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Summary

In this thesis, we investigate the impact of spatial disorder on driven-dissi-

pative Bose-Einstein condensates (BECs). Bose-Einstein condensation is a

collective phenomenon where many particles spontaneously occupy a single

energy level and behave as a single quantum state. In recent years, new

types of BECs have been made from part-light, part-matter quasiparticles

called polaritons, which occur in semiconductor microcavities. Such conden-

sates are nonequilibrium in nature, as polaritons have finite lifetimes, and

so a population must be maintained through pumping. The nonequilibrium

nature of these new condensates gives rise to new and interesting behaviour,

distinct from traditional equilibrium BECs.

We first consider a double well configuration where two condensates with

different energies are localized on either side of a potential barrier. Depend-

ing on a number of factors including the energy detuning between wells, the

density of particles in each condensate, and their ability to tunnel between

wells, the frequencies of the condensates may be either desynchronized or

synchronized. We extend previous work, which characterizes the synchro-

nized and desynchronized regimes of this configuration, to include the effect

of pumping of the condensates in each well with different strengths. This is

done in the framework of a non-equilibrium extension of the Gross-Pitaevskii

equation, where the phase difference between condensates is shown to behave

like an overdamped pendulum. We find that this pump asymmetry acts as

an effective detuning, shifting the position of the phase boundary between

synchronized and desynchronized states.

We then generalize the analysis of the double well to the case of lattices

of many localized condensates. We derive a description for this system in

terms of coupled equations for the phase of the condensate at each site. We
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demonstrate the similarities between this model and the Kuramoto model of

coupled oscillators. Unlike the Kuramoto model, however, this lattice model

permits a synchronized solution in the thermodynamic limit, and thus ex-

hibits a phase transition. We demonstrate this through mapping to a contin-

uum description, and outlining the connection of the model to the quantum

description of a particle moving in a random potential. We produce a phase

diagram characterizing the synchronized and desynchronized regimes of this

system, and demonstrate the agreement between our theory and numerical

simulations.

Following this, we consider whether such a synchronized lattice of con-

densates may exhibit superfluidity. This may be tested by applying a phase

twist across the boundaries of the system and measuring its energy response.

By way of numerical simulations of our lattice oscillator model of driven-

dissipative condensates, we confirm previous results which find that disorder

inhibits superfluidity. While a uniform lattice with no detunings between

sites displays a non-zero superfluid stiffness, this disappears when disorder

is present in the on-site energies. We present a further perspective on this

result by discussing it in the context of the connection to the wavefunction

of a particle localized in a random potential.

We also analyse correlation functions of the synchronized, disordered lat-

tice in one dimension. By plotting the spatial correlation function of the

condensate order parameter, we show that this system exhibits long-range

phase order. This is contrasted with correlation functions of the same sys-

tem, but with the static disorder replaced by spatio-temporal noise. These

noisy correlation functions are seen to decay exponentially with distance.

Finally, we consider the impact of both types of disorder simultaneously –

time-independent random on-site energies, and spatio-temporal noise. We

find that while the phase profiles of such systems have the same long-range

structure that is seen for synchronized lattices with static disorder, the ad-

ditional fluctuations cause the correlation functions to decay. These numer-

ical results enable us to draw a phase diagram of the regimes of phase and

frequency ordering in 1D as a function of the strengths of both the static

disorder and the noise.
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Chapter 1

Introduction

1.1 Motivation

This project is quite generally about how things order. Despite the impli-

cations of the second law of thermodynamics, nature does not always tend

towards disorder. Sometimes, it becomes favourable for systems of many

components to align their behaviour with each other. Examples of such or-

dering include swarms of fireflies flashing in synchrony, water turning to ice

as it freezes, and the magnetization of metals. This dramatic change of the

properties of a system is called a phase transition. The sudden and often

unexpected nature of phase transitions make them quite spectacular to ob-

serve. Arguably one of the most spectacular and unexpected examples of an

ordering transition is Bose-Einstein condensation.

The phenomenon of Bose-Einstein condensation has fascinated and in-

trigued physicists since it was first predicted almost a century ago. A Bose-

Einstein condensate (BEC) is formed when a gas of bosons is cooled below

a critical temperature. At this point, a macroscopic number of the particles

begin to occupy the same ground state energy level. This creates a new exotic

state of matter which opens a rare window on the quantum world. Because

many particles begin to behave collectively as one, BECs exhibit quantum

behaviour on a macroscopic scale. Novel behaviour associated with BECs

includes superfluidity, or flowing without dissipation.

Pure BECs were only first realized experimentally in 1995, when atomic

gases were successfully cooled to a few hundred nanoKelvin [1, 2, 3]. In the
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Chapter 1. Introduction

last twenty years, the field has seen a frenzy of renewed interest, due to

numerous different experimental realizations of BECs of different particles

[4]. Perhaps the most exciting of these was the discovery of condensation

of exciton-polaritons – part-light, part-matter quasiparticles that occur in

semiconductor microcavities [5, 6]. Unlike in the case of atoms, ultra-low

temperatures are not required for the condensation of polaritons due to their

extremely low mass. However, polaritons are short-lived particles, decaying

after a few picoseconds, and as a result, the condensates they form are not

in thermal equilibrium. Polariton condensates must be pumped with a laser

to compensate for losses due to decay. This driven-dissipative nature of

polariton condensates gives rise to some novel behaviour, distinct from that

of equilibrium BECs [7,8, 9, 10].

The work in this thesis focuses on understanding on the impact of ran-

domness and disorder on driven-dissipative condensates. Impurities in the

semiconductor material as well as features of the pump laser can lead to a

disorder potential which the polariton condensates inhabit. The presence

of such disorder is inevitable, particularly in the materials most suitable for

room-temperature polariton condensation [11]. Strong disorder can cause

multiple localized condensates to form in a single sample. We describe how

these individual condensates, when organized in pairs and lattices with ran-

dom energies, can synchronize their frequencies and form a single ordered

state.

Remarkably, this may be described in a similar way as to how seemingly

unrelated systems – such as coupled clocks – synchronize their motions. We

develop a theory describing how a general class of locally-coupled oscillators

synchronize their frequencies when arranged in disordered lattices. While this

analysis was motivated by a desire to understand the behaviour of driven-

dissipative condensates in the presence of disorder, its implications are not

limited to this particular system. Our work therefore intersects the multi-

disciplinary field of coupled oscillators [12]. This approach provides us with

accessible and tractable models which we use to probe the complex behaviour

of polariton condensates. We apply results obtained from these models to

characterize the impact of disorder in driven-dissipative condensates.

We begin with an overview of some of the key concepts involved in this

2



1.2. Exciton-polaritons

thesis.

1.2 Exciton-polaritons

When light is incident on a semiconductor, the material may absorb a pho-

ton, exciting an electron from the valence band to the conduction band, and

creating a hole in the valence band. The Coulomb attraction between these

oppositely-charged particles can lead to the formation of a bound state of

an electron and a hole, called an exciton. This compound particle may be

thought of as a hydrogenic atom, with a binding energy which lowers its en-

ergy below that of the bandgap. An exciton is thus the lowest-energy optical

excitation of a pure semiconductor. The system may return to its ground

state through decay of the exciton, where the electron and hole recombine,

and a photon is emitted. Much like an atom, this excitation can couple to

the electromagnetic field, and indeed, by placing quantum wells in a semi-

conductor microcavity, one may have strong coupling to modes of the cavity

whereby the rate at which exciton-photon transitions occur exceeds the rate

at which photons are lost from the cavity. In this regime, the eigenstates of

the system are no longer bare excitons or photons, but instead a quantum

superposition of the two, called a polariton [5, 13].

