic environment. The coupling to the electromagnetic environment
captures the spontaneous emission of photons by the exciton, in effect, closing the cy-
cle. From this model we are able to write down the steady state solution, by treating
the spontaneous emission in the basis of laser dressed states. The analytical solution
for the steady state of the system then quickly leads to an analytical expression for the
heat power. We use insights from this simple two level case to build a theory of laser
cooling of the silicon vacancy centre in diamond, which we predict to be much more
achievable, albeit more complicated. This is outlined in chapter 5.

Beyond the treatment of mean heat power, we again consider the full probability dis-
tribution for the heat exchange. In this problem, we now have heat exchange between
the QD exciton and two baths, typically heat absorbed from the phonons and heat
spontaneously emitted as photons. We write a counting field master equation, for the
steady state two bath problem, now with two counting fields, each keeping track of the
heat exchanged with either bath.
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4.1 Analytical Theory of Heat Pumping

4.1.1 Laser Driven Exciton-Phonon-Photon Model

To implement a laser cooling protocol, we need two baths. The bath to be cooled, the
phonons, and the bath into which we pump heat, the electromagnetic environment. In
our model, spontaneous emission of photons by the quantum dot exciton will act as the
channel for emitting the absorbed heat. We discard the time dependent driving due
to a chirped laser pulse, and now consider a constant frequency constant amplitude
laser field. We will again make use of a secularised Bloch Redfield master equation in
Lindblad form, and use an almost identical derivation to that used in chapter 2. The
only differences arise from the extra terms in the Hamiltonian describing the exciton-
photon scattering, Hx−photon =

∑
k fks

+ak+f
∗
ks

−a†k, and the photon bath Hamiltonian,∑
k ωkaka

†
k. The full Hamiltonian for the laser driven exciton-phonon-photon system

is then

H = ∆sz − Ωsx

+ sz
∑
k

(
gkbk + g∗kb

†
k

)
+
∑
k

νkbkb
†
k

+
∑
k

fke
+iωlts+ak + g∗ks

−e−iωltf †
k +

∑
k

ωkaka
†
k

= HS +H1
I +H1

B +H2
I +H2

B, (4.1)

in the rotating frame, having performed the RWA. Note the phase factors on s+ and s−,
originating from the unitary transformation to the rotating frame. Again, ∆ = Eg−ωl

and Ω = E0 ⟨0| ⃗̂d · e⃗ |1⟩, as in the previous chapter.

In this instance, the eigenstates of the system Hamiltonian, |+⟩ and |−⟩, no longer
have time dependent coefficients, when expanded in the set of exciton basis states.
This is due to the constant amplitude, constant frequency laser driving. Using the
same pseudo spin operator notation, Rz = 1/2 (|+⟩ ⟨+| − |−⟩ ⟨−|) and R+ = |+⟩ ⟨−|,
we can expand the lab frame pseudo-spin operators as

sz =
∆

Λ
Rz +

Ω

Λ
(R+ +R−)

,s+ =
Ω

Λ
Rz +

(
∆+ Λ

2Λ

)
R+ +

(
∆− Λ

2Λ

)
R−

,s− =
Ω

Λ
Rz +

(
∆− Λ

2Λ

)
R+ +

(
∆+ Λ

2Λ

)
R− .

We transform to the interaction picture to derive the master equation. H̃I = U †HIU
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with U = e−i(Hs+H1
B+H2

B), so that a± → a±e∓iωkt and b± → b±e∓iνkt. The lab frame
system pseudo spin operators transform accordingly as

s̃z =
∆

Λ
Rz +

Ω

Λ

(
R+e

+iΛt +R−e
−iΛt

)
(4.2)

,s̃+ =
Ω

Λ
Rz +

(
∆− Λ

2Λ

)
R+e

+iΛt +

(
∆+ Λ

2Λ

)
R−e

−iΛt (4.3)

,s̃− =
Ω

Λ
Rz +

(
∆+ Λ

2Λ

)
R+e

+iΛt +

(
∆− Λ

2Λ

)
R−e

−iΛt . (4.4)

The interaction Hamiltonian in the interaction picture becomes.

H̃I =s̃z
∑
k

gkbke
+iνkt + g∗kb

†
ke

−iνkt+∑
k

fks̃
+e+iωltake

−iωkt + f ∗
k s̃−e

−iωlta†ke
+iωkt (4.5)

Making the Born-Markov approximations and the secular approximation, we find the
Born-Markov master equation for the driven exciton-phonon-photon problem,

ρ̇S =− i [HS, ρ]

− π

(
Ω

2Λ

)2

Jphon(Λ) (n(Λ) + 1)D [R−] ρS

− π

(
Ω

2Λ

)2

Jphon(Λ)n(Λ)D [R+] ρS

− π

(
∆

Λ

)2

Jphon(0) (n(0) + 1)D [Rz] ρS

− π

(
∆+ Λ

2Λ

)2

Jphot(ωl + Λ)n(ωl + Λ)D [R+] ρS

− π

(
∆+ Λ

2Λ

)2

Jphot(ωl + Λ) (n(ωl + Λ) + 1)D [R−] ρS

− π

(
∆− Λ

2Λ

)2

Jphot(ωl − Λ)n(ωl − Λ)D [R−] ρS

− π

(
∆− Λ

2Λ

)2

Jphot(ωl − Λ) (n(ωl − Λ) + 1)D [R+] ρS

− π

(
Ω

Λ

)2

Jphot(ωl)n(ωl)D [Rz] ρS

− π

(
Ω

Λ

)2

Jphot(ωl) (n(ωl) + 1)D [Rz] ρS, (4.6)

with D [A] ρ(t) =
(
A†Aρ+ ρA†A− 2AρA†) ρ(t) and where we have introduced the

spectral density function characterising the interaction between the exciton and each
bath, Jphon(ω) =

∑
k |gk|2δ (ω − ωk) and Jphot(ω) =

∑
k |fk|2δ (ω − νk). For the phonon

spectral density we again take Jphon(ω) = Aℏ
kBπ

ω3e−ω3/ω3
c , with ℏωc (cutoff frequency)
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= 2 meV, A = 11.2 fs K−1 [123]. We will discuss the spectral density of the photons
shortly. The first line of eqn. 4.6 captures the coherent evolution of the excitonic
degrees of freedom under the action of the driving laser. The next three lines capture
the effects of the dissipation due to the phonons as before. The final six, capture the
photonic contributions to the dissipation. The spectral density and occupation func-
tions in the photonic contribution are sampled at frequencies ωl and ωl ± Λ, not Λ,
as is the case for the phonons. Mathematically this is due to the e±iωlt phase factors
we introduced in the rotating frame, but physically, these frequencies are the Mollow
triplet seen in the emission spectrum of a driven two level emitter [126].

A similar master equation could have been found by simply adding in a phenomeno-
logical dissipator, γD [|0⟩ ⟨1|], which captures a simple spontaneous emission process
from |1⟩ to |0⟩ at some rate γ. However, in doing this, the effect of the dissipation in
the basis of laser dressed states isn’t immediately clear. Writing all dissipators with
jump operators in the basis of the laser dressed states allows us to write down an an-
alytical expression for the steady state of the system, as well as the steady state heat
power.

At room temperature, the Bose occupation function of the photons at energy scales of
ℏωl ∼ 1 eV is negligible, and we have

ρ̇S =− i [HS, ρ]

−

[(
Ω

2Λ

)2

γ0(Λ) (n(Λ) + 1) +

(
∆+ Λ

2Λ

)2

γ′0

]
D [R−] ρS

−

[(
Ω

2Λ

)2

γ0(Λ)n(Λ) +

(
∆− Λ

2Λ

)2

γ′0

]
D [R+] ρS

−
(
Ω

Λ

)2

γ′0D [Rz] ρS (4.7)

with γ0(Λ) = πJphon(Λ) and γ′0 = πJphot(ωl). We have made the approximation that
Jphot(ω±Λ) ≈ Jphot(ω), which is valid given the dressed state splitting is on the order
of ∼ meV and ωL is on the order of ∼ eV, and the spectral density for the photons
is of the form J(ω) ∝ ω3 [92]. γ0(Λ) and γ′0 capture the fundamental times scales set
by the scattering rates between the exciton and either bath at T = 0 K, without the
dressed state prefactors, which we write explicitly in the master equation. In fact, γ′0 is
simply the rate of spontaneous emission of photons from |1⟩ to |0⟩, the same quantity
we would have used for the rate in the phenomenological model mentioned above. For
the spontaneous emission rate, we take γ′0 = 0.001 ps−1 [124].
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4.1.2 Steady State Solution

The effect of the combined phonon and photon dissipation results in a total rate ΓT
a =

Γa + Γ′
a, for transitions |−⟩ → |+⟩, and a total rate ΓT

e = Γe + Γ′
e for the rate of

transitions |+⟩ → |−⟩. In this notation Γe and Γa are the phonon emission and
absorption rates and Γ′

e and Γ′
a are the rates of transitions from upper to lower dressed

states, and lower to upper dressed state, respectively, through the emission of photons,
with

Γe = π

(
Ω

2Λ

)2

Jphon(Λ) (n(+Λ) + 1) (4.8)

Γa = π

(
Ω

2Λ

)2

Jphon(Λ)n(+Λ) (4.9)

Γ′
e =

(
∆+ Λ

2Λ

)2

πJphot(ωl) (4.10)

Γ′
a =

(
∆− Λ

2Λ

)2

πJphot(ωl). (4.11)

Note, although we associate transitions |−⟩ → |+⟩ with the absorption of phonons, it
cannot be associated with the absorption of photons. We only capture photon emission,
and the difference between transitions |−⟩ → |+⟩ and |+⟩ → |−⟩ arise in the energies of
the emitted photons, namely, ωl±Λ. We expand on these differences when we consider
the full counting statistics.

Since we are considering steady state driving, such that ∆̇ = Ω̇ = 0, we can analytically
solve for both the state of the system and for the steady state heat pumping power.
For the dynamics of the populations of the dressed states, we have

ṗ+ =
d

dt
⟨+| ρ |+⟩ = ΓT

a p− − ΓT
e p+ (4.12)

,ṗ− = −ṗ+ (4.13)

,p− + p+ = 1. (4.14)

Imposing the steady state condition, ṗ± = 0, we find

pss+ =
ΓT
a

ΓT
e + ΓT

a

(4.15)

, pss− =
ΓT
e

ΓT
e + ΓT

a

. (4.16)

We can calculate the power of heat absorption from the phonon reservoir to the us-
ing

Q̇ = Λṅ = Λ (p−Γa − p+Γe) , (4.17)
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which we derived from the theory of full counting statistics in chapter 2. This leads
to

Q̇ss = Λ

(
ΓaΓ

′
e − ΓeΓ

′
a

Γa + Γ′
a + Γe + Γ′

e

)
. (4.18)

Substituting in eqns. 4.8, 4.9, 4.10 and 4.11, the heat power can be expressed as a
function of the dressed state splitting and the detuning as

Q̇ss = Λṅss = Λ

{
e−βΛ −

(
Λ−∆
Λ+∆

)2}(
Λ+∆
2Λ

)2
γ0(Λ)γ

′
0 (n(Λ) + 1)

γ0(Λ) coth (βΛ/2) + 2γ′0
(
Λ2+∆2

Λ2−∆2

) . (4.19)

4.1.3 Heat Power Analysis

Intuitively we would expect that heat can only be pumped from the phonons to the
photons, when the effective temperature of the photons, defined through

e−Λ/kBTphot =
Γ′
a

Γ′
e

=

(
Λ−∆

Λ+∆

)2

, (4.20)

is below that of the lattice, Tphot < T . Note, the temperature Tphot we define here is
not the real temperature of the photon bath. This is simply the effective temperature
that describes the dissipation of the exciton due to the photons, when the dissipator is
written in the basis of laser dressed states. Conversely, we would expect to see heating
for Tphot > T .

From eqn. 4.20, it is clear we have control over the effective temperature of the photon
dissipation, through the laser parameters ∆ and Ω. The first factor in eqn. 4.19,
e−βΛ −

(
Λ−∆
Λ+∆

)2, captures the temperature requirement for cooling, and the control of
the effective temperature of the photons. Substituting eqn. 4.20 into this expression,
this factor becomes

e−βΛ − e−βphotΛ. (4.21)

For heat absorption from the phonons, e−βΛ > e−βphotΛ, or Tphot < TL, as expected.

In terms of the driving parameters, for laser cooling we have

e−βΛ >

(
Λ−∆

Λ+∆

)2

. (4.22)

For positive finite values of β and Λ, this condition can only be satisfied for positive
values of detuning ∆, such the frequency of the laser tuned below the exciton transition
frequency. In fig. 4.1, plot the region in the space of ∆ and Ω, as well as in the space of
the ∆ and Λ, where the cooling condition is satisfied, for different lattice temperatures.
We see there is a small region close to the Λ = ∆ line that will sustain heat absorption
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from the phonon reservoir. As the temperature of the phonon bath is increased, this
region grows, but is always finite.
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Figure 4.1: Laser cooling region for T = 5 K (yellow), 10 K (green) and 20 K (blue) in
the space of ∆ and Ω (a) and in the space of ∆ and Λ (b).

In fig. 4.2 and fig. 4.3, we plot the steady state rate of phonon absorption, ṅss and
the steady state heat current, Q̇ss, as a function of ∆ and Ω. Both figures show a
maximum value of the steady state rate of phonon absorption and heat absorption.
The difference in the position of the peaks in these plots is due to the dependence of
the energy of the absorbed phonons, Λ, on ∆ and Ω. For weak driving strengths, we
see that the steady state cooling power drops to 0, as expected. In this regime, the
eigenstates of the driven QD Hamiltonian are the exciton basis states, |0⟩ and |1⟩. The
exciton-phonon interaction Hamiltonian has no matrix elements connecting these two
states. Once the driving strength is increased to have dressed states that are sufficiently
mixed, the cooling power increases. As the driving strength is further increased, the
cooling quickly decreases before the system begins to heat the phonon reservoir.

We see two key features in the heat absorption. The first is the strong dependence of
the power on the driving strength, initially growing with increasing driving strength,
before rapidly dropping to zero. The second is the broadening of the cooling region
in ∆, as the driving strength is increased. The dependence of the cooling power on
the driving strength is straightforward to see. The cooling power in eqn. 4.18 is
proportional to A2Jphon(Λ) = (Ω/2Λ)2 Jphon(Λ). Taking first ∆ = 0, this factor is then
simply the spectral density Jphon, which increases as Ω3, before decreasing to zero due
to a combination of the exponential cut-off in the spectral density and a depletion in
the thermal occupation of higher energy phonon modes. For finite values of detuning,
this simply results in A < 1 for increasingly large magnitudes of ∆, but with the general
increase and subsequent rapid decrease, with increasing driving strength, the same, as
can be seen in fig. 4.4.

In fig. 4.5 we plot the heat power as a function of detuning for different driving
strengths. We now see more clearly this broadening of the heat absorption with in-
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Figure 4.2: Phonon absorption rate as a function of both detuning ∆ and Rabi fre-
quency Ω.
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Figure 4.3: Heat absorption rate as a function of both detuning ∆ and Rabi frequency
Ω.

creasing driving strength. Also seen in this plot is the corresponding heating effect, for
negative detuning, as is expected for blue detuned laser driving. This broadening is a
consequence of the difference between the rate of transitions |+⟩ → |−⟩ and transitions
|−⟩ → |+⟩, induced by the photon emission. In eqn. 4.18, the numerator can be
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Figure 4.4: A2J(Λ) as a function of Rabi frequency, Ω, for ∆ = 0 ps−1 (solid), ±2 ps−1

(dashed) and ±4 ps−1 (dot-dashed)

written as

πA2Jphon(Λ)γ′0 (B+(n(Λ))−B−(n(Λ) + 1)) . (4.23)

The phonon scattering rates are proportional to A = (Ω/2Λ)2. As the driving strength
is increased, this factor is significant over a greater range of detunings, as can be seen
from fig. 4.6(a). The photon scattering rates are proportional to B± = ((∆± Λ) /2Λ),
for the transition from upper to lower/lower to upper dressed state. These factors are
asymmetric and identical, differing only by a reflection about the y-axis, as seen in
fig. 4.6(b). Plotting A2J(Λ)B± in fig. 4.6(b), we can see the result is finite heat power,
either side of ∆ = 0. The role of the Bose occupation factors then introduces some
asymmetry, with the maximum heating rate larger than the maximum cooling rate.
We emphasise these features here, where they are easier to understand in this simple
two level model. We will again see these same features in chapter 5, when we consider
the more complicated heat absorption due to a driven SiV center.