The cavity exciton-polariton is not the only species of polariton that has

been observed: other excitations such as phonons and magnons may also

couple to light, and indeed polaritons may exist outside of cavities. None of

these will be considered in this work, however, and so when polaritons are

mentioned, it is the picture outlined in this section we have in mind.

Microcavities are typically constructed from GaAs or CdTe, although

other materials such as GaN, and ZnO are also used [10, 14]. Photons are

trapped using mirrors made from distributed Bragg reflectors composed of

alternating dielectrics of different refractive indices, each of thickness one

quarter wavelength. These cavities confine photons in two dimensions, quan-

tizing their motion in the z-direction as kz = 2πN/L, where L is the effective

width of the cavity, and the available modes are indexed by N . The photon
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Chapter 1. Introduction

dispersion may then be written as

ωk =
c

n
|k| =

( c
n

)√
k2 +

(
2πN

L

)2

(1.1)

where k is in-plane wavevector and n the refractive index. For small k, this

may be expanded to give the parabolic dispersion

ωk =
( c
n

)(2πN

L
+
k2L

4πN

)
, (1.2)

which we may write as

ωk = ω0 +
ℏk2

2mph

. (1.3)

This gives an effective mass to the photon of

mph = ℏ
(n
c

) 2πN

L
, (1.4)

which is dependent on the size of the cavity [7].

The light-matter coupling is enhanced by placing quantum wells at the

antinodes of the cavity modes. Confining electrons and holes in a transverse

region of the order of magnitude of their de Broglie wavelength increases

the exciton binding energies [15]. The excitons in these wells then have a

dispersion relation given by

εk = ε0 +
ℏ2k2

2mex

, (1.5)

where ε0 = Egap − Ebinding. A schematic of this microcavity configuration is

shown in Fig. 1.1. The photon (1.3) and exciton (1.5) dispersions may then

be tuned close to resonance with one another by varying the cavity width,

L. Practically, this may be achieved by employing a wedge-shaped cavity,

where various values of L may be obtained within the same sample [13].

One may write down a Hamiltonian for this system in terms of creation

and annihilation operators of photons (a
(†)
k ) and excitons (D

(†)
k ) [7],

H =
(
a†k D†

k

)( ωk ΩR/2

ΩR/2 εk

)(
ak

Dk

)
. (1.6)

The off-diagonal terms describe the exciton-photon coupling, where ΩR is

the Rabi frequency, and here, and in the remainder of this section, we have
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1.2. Exciton-polaritons

Figure 1.1: A schematic of how polaritons are formed in semiconductor

microcavities.

set ℏ = 1, Diagonalizing this yields the eigenvalues,

ELP,UP
k =

1

2

[
ωk + εk ±

√
(ωk − εk)

2 + Ω2
R

]
, (1.7)

where LP and UP label the two branches as ‘lower polariton’ and ‘upper po-

lariton’ respectively. We can rewrite this expression in terms of wavevectors

and the detuning between the exciton and photon bands δ = ω0 − ε0,

ELP,UP
k =

1

2

δ + k2

2Mex

+
k2

2mph

±
√(

δ +
k2

2Mex

+
k2

2mph

)2

+ Ω2
R

 , (1.8)

where we have set the zero of our energy scale as the bottom of the exciton

dispersion, ε0, for convenience.

The above is discussed in detail in several review articles on the subject

[7, 9, 16]. It should be noted, however, that this picture of polaritons is a

simplification, as it assumes a perfect, infinite quantum well. In reality, there

will be disorder present, which will cause localization of the exciton states.

These will not have a well-defined momentum, and will not necessarily couple

to a single cavity mode. A more rigorous microscopic description of polaritons

is provided in [17], but although we will discuss systems with disorder, the

picture outlined above is sufficient for our purposes. This is because we

shall be considering the behaviour of polaritons, whose wavelengths are large

compared with the length scales of the excitonic disorder.
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Chapter 1. Introduction

Figure 1.2: Schematic polariton dispersion, showing bare photon and exciton

dispersions. Plotted for typical values of mex = 0.1me, mph = 5 × 10−5me,

where me is the mass of an electron, Ω = 30 meV and exciton-photon detuning

δ = 5 meV.

The dispersion of the two polariton modes (1.8) is plotted alongside the

bare exciton and photon modes in Figure 1.2. As the effective mass of the

photon is typically three to four orders of magnitude smaller than the ex-

citon mass – which varies depending on the semiconductor material – the

photon dispersion is far steeper than the exciton dispersion, and the latter

appears flat in the plot. Condensation typically occurs in the lower polari-

ton branch, due to its lower energy. At small wavevectors, this dispersion

is approximately quadratic, and such polaritons have a significant photonic

fraction. This effect can be amplified by negatively detuning the photon and

exciton resonances (δ < 0). This ensures that condensed polaritons will be

very photon-like, with an extremely low mass. Moving out to larger k val-

ues, the dispersion has a point of inflection, before it approaches the exciton

dispersion. As such, high-momentum polaritons are effectively just excitons.
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1.3. Driven-dissipative condensates

1.3 Driven-dissipative condensates

The unique combination of properties of polaritons makes them ideal can-

didates for Bose-Einstein condensation. Photons are bosons, and – when

their separations are greater than their size – so are excitons, so polaritons

at low densities are composite bosons. This means that at low tempera-

tures, a population of polaritons will experience macroscopic occupation of

the ground state, and will form a BEC. The textbook description of a gas of

bosons in three dimensions shows that condensation occurs below a critical

temperature of

TC =
2πℏ2

mkB

(
n

ζ(3/2)

)2/3

, (1.9)

wherem is the particle mass, n the particle density, kB Boltzmann’s constant,

and ζ the Riemann-zeta function [18]. This does not hold for polaritons, be-

cause they exist in two dimensions, and are generally out of equilibrium, but

we may still gain some insight from the form of (1.9). The lighter the particles

in question, the higher the temperature at which the onset of condensation

occurs. As can be seen from the polariton dispersion in Fig. 1.2, at low

momenta where condensation occurs, the polariton mass is similar to that

of the photon, or 10−4 times the bare electron mass. This is nine orders of

magnitude less than the mass of a rubidium atom, and so polaritons are seen

to condense at far higher temperatures than traditional atomic BECs. This

removes one of the primary barriers to the observation of BECs, and permits

condensation at room temperatures. In fact, the upper temperature limit

for condensation is set not by the polariton mass, but rather by the binding

energy of the exciton. While most early reports of polariton condensation

used either GaAs or CdTe cavities, and required cryogenic temperatures of

order 10K [6, 19, 20], room temperature condensation has been reported in

large-bandgap materials such as GaN [21,22,23] and ZnO [24,25,26], as well

as organic cavities [27,28].

The excitonic component of polaritons is also critical for condensation.

Unlike photons, excitons can interact through the Coulomb force, and this

means that polaritons interact with one another. As will be discussed below,

this is crucial in enabling them to thermalize and form a condensate. While

polaritons undergo condensation and display macroscopic occupation of a
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Chapter 1. Introduction

single energy state, there are a number of features of polariton condensates

that are distinct from traditional BECs.

Generally, Bose-Einstein condensation is characterized by the onset of off-

diagonal long range order (ODLRO) [29,30]. This means that the one-body

density matrix of the system

n(1)(r, r′) = ⟨Ψ̂†(r)Ψ̂(r′)⟩, (1.10)

has finite off-diagonal entries, or equivalently, that it has a macroscopic

eigenvalue [18]. This enables the definition of a classical order parame-

ter for the condensate, as it shows the existence of a spatially-extended,

macroscopically-occupied mode. In (1.10), Ψ̂†(r) and Ψ̂(r′) are the creation

and annihilation operators for a particle at position r and r′, and the angular

brackets indicate a quantum mechanical average over the states of the sys-

tem. Experimentally, ODLRO is determined by measuring if the correlation

function

g(1)(r− r′) =
⟨Ψ̂†(r)Ψ̂(r′)⟩√

⟨|Ψ(r)|2⟩⟨|Ψ(r′)|2⟩
(1.11)

remains finite as |r − r′| → ∞. Here, the angular brackets represent an

expectation value.

We must stress however, that polariton condensates typically exist in two-

dimensional cavities, and by the Mermin-Wagner theorem, ODLRO is sup-

pressed by thermal fluctuations in fewer than three dimensions [31]. In con-

trast to the physics of condensates in three dimensions, 2D BECs undergo a

Berezinskii-Kosterlitz-Thouless (BKT) transition to an ordered state [32,33].

This phase transition is distinct from the ‘standard’ 3D BEC transition. In

two dimensions, correlation functions of the condensate field – and therefore

phase coherence – then decay algebraically, vanishing in the infinite limit.

A 2D condensate is said to have quasi-long range order, with macroscopic

occupation occurring on small scales. As we shall see later, the picture for

polariton condensates is complicated by their non-equilibrium nature. This

can cause an exponential decay of correlations, however coherence has been

observed across the extent of the sample size of a polariton condensate [6],

and power-law decay of correlations in line with the equilibrium theory has

also been reported [34].
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1.3. Driven-dissipative condensates

While the part-light, part-matter composition of polaritons gives them

a suitable mix of characteristics that allow for condensation, it has another

consequence. Although the Bragg mirrors in microcavities have a very high

reflectivity, it is finite, and photons eventually escape from the semiconduc-

tor. This limits the lifetime of polaritons to typically be of the order of

a few picoseconds [35, 36]. Lifetimes of up to 100 ps have been achieved in

more recent experiments using cavities with high quality factors [37,38], how-

ever despite the observation of quasi-equilibrium condensates of long-lifetime

polaritons [39, 40], in this work, we will only consider situations where the

polariton lifetimes are short enough for the system to be considered truly

driven-dissipative.

Because of the finite lifetimes of polaritons, a condensate must be contin-

ually replenished, or it will vanish. There are various methods of injecting

polaritons into the condensate. The most common method, and the one

which we assume for the theoretical models used in this work, is that of

non-resonant pumping [7]. Typically, a laser is used to excite the sample

incoherently, well above the polariton energy. The high-energy excitons cre-

ated by this process cool through emission of phonons until they lie on the

LP dispersion. Relaxation to the ground state then occurs through stimu-

lated scattering. This gives the polaritons the coherence that is a signature

of condensation. This method involves the creation of a large population of

incoherent polaritons. As these have relatively high energies and momenta,

they essentially behave as excitons which interact weakly with light. We

can then model the non-resonant pumping process by considering a pump

creating a reservoir of excitons, which then populates the condensate.

In addition to non-resonant pumping, there are a number of experimental

methods that involve exciting the sample resonantly. These generally involve

creating polaritons with a specific momentum by controlling the angle at

which photons are injected. This may bring about coherent scattering into

the ground state, for example through an optical parametric oscillator regime.

We will not go into detail on the various mechanisms and models of resonant

pumping, as they are not relevant to this thesis, however, such methods are

reviewed in detail in [7] and [8].

The non-equilibrium nature of polariton condensates has a number of
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Chapter 1. Introduction

useful consequences. The photons which escape the cavity retain their co-

herence, so a polariton condensate emits laser-like coherent light. In fact, the

emission of the condensate contains all the relevant information on its state.

The frequency and momentum of the polaritons are conserved when they

tunnel through the Bragg mirrors. One may therefore deduce the energy

of the occupied modes by measuring the frequency of the emission, while

the in-plane momentum may be calculated from the angle at which light is

emitted. This latter feature is exploited in the resonant pumping schemes

outlined above.

Because it acts as a coherent light source, and involves exciting a medium

in a cavity with a pump, a polariton condensate has much in common with

a laser. In fact, these systems are sometimes referred to as ‘polariton lasers’.

Their behaviour is distinct from that of traditional photon lasers, however.

In the case of conventional lasers, photons gain coherence through stimu-

lated emission from a gain medium. In polariton condensates however, it is

the polaritons, not photons, which gain coherence, and this occurs through

stimulated scattering. It can be shown that unlike photon lasers, population

inversion is not required for polaritons to lase [41], and furthermore, polari-

ton condensates are in the strong-coupling regime, which may be verified by

obtaining the dispersion from the emission below condensation threshold. In

truth, polariton condensates lie on a spectrum between equilibrium BECs

and lasers. Driven-dissipative condensates have their own unique character-

istic properties and clearly warrant individual scrutiny.

1.4 Theoretical model of non-equilibrium

condensates

The dynamics of a Bose-Einstein condensate may be described at the mean-

field level by the Gross-Pitaevskii equation (GPE) [18],

iℏ
∂

∂t
Ψ(r, t) =

(
− ℏ2

2m
∇2 + V (r) + U |Ψ(r, t)|2

)
Ψ(r, t), (1.12)

where the entire condensate is described by a classical, single-particle wave-

function Ψ(r, t). This wavefunction is an order parameter for the condensate

10



1.4. Theoretical model of non-equilibrium condensates

in the sense that it is zero in the uncondensed phase. It is normalized such

that ∫
|Ψ(r, t)|2dr = N, (1.13)

where N is the total number of particles in the state. The local density of

the condensate is then given by

n(r, t) = |Ψ(r, t)|2. (1.14)

Eq. (1.12) has the form of a single-particle Schrödinger equation with an

additional nonlinear term, which models the interactions between particles

in the condensate, with strength U . An external potential experienced by

the condensate is included as V (r).

The GPE is a valid description of the ground state of a dilute gas of

bosons at low temperatures. The introduction of the classical order parame-

ter is justified when there are a large number of particles in the gas, and their

temperature is below the critical threshold for Bose-Einstein condensation.

In this case, all particles will occupy the same state. In addition to this, if the

separation between particles is greater than the scattering length, the true

interaction potential may be replaced by an effective psuedopotential. As a

result, all interactions may be represented in terms of the s-wave scattering

amplitude, which is contained in the interaction strength, U . These approx-

imations mean that the GPE is applicable when describing phenomena that

take place over a length scale much larger than that of the scattering length.