We plot the maximum heat current as a function of the temperature of the phonon
reservoir in fig. 4.7. The cooling power increases monotonically with increasing phonon
temperature, and reduces to a current of 0 ps−2 as the phonon temperature approaches
0 K.
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Figure 4.5: Heat absorption spectrum for the driven quantum dot
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Figure 4.7: Maximum heat absorption power as a function of the phonon temperature
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4.2 Statistics of the Steady State Driving model

4.2.1 Full Counting Statistics

Using the method of full counting statistics, we can calculate the probability distri-
bution for the heat transferred between the exciton and each bath. In this case, the
probability distribution is a function of two heat variables, one for each bath. This
involves repeating the derivation for the counting field master equation, however we
now introduce two counting field phase factors, eiuH

phon
B and eivH

phot
B . The exact same

derivation can in principle be carried out, however a simpler approach can be used in
the steady state model. With a constant dressed state splitting, we can instead count
for the number of jumps between the dressed states that are induced by the coupling
between the system and each bath, a discrete quantity. For the case of phonons, the
net number of jumps from lower to upper dressed state is then simply the number
of phonons absorbed. The corresponding heat absorption from the phonons is Λ⟨n⟩,
where n is the number of phonons absorbed by the exciton.

The heat emitted as photons is a little more subtle. Since we neglected terms pro-
portional to n(ωl) in the dissipator, in reality only photon emission occurs, and no
photon absorption ever takes place. However, as we saw in the master equation, when
the dissipation due to the phonons is written in the basis of laser dressed states, the
photon emission can lead to jumps |+⟩ → |−⟩ and to jumps |−⟩ → |+⟩. A jump from
|+⟩ to |−⟩ involves the net emission of an amount of heat equal to ωl+Λ, with a jump
|−⟩ to |+⟩ involving the emission of an amount of heat equal to ωl − Λ. For a total
number of photons emitted N , we can decompose this into N = N+ + N−, with N±

denoting the number of emission event associated with a jump up/down in the dressed
state basis. The total heat emitted into the photon bath is then

Q = N−(ωl + Λ) +N+(ωl − Λ) = Nωl + (N− −N+) Λ.

This quantity (N− −N+) Λ is the excess heat emitted into the photons, that was ab-
sorbed from the phonon reservoir. Counting the number of net number of jumps from
upper to lower dressed state due to the scattering with the photons does not in fact
count the number of photons emitted, but instead counts this excess heat that is emit-
ted into the photon bath, which is the quantity we are looking to quantify.

To count such jumps between the dressed states, we partition that state of the dot
as

ρ̂(t) =
∑
n,m

ρ̂n,m(t) (4.24)

with ρ̂n,m(t) the state of the dot in the subspace where there have been n phonons
absorbed (n net upwards jumps in the basis of dressed states) and there has been m
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net downward jumps induced by the photon emission. The master equation can be
written by inspection as

ρ̇n,m(t) =− i [HS, ρn,m(t)]

−
(

Ω

2Λ

)2

γ0(Λ) (n(Λ) + 1) [R+R−ρn,m(t) + ρn,m(t)R+R− − 2R−ρn−1,m(t)R+]

−
(

Ω

2Λ

)2

γ0(Λ)n(Λ) [R−R+ρn,m(t) + ρn,m(t)R−R+ − 2R+ρn+1,m(t)R−]

−
(
∆+ Λ

2Λ

)2

γ′0 [R+R−ρn,m(t) + ρn,m(t)R+R− − 2R−ρn,m+1(t)R+]

−
(
∆− Λ

2Λ

)2

γ′0 [R−R+ρn,m(t) + ρn,m(t)R−R+ − 2R+ρn,m−1(t)R−]

−
(
Ω

Λ

)2

γ′0 [RzRzρn,m(t) + ρn,m(t)RzRz − 2Rzρn,m(t)Rz] . (4.25)

The initial condition is ρ(0)n,m = δn,0δm,0 |0⟩ ⟨0|. A similar master equation was con-
sidered in [121], where only the phonons were counted.

These coupled master equations have a simple interpretation. The state is taken from
ρn,m to ρn+1,m when a phonon is absorbed and to ρn−1,m when a phonon is emitted.
Similarly, for the photons, the state is taken from ρn,m to ρn,m+1 when a transition from
|−⟩ → |+⟩ occurs due to the emission of a photon, and to ρn,m+1 when a transition
from |+⟩ → |−⟩ occurs due to the emission of a photon.
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Figure 4.8: Probability distribution for absorbing n phonons after a time t has elapsed,
with ∆ = 3.22 ps−1 and Ω = 0.84 ps−1.

We first consider only the probability distribution for absorbing n phonons. This
distribution is plotted for a set of times in fig. 4.8. This distribution appears to be
Gaussian at the later times shown, with a mean shifting in time.

We now consider the full probability distribution P (n,m), for absorbing n phonons and
for m net photon induced downward transitions. Fig. 4.9 is a plot of this distribution
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with ∆ = 3.22 ps−1 and Ω = 0.84 ps−1 (the values for which the heat absorption
power is maximal) after a time t = 40 ns has elapsed. This distribution is supported
over a small region close to m = n. In fact, this distribution is entirely supported
over the three lines m = n, m = n + 1 and m = n − 1. We can define a weight
Ai =

∑
n P (n, n+ i), the total weight of the distribution along the subspace m = n+ i.

Fig. 4.10 is a plot of the distribution function over these three lines, m = n, m = n+1

and m = n− 1, at the same point in time, t = 40 ns. Most of the weight is retained in
m = n subspace, with the least amount of weight in m = n+ 1 subspace. In fig. 4.11,
we plot the weight of the distribution in each of these subspaces and the rate of change
of these weights as functions of time. The distribution spreads to these three lines
quickly, before settling at a steady value after about 150 ps, where the weights remain
constant.

P(m,n)

0

0.01

0.02

0.03

0.04

0.05

Figure 4.9: Probability distribution for absorbing n phonons and for m net photon
induced downward transitions after a time t = 40 ns for ∆ = 3.22 ps−1 and Ω = 0.84
ps−1.

In fig. 4.12 (b) we plot the mean phonon absorption rate and the mean rate of photon
induced downward transitions. Immediately, as the system is pumped, the phonon
absorption rate is high, dropping quickly to its steady state value. This high initial
phonon absorption rate is due to the initial heating of the exciton to its steady state.
After ∼ 150 ps, the system reaches its steady state heat pumping rate. Plotting
the mean number of phonons absorbed and the mean number of net photon induced
downward transitions in fig. 4.12 (a), the heating energy is clear here. We see a finite
gap between the curves, which remains constant once the system enters the steady
state heat pumping regime. This value of heat is simply Q = Tr [HS (ρss − ρ0)].

In fig. 4.12 (c) we plot the rate of change of the variance of the number of phonons
absorbed, and the rate of change of the variance of the number of photon induced net

88



0 10 20 30 40 50

0.00

0.02

0.04

0.06

0.08

0.10

n

P
(n
)

Figure 4.10: The probability distribution for absorbing n phonons and form net photon
induced downward transitions, for m = n (black), m = n + 1 (blue) and m = n − 1
(red), for ∆ = 3.22 ps−1 and Ω = 0.84 ps−1.
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Figure 4.11: (a) The total weights Ai in the subspace n = m (dot-dashed), n = m+ 1
and m = n + 1 (dashed) (solid) for driving parameters ∆ = 3.22 ps−1 and Ω = 0.84
ps−1. (b) The rate of change of these weights Ai.

downward transitions. We see that in both cases, the variance varies linearly with time,
indicating normal diffusive behaviour for the heat pumping statistics. We also plot the
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covariance, in 4.12 (d). Here we see that the covariance function also increases linearly
in time at steady state, as expected.
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Figure 4.12: (a) The mean number of phonons absorbed (solid) and photon induced
downward transitions (dashed). (b) The rate of phonons absorbed (solid) and photon
induced downward transitions (dashed). (c) The rate of change of the variance of the
number of phonons absorbed (solid) and photon induced downward transitions emitted
(dashed). (d) The rate of change of the covariance of the probability distribution Pn,m.
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4.3 Conclusions

Simplifying the laser to that of a steady state continuous wave optical excitation of a
quantum dot exciton, we examined the steady state heat pumping from the phonons as
considered in [121]. Writing a master equation for the exciton-phonon-photon system,
with both exciton-phonon and exciton-photon scattering written in the basis of laser
dressed state, we were able to analytically solve for the steady state of the exciton.
From these expressions, it was trivial to write down an analytical expression for the
power of the heat absorption from the phonon reservoir. These expressions clearly
explained the basic requirements on the driving parameters that need to be satisfied
in order for cooling to be sustained.