The GPE may be generalized to the case of a non-equilibrium condensate

by including extra terms to model driving and dissipation. In particular, a

straightforward yet effective description of a non-resonantly pumped polari-

ton condensate is the extended Gross-Pitaevskii equation (eGPE) [42]:

iℏ
∂Ψ

∂t
=

[
− ℏ2

2m
∇2 + V (r) + U |Ψ|2

]
Ψ+ i

(
g − Γ|Ψ|2

)
Ψ. (1.15)

The additional complex terms in this equation phenomenologically model

the gain and loss associated with the condensate. The pump excites a gain

medium, creating a reservoir of hot excitons, from which the condensate is

populated through stimulated scattering events, with a rate γ. Meanwhile,

the condensate continually experiences losses due to the decay of photons

11



Chapter 1. Introduction

from the cavity, with a rate κ. The new linear term

g = γ − κ, (1.16)

describes the net result of both of these mechanisms. When the cavity is

pumped strongly enough such that the gain compensates for the losses, g is

positive, and this term causes the condensate to grow exponentially. On the

other hand, when κ > γ, the condensate will decay. Thus, the threshold for

condensation occurs at g = 0. This corresponds to the threshold pumping

power that is experimentally required to observe condensation [6]. A gain

saturation term, with coefficient Γ, is also required. Clearly, when pumped

above threshold, a condensate cannot continue to grow exponentially. For

instance, scattering into the condensate depletes the gain medium, slowing

the rate of growth. This is modelled by the inclusion of the nonlinear term.

The new gain and loss terms attempt to establish a steady-state density,

n0 = g/Γ. (1.17)

Indeed, in the absence of a potential, Equation (1.15) has the uniform steady-

state solution

Ψ(r, t) =
√
n0 exp{(−iµt/ℏ)}, (1.18)

where µ = Un0 is the chemical potential of the condensate. In this thesis,

we mainly use units where ℏ = 1, in which case the chemical potential

corresponds to the frequency of the wavefunction.

This ‘free space’ version of Eq. (1.15) where the potential term is zero,

or constant in space has the form of a complex Ginzburg-Landau equation

(CGLE). An extension of Landau and Ginzburg’s theory of phase transitions

in superconductors, the CGLE is a remarkably versatile tool for studying a

multitude of different systems. Generally speaking, it describes the dynamics

of extended oscillatory media [43,44].

Another commonly-used model of polariton condensates considers a sep-

arate rate equation for the uncondensed exciton reservoir, which is coupled

to a similar extended GPE through a reservoir density term nR [45]:

iℏ
∂Ψ

∂t
=

[
− ℏ2

2m
∇2 + V (r) + gC |Ψ|2 + gRnR +

iℏ
2
(RnR − γC)

]
Ψ, (1.19)

∂nR

∂t
= P −

(
γR +R|Ψ|2

)
nR. (1.20)
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1.5. Disorder and localization of polariton condensates

Here, as well as a term describing interactions between condensed particles,

proportional to gC , this model also explicitly contains a condensate-reservoir

interaction term proportional to gR. The pump strength or excitation power

is given by P , R is the rate at which polaritons are scattered from the reser-

voir into the condensate, and γC and γR are the decay rates from the conden-

sate and the reservoir respectively. This model reduces to the eGPE (1.15)

in the adiabatic approximation, whereby the dynamics of the reservoir in-

stantaneously follow those of the condensate. The rapid relaxation of nR

to its steady state enables us to eliminate the reservoir densities by writing

Eq. (1.20) as

nR =
P

γR +R|Ψ|2 ,

which, close to a steady state condensate density – or alternatively, just

above threshold – may be expanded to give an equation of the same form

as Eq. (1.15). The specific analytic conditions necessary for the adiabatic

approximation, and thus the agreement of the two models – including the

restriction that only low-momentum modes of the condensate be occupied

considerably – are outlined in [46]. These conditions may generally be met,

and so we only consider the eGPE model given by Eq. (1.15) for our analysis

in this work. In fact, this equation will be the starting point for all of our

analysis of driven-dissipative condensates.

1.5 Disorder and localization of polariton

condensates

1.5.1 Spatial disorder

Disorder is an inescapable feature of polariton condensates. Although mod-

ern semiconductor fabrication techniques enable the production of very clean

microcavities, some level of impurities and fluctuations in the cavity width

and/or reflection coefficient is inevitable [11,47]. This is especially prevalent

in wide-bandgap materials such as GaN and ZnO, which have provided the

most promising results for room-temperature condensation [21,48].

A spatial disorder potential can inhibit condensation by causing the con-
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densate wavefunction to become localized. This can lead to the formation

of several ‘pools’ of condensed particles, which are localized around minima

of the disorder potential [49,50]. In general, these localized condensates will

have macroscopic occupation of different modes, as may be confirmed by

measuring the emission frequency. Spatially-separated modes are not gen-

erally coherent, leading to phase correlations that decay beyond the spatial

extent of a single localized condensate, and an absence of long-range order.

Figure 1.3: A schematic of localized condensates in a disordered potential.

Note: more generally, in a disordered potential, the wells will not have equal

widths, as is shown here.

Disorder-induced localization of BECs also occurs in equilibrium. In this

case, however, the condensates are generally formed without disorder, and

this is later introduced to the sample [51,52]. The effects of localization may

be overcome by increasing the density of the condensate. The steady-state

solutions of the GPE (1.12) – and indeed those of its driven-dissipative exten-

sion (1.15) – have a frequency which contains a blueshift due to interactions

of the form Un. Thus, adding more particles to a condensate can increase

its frequency. This blueshift, or increase in energy can then screen the dis-

order potential. The condensate wavefunction may extend across the entire

sample, as it can ‘see over’ the peaks in the disorder profile.

A similar effect is described by the Bose-Glass-superfluid transition [53].

In an equilibrium bosonic system, the transition between an insulating state

and a superfluid one (i.e. the onset of condensation) goes through an in-

termediate ‘Bose glass’ phase in the presence of spatial disorder. In this

intermediate phase, localized puddles of superfluid form, but superfluidity

does not extend across the system. There is then a phase transition from

this state to a superfluid. While this picture was expected to be broadly
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1.5. Disorder and localization of polariton condensates

the same for nonequilibrium condensates [54], the addition of driving and

dissipation proves to alter the physics. It has been shown that superfluid-

ity is impossible in a disordered driven-dissipative condensate in the ther-

modynamic limit [55], while the observation of intensity fluctuations in the

emission spectrum of a polariton condensate, even at strong excitation power

(corresponding to high densities), suggests that spatial disorder may inhibit

long-range order. Experiments on finite systems, however, have shown that

increased excitation powers can cause initially separated, localized polari-

ton condensates to synchronize their emission frequencies and lead to the

establishment of phase coherence across the sample. [50,56,57].

The localization of polariton condensates due to a potential is not neces-

sarily a nuisance. It allows for the construction of lattices and other complex

structures which enable the observation of phenomena such as the Josephson

effect [56]. Josephson effects may be seen when two condensates are localized

close enough to one another that their wavefunctions overlap. This enables

the tunnelling of particles from one condensate to another through the poten-

tial barrier between them. This tunnelling is one of the mechanisms that can

bring about synchronization in the energies of spatially-separated, localized

condensates. Polariton lattices have also been identified as candidates for

analogue simulation, with the condensate dynamics used to solve complex

problems with many degrees of freedom [58, 59]. Localizing potentials need

not come from disorder intrinsic to the sample. The profile of the pump laser

also contributes to the potential seen by the condensate. The pump creates

hot excitons where it is incident on the sample. Condensed polaritons may

interact with these excitons, so they create a repulsive potential. This effect

may be exploited to create lattices where condensed polaritons are trapped

between pump spots [57]. It is also possible to engineer lattices of conden-

sates that are not trapped in potential wells. Non-uniform pumping can

create spatially separated condensates at the peaks of the potential. These

condensates are propagating states, and can also be seen to synchronize their

frequencies and gain coherence [58,60,61].

We will consider lattices of the former variety, where condensates are

localized in the wells of a trapping potential. In particular, we will focus

on how these spatially-separated condensates synchronize their frequencies
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in a lattice with random energies. This is in part facilitated by Josephson

tunnelling between neighbouring condensates [56, 62]. We are particularly

interested in the question of whether synchronization is possible for an in-

finitely large lattice. This is important for understanding if long-range order

can exist for driven-dissipative condensates in the presence of disorder.

1.5.2 Spatio-temporal noise

Static disorder resulting from the microcavity is not the only type of disorder

that can affect polariton condensates. Any dissipative system that is driven

by a laser is expected to have some spatio-temporal fluctuations associated

with this process [63]. These fluctuations are not captured by a mean-field

model, and they were not initially thought to have a significant enough im-

pact on the physics of driven-dissipative condensates to warrant consideration

alongside the models outlined in the previous section. In recent years, how-

ever, it has become clear that a purely mean-field description does not suffice

when calculating correlation functions of a driven-dissipative condensate [64].

In particular, analysis that includes the effect of these fluctuations predicts

the exponential decay of correlations of the condensate wavefunction [65,66].

The eGPE is straightforwardly adapted to allow for these fluctuations.

Their effect is captured by the addition of a stochastic term, ξ(r, t) to the

right-hand side of (1.12). This term is generally taken to be a zero-mean

Gaussian white noise term, characterized by

⟨ξ∗(r, t)ξ(r′, t′)⟩ = 2D̃δ(r− r′)δ(t− t′). (1.21)

The fluctuations arise from the gain and loss, and their strength, D̃ is deter-

mined by the parameters g and κ. This semiclassical stochastic model may

be derived using a truncated Wigner approximation [63].

The main body of work in this thesis does not go beyond the mean-field

description of driven-dissipative condensates to include the impact of pump

noise. We focus on lattices of localized condensates with random energies

that do not change with time. This enables us to quantify the effects of

purely spatial disorder, and map the system to a classical description of

coupled oscillators. In chapter 5, we present some preliminary work which

takes noise into account.
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1.6. Synchronization of coupled oscillators

1.6 Synchronization of coupled oscillators

As we have mentioned above, a primary consideration of this thesis is how

lattices of spatially-separated driven-dissipative condensates may synchro-

nize their emission frequencies. This connects the field of polariton conden-

sates to another wide-ranging area of physics: that of the synchronization

of oscillators. Synchronization is a truly universal phenomenon that spans

the fields of physics, chemistry, biology and social sciences [12]. Time and

time again in nature, one encounters systems which display periodic be-

haviour being drawn to oscillate with a common frequency, and move with

the same rhythm. This is seen in swarms of pulsing fireflies, pacemaker cells

in our hearts, and applauding audiences. However, synchronization also oc-

curs in inanimate objects that are not aware of their surroundings. The

study of synchronization is famously said to have begun in 1673 when the

Dutch physicist Christiaan Huygens serendipitously noticed that two pendu-

lum clocks hanging from the same frame gradually synchronized the motion

of their pendula [12]. In the intervening 350 years, physicists have arranged

more complex and modern objects, such as lasers and Josephson junctions,

in various configurations such as chains and lattices and noticed a similar

effect [67, 68]. In this thesis, we will detail how lattices of localized polari-

ton condensates may be described in the same way, and how this analysis

provides insight into the physics of such nonequilibrium systems.

1.6.1 Definitions and conventions

We begin by clarifying some of the terminology and conventions used within

the framework of synchronization. A more detailed and extensive review may

be found in Pikovsky, Kurths and Rosenblum’s book on the subject [12]. We

consider systems comprising self-sustained oscillators. These are objects that

have some repeating, periodic behaviour associated with them, which they

carry out without being driven externally. One may consider the classical

example of a pendulum clock. With the help of a spring, a weight or a battery,

the pendulum will swing back and forth with a regular period. These swings

are self-sustained oscillations. In turn, the motion of the pendulum then

powers the clock hands to rotate around its face. We can imagine the type
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of clocks whose hands don’t tick, but rather rotate smoothly. In this case,

motion of the hands may also be considered as an oscillation, although the

period of these oscillations is many multiples of the pendulum’s period.

The motion of an individual self-sustained oscillator is parameterized by

a well-defined phase, θj. Formally, the phase variable describes the position

of an oscillator along its limit cycle in phase space, however in our particular

choice of self-sustained oscillator – a BEC – the phase appears naturally in its

order parameter as Ψ =
√
n exp(−iθ). The frequency of an oscillator is then

the rate of change of its phase, θ̇j. For well-behaved systems in the absence of

external perturbations, the phase of an individual oscillator increases linearly

in time. This allows us to define the natural frequency of the oscillator,

ωj = θjt. (1.22)

In the case of the steady state solution of a BEC, this natural frequency is

equal to its chemical potential, µ, as Ψ0(r, t) = Ψ0(r) exp(−iµt) (in units

where ℏ = 1). Oscillations, by definition, are periodic. Without loss of

generality, we consider oscillations with periodicity 2π, so ωj is an angular

frequency. Two phases that differ by 2π then describe the same physical

state. We could choose to define the phase on a circle, however this is not

necessary, as the equations that govern the dynamics of these systems encode

this periodicity with sine and cosine functions.

Synchronization can occur when oscillators are coupled to one another.

This coupling can have many forms, so long as it enables the motion of one

oscillator to influence another. Huuygens’ original pendulum clocks were

connected by a common wooden frame. This allowed their motion to be cou-

pled through vibrations, or equivalently the exchange of phonons. Localized

BECs on the other hand, are coupled through the Josephson tunnelling of

particles between neighbouring condensates. Once oscillators are coupled,

there are different forms of synchronization that may occur.

The most general form is frequency synchronization, or entrainment,

whereby a common frequency is established across a group of N oscillators:

θ̇1 = θ̇2 = · · · = θ̇N = Ω. This is also referred to as phase locking, because

oscillators with the same frequency have a constant phase difference – their
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1.6. Synchronization of coupled oscillators

phases are ‘locked’ together with a constant offset, such that

|θj − θk| = Ajk. (1.23)

A special case of this frequency synchronization occurs when this phase off-

set is zero everywhere, and the oscillators are all in phase with one another.

When this happens, one also has phase synchronization, or mutual coher-

ence of the oscillators. Phase synchronization is responsible for some of the

more spectacular examples of synchronization that may be commonly ob-

served. The synchronization that occurs in an applauding crowd, or a swarm

of fireflies is striking because the clapping or the flashing occurs in unison.

However, it is not generally the case that oscillators with synchronized fre-

quencies are in phase. Two clocks are entrained if one never runs slow or

fast with respect to the other. Only if they continually tell the same time

are their phases synchronized. (In this example, we think of the phase as

describing the motion of the hands).