Moving beyond the mean heat exchanged between the exciton and the phonons, we use
the method of full counting statistics to compute the full probability distribution for the
number of phonons absorbed and the net number of photon induced transitions from
upper to lower dressed state, a quantity which we related to the excess heat pumped
into the photon reservoir. This distribution quickly seemed to converge to a Gaussian
structure, with a mean which shifted linearly in time, with higher order moments also
displaying a linear dependence on time.
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5 Laser Cooling of Silicon Vacancy Cen-
tres in Diamond

In this chapter, we extend the theory of steady state heat absorption of a laser driven
quantum dot exciton, to a laser driven silicon vacancy (SiV) centre in diamond. Al-
though pumping heat from the phonons into the electromagnetic environment was
indeed possible, background absorption of the laser by the host medium will result in
a heating effect which will offset any potential cooling [121]. To implement a similar
heat pumping protocol which realises practical laser cooling of a solid and that can
sustain robust and powerful cooling, we then need to consider systems which don’t suf-
fer from the high background absorption effects. Optically active defects in diamond
offer the perfect platform to implement such a protocol. The absorption coefficient in
diamond is less than 0.1 cm−1 [127] for the energy scales considered in this chapter.
Such a small absorption coefficient results in minimal background heating due to the
background laser, which is crucial when we consider the competing effects of the heat
absorption from the phonons and the background heating due to the driving laser. The
atomic scale extent of the defects allows for high densities of optically active centres,
increasing the net cooling power per vacancy.

Unlike quantum dot excitons we have considered so far, these optically active defects
typically have a more complicated level structure. In this chapter, we specifically
discuss the use of silicon vacancy centres, formed from an interstitial silicon impurity
and two carbon vacancies. This system typically has eight relevant electronic states
[128], with four states in an excited state manifold, and four states in a ground state
manifold. This is already more complicated than the two level approximation used for
modelling quantum dot excitons, without yet considering the coupling of the charge to
the phonons. The electronic degrees of freedom are coupled to the phonons through
the same deformation potential coupling, but also through an intra-manifold coupling
mechanism.

We will first introduce the silicon vacancy centre and the Hamiltonian describing the
laser driven electronic degrees of freedom, before introducing the coupling to the
phonons. We once again discuss in detail the master equation we use to describe
this system, discussing the role of the secular approximation in such cooling proto-
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cols, and write down a counting field variant for the non-secular Born-Markov master
equation.

Using these tools, we will analyse the cooling spectra, discussing the changes we see
as we cross over from weak driving to strong driving. We again interpret these results
using the concept of laser dressed states, and identify the mechanisms which lead to
more robust cooling protocols in the strong driving regime. Lastly, we will compare
the cooling spectra for the non-secular Born-Markov model, the secular Born-Markov
model and a simple phenomenological model. We will show that the non-secular Born-
Markov theory accurately models the cooling spectra in the weak driving limit where
it agrees with the phenomenological Lindblad model, and in the strong driving regime
where it agrees with the secular Born-Markov theory.

5.1 Silicon Vacancy Centre Defects in Diamond

Silicon vacancy centres in diamond are defects composed of an interstitial silicon atom,
two neighbouring carbon vacancies and a further six carbon atoms, as depicted in
fig. 5.1. In the absence of any interaction with that host lattice or the electromagnetic
environment, the undriven SiV centre has twelve electronic levels, filled with eleven
electrons, and so it is best modelled as a single hole system. Of these twelve levels,
eight are relevant for the cooling protocol considered here, with a set of four states in
a ground state manifold, typically denoted

|gx, ↑⟩ , |gx, ↓⟩ , |gy, ↑⟩ , |gy, ↓⟩ ,

and a set of four states which form the excited state manifold, denoted

|ux, ↑⟩ , |ux, ↓⟩ , |uy, ↑⟩ , |uy, ↓⟩ .

The ground and excited state manifolds are split by an energy EG = 1.68 eV [128].

Within each manifold, the levels are split due to a spin orbit coupling effect. The overall
result of the spin-orbit coupling results in a set of states in the excited manifold,

|g+, ↑⟩ , |g−, ↓⟩ , |g−, ↑⟩ , |g+, ↓⟩

and states
|u+, ↑⟩ , |u−, ↓⟩ , |u−, ↑⟩ , |u+, ↓⟩ .

in the ground state manifold, with |u+⟩ = − (|ux⟩+ i |uy⟩) and |u−⟩ = |ux⟩−i |uy⟩, with
the same decomposition for |g+⟩ and |g−⟩. Fig. 5.2 depicts the energy level structure
for both the spin up subspace and spin down subspace, with the spin orbit splitting in
each manifold indicated. Note, the scale of the splitting between the upper and lower
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Figure 5.1: Schematic of the silicon vacancy centre atomic structure from [129]. Six
carbon atoms (blue), two carbon vacancies and an interstitial silicon atom (yellow).

|u+↑〉

|g+↑〉

|g-↑〉

|u-↑〉

|u-↓〉

|g-↓〉

|g+↓〉

|u+↓〉

λu

λg

Figure 5.2: Eight level structure for of the SiV centre. Each manifold is split by a
spin-orbit coupling constant λu/g.

manifold is shrunk for clarity in the schematic. Both level structures are identical, with
a spin orbit splitting in the excited state manifold given by λu = 260 GHZ and a spin
orbit splitting in the ground state manifold of λg = 50 GHZ [128]. The only difference
between the level structure in each subspace is the ordering of the levels within a
manifold. Note, we neglect a dynamic Jahn-Teller perturbation in the Hamiltonian for
the SiV. This term has coupling constants of order 4% of the spin-orbit coupling, and
so does not have any significant effect on the physics of the cooling protocol we present
[128]. Since we do not consider any spin flipping interactions or external magnetic
fields, it is best at this point to work in the spin up subspace, where we now have a
simpler four level structure. Later, we discuss how the cooling in one spin sector is
identical to the cooling in the other, through a simple change in the polarisation of the
driving laser.

The Hamiltonian for this undriven system in the spin up subspace is then of the
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form

Ĥ0 =
1

2

[
+ (EG + λu) |u+⟩ ⟨u+|

+ (EG − λu) |u−⟩ ⟨u−|

− (EG − λg) |g+⟩ ⟨g+|

− (EG + λg) |g+⟩ ⟨g+|
]
. (5.1)

We can perform a unitary transformation to a frame rotating at the laser frequency,
using U = exp

(
+ iωlt/2

[
|u+⟩ ⟨u+|+ |u−⟩ ⟨u−| − |g+⟩ ⟨g+| − |g−⟩ ⟨g−|

])
. In this frame,

the Hamiltonian becomes

Ĥ0 =
1

2

[
+ (∆ + λu) |u+⟩ ⟨u+|

+ (∆− λu) |u−⟩ ⟨u−|

− (∆− λg) |g+⟩ ⟨g+|

− (∆ + λg) |g+⟩ ⟨g+|
]
, (5.2)

where again we define the detuning, ∆ = EG − ωl.

We include the effect of the driving laser, by adding a term −d⃗.E⃗ to the Hamiltonian.
With the dipole operators d̂x, d̂y and d̂z given in the basis of

∣∣(u/g)(x/y)〉 in [128],
we instead use the dipole operators d̂+, d̂− and d̂z, where d̂± is the dipole operator
for right/left circularly polarised light, defined as d̂± = 1

2

(
d̂x ± id̂y

)
. We can expand

these dipole operators in the basis of the spin-orbit states as

d̂+ = ⟨g+| d̂+ |u−⟩ |g+⟩ ⟨u−|+ h.c (5.3)

d̂− = ⟨g−| d̂− |u+⟩ |g−⟩ ⟨u+|+ h.c (5.4)

d̂z = ⟨g−| d̂z |u−⟩ |g−⟩ ⟨u−|+ ⟨u+| d̂z |g+⟩ |u+⟩ ⟨g+|+ h.c (5.5)

Fig. 5.3 shows the level structure for each spin sector, with the optical driving for each
polarisation indicated by arrows. It is clear from this schematic that driving with σ−

polarised light in one spin sector, at some frequency ω, has the same effect as driving
with σ+ polarised light in the other spin sector, and vice versa. We can take advantage
of this fact later in the proposed cooling protocol, developing the theory in one spin
sector and porting the results over to the other spin sector with the appropriate change
of polarisation for the driving. Pumping with σz polarised light has the same effect in
both spin sectors.