This language is not entirely consistent throughout the literature, but

in this work, unless specified, the terms synchronization, entrainment and

phase-locking will be used to refer to frequency synchronization. We will

specify when phase synchronization also occurs.

1.6.2 The impact of noise on coupled oscillators

The presence of noise, or any time-dependent disorder, in a system makes

the discussion of synchronization somewhat less straightforward. Few phys-

ical systems are perfect: most oscillators experience some sort of noise from

their surroundings. As discussed in section 1.5.2, this is also true for driven-

dissipative condensates. Noise generally causes the phase of an oscillator to

jump around rather than increasing linearly, and as such it is difficult to de-

fine a natural frequency. Furthermore, when time-dependence is introduced

into the couplings or natural frequencies of oscillators, situations can exist

where oscillators display phase synchronization at some point in time, but in

general, their frequencies are not synchronized. In this case, it makes sense to

consider the average frequency of an oscillator over a certain amount of time

to determine synchronization. One may then loosen the definition of syn-

chronization, and choose an upper allowable bound on frequency differences.
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Two oscillators may be considered synchronized if their average frequencies

differ by less than this amount.

In the case of noisy oscillators, it can also be useful to consider the phases

of the oscillators rather than their frequencies. We may generalize the defi-

nition of phase locking for noisy oscillators by replacing the equality in Eq.

(1.23) with an inequality:

|θj − θk| < Bjk, (1.24)

where Bjk ≤ 2π. This allows the phase of each oscillator to fluctuate, but

constrains them both to evolve with the same frequency. If the noise is

strong enough, however, it may cause a ‘phase slip’ to occur, where the

phase difference between the two oscillators rapidly jumps by ±2π. In fact,

in the case of unbounded noise, such as the case of Gaussian noise η(t), with

⟨η(t)η(t′)⟩ = 2σ̃δ(t − t′), such phase slips are inevitable. No matter how

large we choose Bjk to be, eventually a large enough fluctuation will occur

to briefly knock the oscillators out of sync. If the noise is weak, this will

happen infrequently enough that oscillators may be considered synchronized

over a finite length of time. In the limit of long times, the average frequen-

cies of oscillators subject to weak noise will also be synchronized because of

the relative rarity of phase slips. Furthermore, applying a suitable bound

to the noise strength may prevent slips from occurring at all, and ensure

synchronization.

For most of this work, we consider noise-free systems of oscillators. The

effects of noise will only be taken into account in the final chapter, when we

generalize our results for clean systems to include the effects of noise.

1.6.3 Synchronization of large populations of oscilla-

tors and the Kuramoto model

Remarkably (or perhaps not, if statistical physics has taught us anything),

regardless of whether one wishes to describe how groups of clocks, lasers or

fireflies synchronize, a common mathematical description tends to suffice.

The paradigmatic mathematical description of synchronization of groups of
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oscillators was proposed by Kuramoto in 1975 [69,70]. It reads,

θ̇j = ωj +
N∑
j=1

Kjk sin (θk − θj) . (1.25)

This model is quite elegant in its simplicity. A population of N oscillators,

whose individual phases are given by the θj, each have a natural frequency

of rotation ωj, and are coupled to one another through a periodic coupling

function with coefficient Kjk. Sine is a natural choice for the coupling func-

tion, as it is the simplest function with the same 2π-periodicity as the phase

difference between oscillators, which it takes as its argument. Furthermore,

this corresponds to ‘diffusive’ coupling: the coupling function attempts to

bring neighbouring oscillators to the same state [71, 72]. One can see from

the behaviour of the sine function with small arguments that when the phase

of one oscillator is slightly ahead of its neighbour, the coupling function will

add a ‘boost’ to the frequency of the trailing oscillator, while reducing the

frequency of the leading oscillator by the same amount. The coupling is then

zero when the oscillators have the same phase.

Typically, one considers a random distribution of natural frequencies.

Then, in the absence of coupling, all oscillators will rotate at different fre-

quencies. Increasing the coupling strength causes the oscillators to influence

each other more strongly, and works to bring about synchronization. Con-

versely, increasing the spread of the natural frequencies makes it more difficult

for oscillators to synchronize, so synchronization results from a competition

between the coupling strength and the variance of the natural frequency dis-

tribution. In fact, separate parameters are not required to describe each of

these effects. Eq. (1.25) is invariant under the scaling t → σt, so one may

always consider natural frequencies with unit variance by dividing across by

the original standard deviation, σ. In the simplest case of uniform coupling,

the synchronization dynamics of the Kuramoto model are then controlled by

a single parameter, K ′ = K/σ.

Typically speaking, the Kuramoto model refers to the case of all-to-all,

or ‘mean-field’ coupling, whereby each oscillator is coupled to every other

one, with a coupling strength that is proportional to the total number of

oscillators, Kjk = K/N, ∀ j, k. In this special case, the model may be

solved analytically, and one finds a phase transition from a desychronized
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state to global frequency synchronization at a Kc that is independent of the

system size [69, 73]. It is therefore known that it is possible for an infinitely

large number of globally coupled Kuramoto oscillators to synchronize their

frequencies.

For many systems, such as the lattices of coupled condensates which we

consider, the oscillators are not influenced equally by the entire ensemble

– rather, each site is only coupled to its neighbours. To describe this, one

takes Kjk = 0 except for the case of nearest neighbours on a regular cubic

grid. In the simplest case, we take the coupling to be uniform, and write the

locally-coupled Kuramoto model as

θ̇j = ωj +K
∑
<k>

sin (θk − θj) , (1.26)

where now the sum which appears in the coupling function has 2d terms

(with d the dimensionality of the lattice) rather than N , as is the case in the

globally coupled model.

The synchronization behaviour of this local Kuramoto model is not as

easily determined as that of its more celebrated mean-field counterpart. How-

ever, locally-coupled lattices of oscillators – or at least continuous media that

may be approximated as such – appear in many contexts [12], so this model

has been the subject of some scrutiny. We note that locally-coupled oscillator

lattices with different – and indeed, more general – coupling functions have

also been studied [72, 74, 75], however it is worth reviewing the behaviour

of (1.26) specifically, because it is quite well understood, and it provides

a grounding to contextualize our own model (3.5), which we introduce in

chapter 3, and is closely related.

Kuramoto himself, together with Sakaguchi [76] was the first to address

the question of whether synchronization is possible for the locally-coupled

model in the limit N → ∞. It is clear from numerical simulations of small

lattices in one and two dimensions that one may choose a large enough K

such that all oscillators attain the same frequency. At values of K just

before the onset of synchronization, one sees clusters or plateaus of oscillators

entrained to a common frequency, so it would not be unreasonable to expect

that some form of synchronization might occur in infinitely large systems.

Sakaguchi and Kuramoto showed through a consistency argument, however,
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that in the limit N → ∞, global frequency synchronization is impossible in

dimensions d ⩽ 2. Very shortly after, Strogatz and Mirollo [77] went a step

further, and demonstrated that in fact, frequency synchronization cannot

occur in a lattice of oscillators in any finite dimension. This statement was

proved for any random distribution of natural frequencies with finite mean

and variance. In fact, both of these works showed that in two or fewer

dimensions, the probability of synchronized clusters existing also decays to

zero in the infinite limit.