In the spin up subspace, we can write the Hamiltonian in the rotating frame and with
the rotating wave approximation as
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Figure 5.3: SiV level scheme, indicating the pairs of levels which each driving polari-
sation couples together in the (a) spin up and (b) spin down sector.

ĤSiV =
1

2


∆+ λu Ωz Ω− 0

Ωz −∆− λg 0 Ω+

Ω− 0 −∆+ λg Ωz

0 Ω+ Ωz ∆− λu

 , (5.6)

where the Rabi frequencies are expressed as Ωi = ⟨g±| d̂i · E⃗ |u±⟩, with i ∈ (+,−, z),
and levels are ordered as

a |u+⟩+ b |g+⟩+ c |g−⟩+ d |u−⟩ =


a

b

c

d

 . (5.7)

The electronic degrees of freedom of the SiV centre couple to the acoustic phonon
modes of the lattice through two mechanisms, an intramanifold coupling mechanism
[130]

Ĥ intra
I =

∑
k

(fu
k |u+⟩ ⟨u−|+ f g

k |g+⟩ ⟨g−|)⊗ ak + h.c, (5.8)

and through a deformation potential coupling mechanism [131, 132],

Ĥdef
I =

∑
k

gk (|u+⟩ ⟨u+|+ |u−⟩ ⟨u−| −

|g+⟩ ⟨g+| − |g−⟩ ⟨g−|)⊗
(
ak + a†k

)
.

(5.9)

The intramanifold phonon interaction term describes transitions between the states in
a given manifold, along with the associated emission or absorption of phonons. The
deformation potential coupling term describes a local deformation of the lattice when
the SiV centre is in an excited state. Together with the driven system Hamiltonian,
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this Hamiltonian describes, in full, the dynamics of the electronic degrees of freedom
and the phononic modes.

We use a spectral density of the form J(ω) = 2Aω−2
c ω3e−ω/ωc , with A = 0.0275 and

ωc = 2πps−1, for the deformation potential coupling term [131, 132]. It is important
to note here that in the spectral density, we only use the bulk phonon contribution.
There are also higher energy local phonon modes, which results in a peaked structure
in the spectral density [131]. These peaks lie at higher energies than considered in this
work, and as such will not affect our results. For the intramanifold interaction, we use
a spectral density Aω3e−ω/ωc , as used in [130], with A = 0.0037 ps2 and with the same
cut off frequency as above. For simplicity, we make the assumption that the fu

k = f g
k ,

i.e., that the intramanifold interaction strengths are identical in each manifold.

5.2 Driven SiV centre Master Equation

With the added levels in the system Hamiltonian, and the addition of new system bath
interaction mechanisms as compared to the work on quantum dot excitons, it is more
tedious and less instructive to derive a master equation by hand. Here, we outline the
method we use to generate the master equation numerically. We will show how to use
this method to derive both the corresponding secular Bloch-Redfield master equation,
as well as the non-secular Bloch-Redfield master equation, which is needed in the case
of a driven system with degenerate or nearly degenerate states.

Standard master equation

Our approach follows the standard method, detailed for example in [92]. We begin by
treating the Hamiltonian for the full system plus bath in the usual partition into free
and coupling Hamiltonian terms,

Ĥ = ĤS + ĤB + ĤSB (5.10)

, ĤSB =
∑
k

gkÔ(b̂k + b̂†k), (5.11)

where Ô here is the system operator of the total system bath coupling Hamiltonian.
Working in the interaction picture with regard to ĤS + ĤB, we have an interaction
picture Hamiltonian,

H̃SB(t) =
∑
k

gkÕ(t)(b̂ke
−iωkt + b̂†ke

iωkt), (5.12)

98



with Õ(t) = eiĤStÔe−iĤSt. We perform the usual iteration of the von Neumann equa-
tion, which gives the second-order form

dρ(t)

dt
= −

∫ t

dt′[H̃SB(t), [H̃SB(t
′), ρS(t)⊗ ρB]]. (5.13)

In this step, we have made the Markov approximation by replacing ρ(t′) with ρS(t)⊗ρB
in the final term, where ρS(t) is the reduced density matrix of the system. Expanding
this and taking the trace over bath modes gives

dρ

dt
= −

∑
k

g2k
{
[(n+ 1)eiω(t

′−t) + ne−iω(t′−t)][Õ(t)Õ(t′)ρS(t)− Õ(t′)ρS(t)Õ(t)]

+[(n+ 1)e−iω(t′−t) + neiω(t
′−t)][ρS(t)Õ(t

′)Õ(t)− Õ(t)ρS(t)Õ(t
′)]
}
.

(5.14)

From here it is useful to expand the system operator Ô in terms of the eigenstates of
the driven system Hamiltonian, ĤS, |i⟩ with energies Ei,

Ô =
∑
ij

⟨i| Ô |j⟩ |i⟩ ⟨j| =
∑
ij

Ôj→i, (5.15)

=⇒ Õ(t) =
∑
ij

ei(Ei−Ej)t ⟨i| Ô |j⟩ |i⟩ ⟨j| =
∑
ij

Õj→i(t). (5.16)

The operators Ôj→i and Õj→i(t) are simply the parts of the operator Ô which cause a
transition from j to i when they act to the right.

Using this representation in eqn. (5.16) allows us to do the integrals over t′ in (5.14).
Picking out the relevant terms, we have∫ t

dt′e±iωt′+i(Ei−Ej)t
′
=

e±iωt+i(Ei−Ej)t

±iω + i(Ei − Ej) + ϵ
, (5.17)

where ϵ is an infinitesimal whose sign we decide later. Inserting these integrals in
eqn. (5.14) gives

dρ

dt
= −

∑
k

∑
ij

g2k

{[
n+ 1

iω + i(Ei − Ej) + ϵ
+

n

−iω + i(Ei − Ej) + ϵ

]
×
[
Õ(t)Õj→i(t)ρS(t)− Õj→i(t)ρS(t)Õ(t)

]
+

[
n+ 1

−iω + i(Ei − Ej) + ϵ
+

n

iω + i(Ei − Ej) + ϵ

]
×
[
ρS(t)Õj→i(t)Õ(t)− Õ(t)ρS(t)Õj→i(t)

]}
.

(5.18)

Replacing the sum over bath modes with an integral over a spectral density, J(ω) =

99



∑
k g

2
kδ(ω − ωk), and using the identity

lim
ϵ→0+

1

ix∓ ϵ
= ∓πδ(x)− iP 1

x
,

we can perform the integral. The principal value term gives rise to a Hamiltonian term
in the dynamics. It results in a Lamb shift renormalisation of the unperturbed levels of
the system due to the system-bath coupling [92]. The other part gives the dissipative
terms, which we write

dρ

dt
= −π

∑
ij

{
[(n+ 1)J(Ej − Ei) + nJ(Ei − Ej)]

[
Õ(t)Õj→i(t)ρS(t)− Õj→i(t)ρS(t)Õ(t)

]
+ [(n+ 1)J(Ei − Ej) + nJ(Ej − Ei)]

[
ρS(t)Õj→i(t)Õ(t)− Õ(t)ρS(t)Õj→i(t)

] }.
(5.19)

The sign of ϵ is chosen such that we get back the correct dissipator, in particular one
in which the jump terms OρO have a positive prefactor. This master equation, as it
stands, is non-secular.

Substituting in eqn. 5.16 for Õ(t), terms in eqn. 5.19 will contain terms of the form

dρ

dt
= −π

∑
ij

∑
mn

{
[(n+ 1)J(Ej − Ei) + nJ(Ei − Ej)]×[
Õm→n(t)Õj→i(t)ρS(t)− Õj→i(t)ρS(t)Õm→n(t)

]
+ [(n+ 1)J(Ei − Ej) + nJ(Ej − Ei)]×[

ρS(t)Õj→i(t)Õm→n(t)− Õm→n(t)ρS(t)Õj→i(t)
] }

The product of operators Õj→i(t)Õm→n(t) will have a phase factor ei(Ei−Ej)tei(En−Em)t.
The secular approximation amounts to discarding all such terms for which the oscillat-
ing phase factors do not cancel out. In a system without degenerate states, this simply
amounts to taking the operators Õ(t) in eqn. 5.19 to be the Hermitian conjugate of
the operators Õi→j(t).

To generate SiV-phonon dissipation terms in the master equation, we simply substitute
in the relevant system operator from the SiV-phonon coupling Hamiltonian,

Ô = κĤDef
I + Ĥ Intra

I , (5.20)

into 5.19 and use the spectral density J(ω) = J intra(ω). We introduce the dimensionless
quantity κ = JDef(ω)/J Intra(ω), into eqn. 5.20, to account for the differing interaction
strengths for the deformation potential and intramanifold coupling.

To capture the spontaneous emission of photons, we add in a set of phenomenological
Lindblad dissipators, rather than deriving them from first principles. We add in the
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dissipators,

− γ0D [|g−⟩ ⟨u+|] ρ(t) (5.21)

− γ0D [|g+⟩ ⟨u−|] ρ(t) (5.22)

− γ0D [|g−⟩ ⟨u−|+ |g+⟩ ⟨u+|] ρ(t), (5.23)

with D [A] ρ(t) = 1
2

(
A†Aρ(t) + ρ(t)A†A− 2Aρ(t)A†) and with γ0 = 0.001ps−1 [133,

134].

In the weak driving limit, when driving the system at resonance, or close to reso-
nance, we encounter scenarios where the spectrum of the Hamiltonian of the system
has degeneracies or near degeneracies in the rotating frame. In these cases, the secular
approximation is no longer valid. Terms which would typically be discarded due to
rapidly oscillating amplitudes in the strong driving limit, now either oscillate much
less rapidly, or in the case of a degeneracy, do not oscillate at all. These terms must
not be discarded. The result of keeping these terms is that we are left with a master
equation which is not of Lindblad form. Such a master equation does not guarantee
positivity of the density matrix, however in all results presented here where a non-
secular master equation is used, there is no violation of the positivity requirement of
the density matrix.

Adding counting fields

Here we perform the same steps as we did in the quantum dot counting field master
equations to write down the corresponding equation for this system. The time-evolution
of the counting field density matrix ρu is

ρu(t) = Uu/2ρu(0)U
†
−u/2,

with annotated time-evolution operator Uu = eiuĤbUe−iuĤb . For any operator Ô that
we wish to write in this counting field framework, we perform the same transformation,
which results in the operator obeying the Heisenberg like equation

i
dÔu

du
= [Ôu, ĤB].

This implies bosonic bath operators take the form bu,k = e−iωkub0,k. The time-evolution
operators U±u/2 are given by the usual expressions with the Hamiltonians Ĥ±

SB =∑
gkÔ(bke

∓iωu/2 + b†ke
±iωu/2). Instead of the von Neumann equation, we solve

dρu(t)

dt
= −i(Ĥ+ρu(t)− ρu(t)Ĥ

−) = −i[[Ĥ, ρu(t)]], (5.24)
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where [[A,B]] = A+B − BA−. This results in terms in the master equation of the
form OρO acquiring phase factors, which, as we saw before, keep track of the heat
flow.

dρ

dt
= −π

∑
ij

{
[(n+ 1)J(Ej − Ei) + nJ(Ei − Ej)]

×
[
Õ(t)Õj→i(t)ρS(t)− eiu(Ej−Ei)Õj→i(t)ρS(t)Õ(t)

]
+ [(n+ 1)J(Ei − Ej) + nJ(Ej − Ei)]

×
[
ρS(t)Õj→i(t)Õ(t)− eiu(Ei−Ej)Õ(t)ρS(t)Õj→i(t)

] }
(5.25)

Swapping the dummy indices i, j in one of the lines, we have

dρ

dt
= π

∑
ij

{
[(n+ 1)J(Ei − Ej) + nJ(Ej − Ei)]

× [eiu(Ei−Ej)(Õi→j(t)ρS(t)Õ(t) + Õ(t)ρS(t)Õj→i(t))

− Õ(t)Õi→j(t)ρS(t)− ρS(t)Õj→i(t)Õ(t)]
}
.

(5.26)

We can also get the mean heat transfer, ⟨Q⟩ = −iTrdρu
du

|u=0, so

d⟨Q⟩
dt

= π
∑
ij

[(n+ 1)J(Ei − Ej) + nJ(Ej − Ei)]

× (Ei − Ej)Tr[Õi→j(t)ρS(t)Õ(t) + Õ(t)ρS(t)Õj→i(t)]

(5.27)

As above, this is all non-secular. To make the secular approximation, we again take
the operators Õ(t) to be the Hermitian conjugate of the operators Õi→j(t).

5.3 Results

5.3.1 Cooling Spectra

In fig. 5.4 we plot the steady state heat current, calculated from the non-secular master
equation, eqn. 5.27, as a function of the detuning of the laser from EG and for different
driving strengths, with equal driving strength in all three polarisations, denoted σ+,
σ− and σz in panel (a) and with pumping only σz in panel (b). The temperature of the
phonons is set to 20 K in all results presented, unless explicitly stated otherwise. In the
spectra, we see a clear change in the cooling power as the driving strength is increased
from the weak driving regime to the strong driving regime. Note, beyond Ω = 1 ps−1,
the cooling power decreases, before net heating of the phonons occurs.

For weak resonant driving, the cooling spectra exhibits four peaks. These peaks are
centred around the four distinct resonant optical driving frequencies, ∆ = ±(λu±λg)/2.
Of these four peaks, two peaks show cooling, and lie in the ∆ > 0 sector, and two peaks
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Figure 5.4: Plots of the cooling spectra when driving with all three polarisations at
equal driving strengths (a) and with just σz (b). (c) and (d) show the net cooling
power when we account for the background heating due to the driving laser, for the
case of driving all three polarisations, and only σz respectively.

show heating, lying in the ∆ < 0 sector. In the spin up subspace, the cooling peaks
correspond to the σ+ pumping, when the levels |g+⟩ and |u−⟩ are resonant, and σz

pumping when the levels |g−⟩ and |u−⟩ are resonant. The heating peaks result from
σ− pumping, when the levels |g−⟩ and |u+⟩ are resonant, and σz pumping when the
levels |g+⟩ and |u+⟩ are resonant. In this regime, the cooling follows the conventional
four level laser cooling theory outlined in the introduction.

As the driving strength is increased, laser dressed states which are composed of a
significant mixture of the bare spin-orbit state |u±⟩ and |g±⟩ are formed. There are
two noticeable effects as we increase the driving strength. The first is the increase in
the gross cooling power. The second is the significant broadening we see in the cooling
spectra. The resonance between levels is no longer required for cooling, and cooling
is sustained over a much larger range of frequencies of the driving laser. These effects
are not only seen when pumping with all three polarisations, but also when pumping
with any one or any two of them, as seen in fig. 5.4, where the cooling spectrum when
pumping with only σz is shown.

As in the quantum dot model, the initial increase in cooling power is due to the
dependence of the phonon scattering rates on the driving strength, through the spec-
tral density. Moreover, we see the same increasing width in the cooling spectrum, as
the driving strength is increased. The eventual decrease in the cooling power with
a sufficiently large driving strength is due to the sampling of the spectral density at
frequencies beyond its peak, into the exponential cut-off phase. In this model, the
cut-off is much larger, and instead the decrease is mostly due to the decreasing thermal
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occupation at the energies that the spectral density is being sampled at.

5.3.2 Background Heating

So far, we have discussed the absorption of heat from the phonon reservoir, without
considering the heating effect due to background absorption of the driving laser by
the material. Any potential laser cooling will then be competing against this heating.
Given the heat pumping discussed in this chapter is made possible through the for-
mation of dressed states due to the strong coherent driving of the silicon vacancy, the
background heating is certainly not negligible.

We can make an estimate of the effect of this heating by writing the heating rate per
vacancy as,

Q̇h = Iα/ρ,

where α is the absorption coefficient of the diamond at the driving frequency and ρ is
the density of defects in the sample. We write the intensity as

I =
1

2
cϵ0nE

2
0 ,

with n the refractive index of the material. The Rabi frequency can be expressed
as

ℏΩ = dE0,

with d the dipole moment of the transition.

Together these result in
Q̇h = [cϵ0nℏ2/(2d2)](α/ρ)Ω2,

for the rate of heating. We take a conservative estimate of the absorption coefficient of
diamond, α = 0.1 cm−1 [127], 14.3 Debye [135] for the dipole moment and we assume
a value of ρ/α = 1.47×1022 m−2, which corresponds to an emitter density of 1023 m−3,
which is on the order of one silicon vacancy per million carbon atoms.

Fig. 5.4 (c) and (d) show the net cooling spectra, accounting for the induced background
heating. The net increase in cooling power as the driving strength is increased is
reduced and net heating of the phonons occurs sooner as the driving strength increases,
compared to the case where background heating is not considered. The broadening of
the cooling peak in the spectra is unchanged, however.