An analytic solution for the probability of global synchronization in a 1D

chain of Kuramoto oscillators was also derived in [77]. By interpreting the

sum of the natural frequencies along the chain as a random walk around their

average, it was shown that in the limit N → ∞, the probability of all of the

oscillators being synchronized is equivalent to the probability of the maxi-

mum value of a pinned Wiener process being less than the coupling strength.

This result is known exactly to be a Kolmogorov-Smirnov distribution [78],

so we may write the probability of synchronization of a chain of N oscillators

described by (1.26) with natural frequencies distributed with zero mean and

unit standard deviation coupled with strength K
√
N as

lim
N→∞

P (N,K
√
N) =

√
2π

K

∞∑
m=0

exp

{(−(2m+ 1)2π2

8K2

)}
. (1.27)

This expression increases from zero to almost one asK
√
N is varied from zero

to 2, implying synchronization occurs at coupling strengths of size O(
√
N).

Thus, an infinitely large coupling strength would be required to synchronize

an infinite chain.

1.7 Notes on numerical simulations

In this work, we present the results of both analytic and numerical inves-

tigations. The majority of numerical simulations were carried out using

Mathematica. Differential equations were solved using the NDSolve pack-

age, while the Fourier package was employed to calculate discrete Fourier

transforms. There are two exceptions to this. The two-dimensional simula-

tions in Chapter 3 were performed in Fortran, using an adaptive Runge-Kutta
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algorithm [79] originally written by my supervisor, Paul Eastham. This code

was then adapted and run by me. In addition, the results for the stochastic

model presented in Chapter 5 were also obtained using a Fortan code written

by Paul. This employs the two-step Runge-Kutta method given in [80] to

solve the coupled stochastic differential equations.
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Chapter 2

Synchronization of two coupled

driven-dissipative condensates

2.1 Introduction

In this chapter we consider the synchronization dynamics of the ‘polariton

Josephson junction’: two polariton condensates, separated by a potential bar-

rier, through which quantum tunnelling may occur. There are many ways

to experimentally realize such a configuration. A ‘double well’ trapping po-

tential may arise from the fabrication of micropillars through etching and/or

deposition [81,82], from interactions with the excitonic reservoir [83], or from

the growth-induced disorder intrinsic to the sample [56], to list but a few ex-

amples. Two different polarization states of a polariton condensate in a single

trap may also behave as a polariton Josephson junction [84,85]. The double

well configuration has been the subject of much experimental and theoreti-

cal investigation because it is a relatively simple platform to test quantum

effects. In analogy with the DC Josephson effect in superconductors, a cur-

rent may be established between the two wells that depends on their relative

phase difference, and if the energies of the wells are sufficiently detuned from

one another, the system undergoes a transition to an AC Josephson effect,

whereby the current rapidly changes direction.

There are a number of differences between the polariton Josephson junc-

tion and the traditional superconductor equivalent. In particular, the two

condensates are not part of a circuit; rather, the gain and loss due to the
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pumping of each condensate attempts to balance the condensate densities.

The connection to disorder is what motivates our interest in this configu-

ration. It has been shown that disorder in a microcavity can lead to the

formation of several condensates localized at different locations in the plane

of the sample [50]. The double well provides an accessible starting point

to understand the transition between distinct, localized condensates and a

single ordered state. As we will illustrate, this problem is closely linked to

the synchronization of coupled oscillators.

We will outline the theoretical description of condensates in a double

well potential, starting from the extended Gross-Pitaevskii equation. We

demonstrate how this may be reparameterized in terms of the phase and

density of each well to illustrate the existence of both a synchronized and

desynchronized regime, and how these correspond to a DC and AC Joseph-

son effect respectively. We then focus on the boundary between these two

regimes as a function of the parameters in the system to highlight the role

that interactions, gain and loss play in synchronization. In particular, we

study the effect of varying the pump strengths for each well. We show that

asymmetrical pumping – approximated by introducing a difference between

the linear gain terms in each well – shifts the position of the phase boundary

between synchronized and desynchronized states, thus acting as an effective

additional energy detuning. This demonstrates how pump asymmetry may

combat a disorder-induced detuning between two localized condensates and

bring about synchronization.

2.2 The Gross-Pitaevskii equation in the

double well

As will be the case for all of our investigations of driven-dissipative conden-

sates, we shall take the extended Gross-Pitaevskii equation (eGPE) (1.15) as

our starting point,

i
∂Ψ

∂t
=

[
− 1

2m
∇2 + V (x) + U |Ψ|2

]
Ψ+ i

(
g − Γ|Ψ|2

)
Ψ, (2.1)

where here and henceforth we set ℏ = 1. We assume two well-separated,

roughly harmonic potential wells. In order to study this configuration, we
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2.2. The Gross-Pitaevskii equation in the double well

Figure 2.1: A schematic of two condensates in a double well potential.

expand the condensate wavefunction over the orbitals of the left and right

wells [86],

Ψ(x, t) = ψl(t)ϕl(x) + ψr(t)ϕr(x). (2.2)

Here ϕl,r are the localized ground state wavefunctions in the left and right

wells, which are normalized as
∫
ϕ∗
l,r(x)ϕl,r(x)dx = 1, and ψl,r are the re-

spective amplitudes. Substituting this expression in (2.1) yields two coupled

equations, one for the amplitude of each condensate:

i
∂ψl

∂t
= ϵlψl − Jψr + Ul|ψl|2ψl + i

(
gl − Γl|ψl|2

)
ψl

i
∂ψr

∂t
= ϵrψr − Jψl + Ur|ψr|2ψr + i

(
gr − Γr|ψr|2

)
ψr.

(2.3)

The above equations are obtained by multiplying the eGPE on the left

by ϕ∗
l (x) and ϕ∗

r(x) respectively, and integrating over the size of the sys-

tem. We have assumed that the overlap between the two wavefunctions

is large relative to their size, so terms containing this quantity are expo-

nentially small and may be neglected. ϵl is the ground state energy of

the left well, and the polariton-polariton interaction strength in this con-

densate is Ul =
∫
|ϕl|4 U dx. The dissipative terms gl =

∫
ϕ∗
l g ϕl dx and

Γl =
∫
|ϕl|4 Γ dx describe the gain and loss in the left condensate due to

pumping and decay. The parameters that appear in the dynamics of the
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Chapter 2. Synchronization in the double well

right well are of course defined analogously. J is the tunnelling matrix el-

ement between wells. Explicitly, the tunnelling from the left well to the

right is given by Jlr = −
∫
ϕ∗
l (x) [−(1/2m)∇2 + V (x)]ϕr(x)dx, and we make

the assumption that the tunnelling is symmetric, i.e. Jlr = Jrl = J . This

tunnelling term is real, however this is not always the case. If each well is

not pumped uniformly, and the gain instead has some spatial dependence,

this contributes an additional imaginary term to the tunnelling of the form

i
∫
ϕlg(x)ϕrdx [87]. We will not, however, consider such a model with imagi-

nary tunnelling strength. Furthermore, we assume that the nonlinearities in

each well due to interactions and gain are the same, so we set Ul = Ur = U

and Γl = Γr = Γ.