5.3.3 Level Structure

Fig. 5.5 (a) and (b) depict the eigenvalues of the SiV centre when pumped with only
σ+ polarised light. This polarisation couples the states |u−⟩ and |g+⟩, in the spin up
subspace, this corresponds to coupling the top of the ground state manifold and the
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bottom of the excited state manifold. The arrows indicate the net phonon induced
transitions between pairs of levels. The driving parameters for these two level schemes
are ∆ = ∆0 + 0.5 ps−1 and Ω = 0.3 ps−1, and ∆ = ∆0 and Ω = 10−2.5 ps−1 for the
strong and weak driving respectively, where ∆0 = (λu + λg) /2, the required detuning
to bring |u−⟩ and |g+⟩ into resonance. Note, the driving parameters for the strong
driving case are chosen for clarity in the level structure, and do not correspond to the
maximum cooling. Included in the figure is the expansion of the dressed states into
the basis of the original states, with α = 0.424 and β = 0.905.
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Figure 5.5: The resulting level structure of the driven SiV centre with the associated
phonon absorption transitions for (a) weak driving and (b) strong driving. The magni-
tude of heat absorption between each pair of levels for (c) weak driving and (d) strong
driving.

In the case of the weak driving, phonon absorption only takes place due to intramanifold
transitions. This is due to the intramanifold coupling, which acts to thermalise the
population in each manifold to a temperature equal to the lattice temperature. This
intramanifold phonon absorption is seen in the cooling spectra, through the resonant
peaks at weak driving.

For strong driving, we see that the dressed states formed from the laser driving result in
mixed states. These mixed states result in two new mechanisms for phonon absorption.
The first is that the deformation potential coupling can now be exploited to absorb
phonons between states from different manifolds, through the dressed state formation.
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The second effect is that phonon scattering through the intramanifold coupling can now
occur between almost all pairs of levels, with the exception of the transition between
the lowest and highest lying states in this example (scattering between these levels is
easily achieved by simply pumping with all three polarisations such that all states are
mixed to some degree).

10
-4

0.001 0.010 0.100 10
0

0.0000

0.0002

0.0004

0.0006

0.0008

Ω (ps-1)

Q
(p

s
-

2
)

Δ=Δ0+0.5 ps-1

Δ=Δ0

Figure 5.6: The cooling power as a function of Rabi frequency, when pumping with σ+
for two values of detuning, as indicated.

Fig. 5.5 (c) and (d) show the heat pumping rates, between each pair of levels for
the weak driving and strong driving respectively. We see that not only are more
phonon absorption channels opened up, but the individual rates of heat absorption
between each pair of levels are significantly enhanced. This overall enhancement is a
consequence of the dependence of the phonon scattering rates on the driving strength,
as discussed in chapter 4, and above. In fig. 5.6 we plot the cooling power on resonance,
and just off resonance, as a function of driving strength. We clearly see the increasing
heat absorption rate with increasing driving strength, with a subsequent decrease for
sufficiently large Ω. We plot J(ω)n(ω) in fig 5.7, where it is evident that the scattering
rates are strongly dependent on the energy the bath is sampled at. We also plot the level
spacings, for which there is an associated heat flow, for both weak and strong driving.
In the case of strong driving, we see that the bath is sampled at higher energies, where
the scattering rates are higher. Moreover, with larger energy gaps in the spectrum
of the system, the energy of the absorbed phonons is also increased. Together, these
effects result in the overall increase in power we observe. This simple analysis doesn’t
take into account the occupation of each level, which will further impact the overall
cooling rate.

To understand why the cooling peak broadens as the driving strength increases, we
again consider driving only the lowest energy optically active transition with a single
polarisation, σ+ for the spin up subspace, coupling |u−⟩ and |g+⟩. The dressed states
are of the form |ψ+⟩ =

√
1− ϵ2 |u−⟩ + ϵ |g+⟩ and |ψ−⟩ = ϵ |u−⟩ −

√
1− ϵ2 |g+⟩ with

0 < ϵ < 1. The laser driving only pumps population between the coupled states, when
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Figure 5.7: Product of spectral density and Bose occupation factor, at a lattice temper-
ature of 20K with lines showing the energy gaps in the spectrum of the SiV centre for
(a) strong driving ( ∆ = ∆0+0.5 ps−1, Ω = 0.3 ps−1 ) and (b) weak driving ( ∆ = ∆0,
Ω = 10−2.5 ps−1 ).

ϵ ̸= 1 and ϵ ̸= 0, i.e. when the dressed states are superpositions of the spin-orbit
basis sates. Fundamentally, the cooling protocol relies upon the laser coupling these
states and pumping the population between these two levels. Fig. 5.8 is a plot of this
mixing parameter as a function of ∆, for different driving strengths. We can clearly see
that for weak driving, there is only a very narrow region about ∆ = ∆0, i.e. resonant
driving, for which ϵ ̸= 1 or ϵ ̸= 0. This region increases significantly with increasing
driving strength.

In a realistic diamond sample, there will be an ensemble of SiV centres. These defects
will be in a mixture of spin states. In order to have identical cooling from all centres,
it is important to drive with both σ− and σ+, or with all three of σ−, σ+ and σz, The
effect of driving with σ+ on an SiV centre in a spin up configuration, is identical to
the effect of driving a spin down defect with σ−. Similarly, driving with σz polarised
light has the same cooling effect for all spin configurations. In order to maximise the
cooling power in an ensemble of SiV centres in a host diamond lattice, it is then crucial
to drive with at least both σ+ ad σ− polarised light.
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Figure 5.8: The dressed state mixing parameter ϵ as a function of detuning for increas-
ing driving strength Ω = 10−3 ps−1 (solid), Ω = 0.3 ps−1 (dashed) and Ω = 1 ps−1 (dot
dashed)

5.4 Secular Born-Markov vs Non-Secular Born-Markov

In the weak driving regime, when driving the system such that two states are at or
close to resonance, the system Hamiltonian exhibits degeneracies or closely spaced
eigenvalues. Such closely spaced eigenvalues indicate a timescale of the system τ ∝
(E1 − E2)

−1, which may well be longer than the supposedly slowest timescale set by
the interaction between the system and bath. Here, the secular approximation breaks
down. In section 5.2 we discussed the derivation of the master equation without making
the secular approximation. The secular master equation is clearly inappropriate when
modelling the laser cooling in the weak driving regime, where we claim that the non-
secular master equation is the correct approach. Note, when using such a non-secular
model, the positivity of the density matrix is no longer guaranteed, and as such it is
important to check that this is not violated for any results. For results presented here,
positivity is not violated.

To understand the validity of each master equation in the strong and weak driving
limits, we compare the cooling spectra that result from the secular and non-secular
master equations, as well as a phenomenological Lindblad master equation. For the
phenomenological model, we use a dissipator

γD(A) = −γ/2
(
AA†ρ+ ρAA† − 2A†ρA

)
,

for a transition caused by a jump operator A†. For the intramanifold phonon transitions
in the SiV center, this is achieved by adding in the dissipators

γu−(λu)D (|u−⟩ ⟨u+|) ,

108



γu+(λu)D (|u+⟩ ⟨u−|) ,

γg−(λg)D (|u−⟩ ⟨u+|) ,

γg+(λg)D (|u+⟩ ⟨u−|) .

For the scattering rates, we take γu/g+ = πJ(λu/g)n(λu/g) and γu/g− = πJ(λu/g)
(
n(λu/g) + 1

)
.

Such a phenomenological master equation ignores the effect of the dressed states on
the phonon scattering, and is only applicable in the weak driving limit.
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Figure 5.9: Comparison of the cooling spectra resulting from the secular (black), non-
secular (orange) and Lindblad (red) models for Ω = 10−3 ps−1 (a), 10−1.7 ps−1 (b) and
10−0.5 ps−1(c).

In Fig. 5.9 we plot the cooling spectra in the weak, intermediate and strong driving
regime, computed using each of the three methods outlined above, driving only the
σ− transition. This pumping corresponds to bringing the levels |g+⟩ and |u−⟩ into
resonance, i.e. the top of the ground state manifold and the bottom of the excited
state manifold. This is achieved for ∆ = (λu + λg)/2, the smallest resonant optical
driving frequency. For weak driving, the secular and non-secular Born-Markov master
equations agree when the laser is tuned just off resonance. On resonance, however, the
secular master equation leads to unphysical cooling powers. The non-secular master
equation and the phenomenological approach, give cooling powers that are of the same
order of magnitude, with both spectra exhibiting a sharp peak.

Increasing the driving strength into the intermediate pumping regime, we see all three
approaches now agree quite well, with the secular and non-secular master equation
displaying more structure in the cooling profile, which is absent in the simpler phe-
nomenological approach, featuring only a Lorentzian cooling profile. In this regime, the
effect of the dressed states is non-negligible, as we can see the broadening effect leading
to finite cooling powers for driving frequencies detuned from the transition.

In the strong driving regime, the secular and non-secular master equations agree, with
a small mismatch in the cooling powers at the peak of the cooling spectra. In this
regime the phenomenological model completely fails, as expected, due to its inability
to capture the effects of the dressed states on the phonon absorption. This model fails to

109



predict the heating effect that is seen when the laser is tuned such that ∆ < ∆0.

In fig 5.10, the resonant cooling power as a function of driving strength is plotted, for
each method. For strong driving, only the secular and non-secular theories predict the
crossover from cooling to heating. Before this transition, all three methods predict
similar cooling powers. As the driving strength is lowered, the Lindblad theory and
the non-secular Born-Markov theory correctly predict a decreasing cooling power. In
this regime, the cooling power is no longer limited by the phonon scattering rates as it
is in the strong driving regime, but is instead limited by the pumping of the population
between the resonant levels. The secular Born-Markov theory predicts an unphysical
result of constant resonant cooling power.

Varying the temperature of the bath, in fig. 5.11 we plot the cooling power on resonance
as the bath temperature is reduced from 10 K to 0 K. Here we see that the secular Born-
Markov model predicts higher cooling powers for all lattice temperatures considered.
All theories predict the cooling rapidly drops to zero as the bath temperature is lowered
below λg/kB ≈ 2.15 K. This is physically reasonable, and expected in a discrete level
structure, where the occupation of the phonons at λg vanishes at temperatures less
than λg/kB.
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Figure 5.10: Resonant cooling power as a function of Rabi frequency for the secular
(black), non-secular (orange) and Lindblad (red) models.
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Figure 5.11: The resonant cooling power for Ω = 10−3 ps−1 (a), 10−1.7 ps−1 (b) and
10−0.5 ps−1(c) as a function of the temperature of the phonons.

5.5 Conclusions

We have proposed a theory of optical refrigeration of solids using laser driven silicon
vacancy centres in diamond. Using a non-secular master equation along with full
counting statistics, we have computed the cooling spectra across a range of driving
strengths. Interestingly, we observed both an increase in the cooling power and increase
in the range of driving frequencies for which cooling is sustained, when the driving
strength was increased. These benefits were attributed to the strong-field dressed state
formation, with such coherent effects generally not considered in conventional laser
cooling models [114, 117, 118, 120]. Including the background absorption of the laser
driving only moderately reduced the overall cooling power, with an increase in both net
cooling and the cooling region over the detuning still observed as the driving strength
was increased.
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Comparing the cooling spectra that result from the use of a secular, non-secular and
phenomenological Lindblad maser equation to model the cooling protocol, we claim
that in a weakly driven system, the secular theory is inappropriate. Such a theory
resulted in unphysical cooling when driven weakly at resonance, which can be attributed
to the near degenerate states in the system Hamiltonian, which render the secular
approximation invalid. This result is not specific to the model considered here, but
can be applied to a general class of laser cooling protocols which involve coherently
driving an emitter. Generally, the secular and phenomenological Lindblad models both
have a limited range of validity in the weak and strong driving regime respectively,
where the non-secular theory provides more accurate results. These results support
the use of Bloch-Redfield equations in quantum thermal machines, in spite of their
potential to give unphysical results. This conclusion is similar to previous conclusions
on the dynamics and thermodynamics of other open quantum systems, where the Bloch-
Redfield equation has similarly been argued to provide the most accurate description
[136, 137, 138, 139, 140].
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6 Concluding Remarks

In this thesis, we have discussed the thermodynamic features of laser induced heat
flows between solid state optical emitters and the phonon modes of the host medium.
Here, we provide a brief summary of the work, and discuss possible future directions
to be explored.

We have shown that strong coherent driving of solid state emitters can be used to
implement controlled thermodynamic processes. In chapter 2, we present results which
show that shaped laser pulses can be used to implement controlled thermodynamic
processes for a single exciton transition interacting with the heat bath of phonons.
The dressed state formation resulting from the coherent driving can be used to control
the scattering rates between the system and the bath and the effective temperature of
the system, allowing a significant degree of control in the transfer of heat between the
exciton and phonon, which includes the control of the direction of the heat flow, and the
degree of reversibility of this heat transfer. These effects allow for the implementation
of any thermodynamic process in the single-qubit single-reservoir system. For example,
adiabatic heating or cooling could be implemented using weak chirped pulses, for which
the small pulse amplitude implies a small heat flow. These processes may be useful for
high-efficiency photovoltaics, by allowing the hot excitons created by light to be cooled
before they release heat. More broadly, implementing such reversible heat transfer is
crucial in the design and realisation of efficient quantum thermal machines.

Photon counting of exciton luminescence under pulsed excitation [4, 28], or nanoscale
current measurements [21, 26], provides direct access to the probability distribution
of the exciton occupation, and hence thermodynamic quantities such as entropy. Our
theory could be tested by comparison against such experiments. Some additional ther-
modynamic information could be obtained optically: spectrally-resolved luminescence,
for example, could give the dressed-state occupations, and hence the effective tempera-
ture. A direct measurement of the heat based on thermal effects would not be possible
due to their small size. One approach could be to determine the work done by the
driving pulse from its absorption, and use the first law of thermodynamics to calculate
the heat. Another would be to obtain the heat from theory, fitted and validated using
its predictions for quantities such as luminescence. Overall, however, the quantum-dot
exciton transition seems to be a promising system in which to study thermodynamic
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processes at the quantum scale – given the possibility, predicted here, of using laser
pulses to implement and control thermodynamic processes.

Extending the theory to include more complex shaped laser pulses, we optimise the
efficiency over the shape of the detuning of a Gaussian laser pulse in chapter 3. Here,
we show that departing from a simple linear chirping of the laser frequency allows for
increased control of the thermodynamic properties of the heat absorption from the
phonons.

This work is a proof of principle, and lays the foundation for a more thorough exami-
nation of optimised thermodynamic processes in laser controlled quantum dots. More
advanced numerical optimisation techniques could be used, such as the adjoint-method
[141], for example, to compute the gradient of the efficiency, or some other thermody-
namic quantities of interest, with respect to the pulse shaping parameters, for both the
temporal profile of the driving frequency and the pulse envelope. With such a tool,
gradient based optimisation techniques could then be used to find optimal solutions
for the pulse profile to maximise the performance of any thermodynamic protocol that
involves driving a system with time dependent fields.

Finding globally optimal pulse shapes in order to maximise the efficiency is interest-
ing, but a more practical goal would be to find pulse shapes which optimise the effi-
ciency at maximum power, a quantity known as the Curzon-Ahlborn efficiency [125].
Moreover, by combing these advanced numerical optimisation techniques with more
advanced numerical simulation techniques, such as time evolving matrix product op-
erators [142, 143], one could probe the optimal pulse shapes for systems for which the
Markov approximations are not justified. Combining non-Markovian dynamics, quan-
tum thermodynamics and advanced numerical optimisation techniques would allow for
the exploration of a rich class of possible thermal machines.

In chapter 4 we revisited the steady state quantum dot heat pumping model, as con-
sidered by Gauger et al. [121]. We derived an analytical expression for the steady state
heat absorption rate, which clearly emphasises the role of the driving laser parameters
on the requirements for cooling to be achieved, in terms of the effective temperature
of the photon induced dissipation of the exciton. We compute the statistics of the
heat transfer between the exciton and each bath, through the use of the counting field
formalism.

From this investigation into the heat pumping that results from the steady state driv-
ing of quantum emitters, we show theoretically that strong coherent driving of silicon
vacancy centres in diamond can be used as a platform for optical refrigeration of solids.
Such active use of the dressed state formation for laser cooling processes is a novel con-
cept, where conventional laser cooling protocols are typically modelled through classical
rate equations which fail to capture the effects of coherent driving [114, 117, 118, 120].
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We commented on the applicability of secular and non-secular master equations which
can be used to model such cooling protocols, and conclude that only the non-secular
Bloch-Redfield master equation is appropriate in both the weak driving and strong
driving regime. Our theory sheds light on the benefits of the dressed state formation,
and could be expanded to the use of laser dressed state based cooling protocol in other
systems, rare-earth doped glasses, for example.
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