In the absence of tunnelling between the wells (for example when the sep-

aration between them is large), each of the equations in (2.3) simply describes

the dynamics of the amplitude of a trapped condensate. This supports the

stationary solution,

ψl =
√
n0,le

−i(ωlt+Θl), (2.4)

where again we use the example of the left well. n0,l = gl/Γ is the steady

state occupation of the well, and the solution oscillates with frequency ωl =

ϵl + Un0,l, which is the single-particle energy of the well blueshifted by the

energy arising from interactions between particles. Θl is an arbitrary phase

factor resulting from spontaneous symmetry breaking. The overall phase has

no physical significance, but as we shall see, the phase difference between

coupled condensates plays a critical role in their dynamics.

It is also worth noting that our choice of normalization of the wavefunction

at each site sets a dimensionless density scale such that the unit of length in

this model is taken to be the spatial extent of the potential well. This follows

from the definition of the total number of particles in the system,

N =

∫
|Ψ(x, t)|2dx

= |ψl(t)|2
∫

|ϕl(x)|2dx+ |ψr(t)|2
∫

|ϕr(x)|2dx

= |ψl(t)|2 + |ψr(t)|2

= nl + nr.

(2.5)

Thus, the density at each site is just the number of particles in that well,
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2.2. The Gross-Pitaevskii equation in the double well

and as such, we use the terms ‘density’ and ‘occupation’ interchangeably.

In the absence of coupling, trapped condensates behave independently

of one another. They generally have different energies, and their emission

frequencies are set by the depth of the well, and the number of particles in

each condensate, which is controlled by the pump strength. In the double

well configuration however, tunnelling between sites means that it is possible

to overcome detunings in energy and pump strength, and for two initially

separated condensates to behave as a single state, and emit at a common

frequency.

This phenomenon is best seen by reparameterizing the dynamical equa-

tions given by (2.3) in terms of the phase and density in each well. The most

general form of the amplitude in each well is given by

ψl,r(t) =
√
nl,r(t)e

−iθl,r(t). (2.6)

Substituting this in (2.3), and separating real and imaginary parts yields

coupled equations for the densities,

ṅl

2
= (gl − Γnl)nl − J

√
nlnr sin(θl − θr)

ṅr

2
= (gr − Γnr)nr + J

√
nlnr sin(θl − θr),

(2.7)

and phases,

θ̇l = ϵl + Unl − J

√
nr

nl

cos(θl − θr)

θ̇r = ϵr + Unr − J

√
nl

nr

cos(θl − θr),

(2.8)

of each well. Equations 2.7 describe the particle currents that flow between

the two wells. The first terms on the right describe the net flow of particles in

or out of each condensate due to pumping and decay. If the pumping succeeds

in establishing a steady state density at each site, these terms cancel, and the

equations are those of two coupled equilibrium condensates. The last term on

the right of each equation describes the Josephson current that flows from one

well to the other as a result of the phase difference between the condensates.

This is the mechanism behind the remarkable DC Josephson effect: even in

an ideal double well potential, where two condensates of equal energies and
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Chapter 2. Synchronization in the double well

densities are maintained through uniform pumping, a current will still flow

through the barrier because of the differing phases between the condensates.

It is because of this current that we must correct our initial assessment of the

dynamics. The dissipative terms on the right of (2.7) will not cancel. As the

phase of each condensate will in general be different, the Josephson current

will act to unbalance the densities on each side. It is easy to see, in the simple

case of identical pumping of each well (gl = gr,Γl = Γr), that the nonlinear

term will no longer saturate the gain. In the case where the Josephson current

flows from left to right, the gain terms will act as a particle source in the

left well, and a sink in the right, and vice versa for a current in the opposite

direction. Thus, the gain and loss mechanisms in the polariton condensate

are analogous to connecting the superconductors in the traditional Josephson

junction in a circuit: they prevent the condensate occupations on either side

of the junction from being depleted by the Josephson current.

Of course, the DC Josephson effect relies on the phase difference, that is

the argument of the sine terms, remaining constant. If this phase difference

instead grows in time, the sine will rapidly and repeatedly change sign, and

an alternating current occurs between the wells. This is analogous to the

AC Josephson effect, which is traditionally observed when a fixed voltage is

imposed across a superconducting Josephson junction. The equations (2.8)

describing the phase dynamics are thus key to understanding whether a direct

or alternating current is present across the junction, as we will see in the next

section.

We can see evidence of the DC and AC Josephson effect in the plots of the

occupations of each well in Fig. 2.2. In both plots, the left well has a slightly

higher energy than the right well, and both are pumped equally. The larger

occupation of the right well in plot (a) is evidence of a constant Josephson

current flowing from the left well to the right to balance the energy difference.

In plot (b) however, the tunnelling is not strong enough relative to the energy

difference to maintain a constant phase difference between the condensates,

and we see density oscillations between the two wells, characteristic of the

AC Josephson effect [88]. We will characterize these two regimes further in

the following section.
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2.3. Phase dynamics and synchronization in the double well
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Figure 2.2: Time dependence of the density of two coupled condensates in

the (a) synchronized and (b) desynchronized regimes. Josephson oscillations

are evident in the densities in the desynchronized case. Densities are obtained

by solving Eq. (2.3) with parameters: (a) ∆ = 0.05 meV, J = 0.015 meV, (b)

∆ = 0.08 meV, J = 4 µeV. In both cases both wells have g = 0.1 meV, Γ = 1

µeV, U = 3 µeV.

2.3 Phase dynamics and synchronization in

the double well

The question of whether a driven-dissipative condensate in a double well

potential exhibits a DC or an AC Josephson effect is equivalent to asking

whether the condensates in each well have the same energy. From (2.7),

we see that if the phase difference between the wells grows with time, the

direction of the Josephson current will fluctuate. Thus, a direct current

requires the frequencies of the condensates – set by (2.8) – and therefore their

energies, to be synchronized. The synchronized and desynchronized phases of

the double well have been studied before [86,88,89], and the phase boundary

between the two regimes has been derived as a function of the parameters of

the mean field model [85]. These investigations have considered only the cases

of uniform pumping of both condensates, or pumping of a single condensate.

Remarkably, the phase boundary in this case does not depend on the rate of

linear gain of the condensates, g. In this section, we generalize the approach

of Borgh et al. [85] to account for differing rates of linear gain in each well.

This approximates asymmetric pumping of the system.
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Figure 2.3: Spectra of two coupled condensates in the (a) synchronized

and (b) desynchronized regimes. Parameters used are the same as for the

corresponding plots in Fig. 2.2. Fourier transforms are sampled over a range

of 2 ns.

To proceed, we express the equations (2.7) and (2.8) in terms of the pa-

rameters relevant to the problem. Whether the condensates are synchronized

or not depends on the phase difference between the wells, Φ ≡ θl−θr. Specif-
ically, a synchronized state is one where this quantity is constant in time.

It is also the detuning of the energies of the two wells, rather than their

individual single-particle energies, that influences the dynamics, so we define

this detuning as ∆ ≡ ϵl − ϵr. We expect that in general, a large detuning

will inhibit synchronization, while the tunnelling strength, J , assists it. This

is to be seen in Figs. 2.2 and 2.3, where we plot the densities and frequen-

cies of each well in the two different regimes. The frequencies of each well

are obtained by solving (2.3) numerically and performing a discrete Fourier

transform (DFT) on the amplitudes. The frequencies of each well are then

evident as peaks in these spectra when plotted. In Figs. 2.2(a) and 2.3(a),

the tunnelling strength is large relative to the detuning, and both wells have

the same frequency, and a constant density. In Figs. 2.2(b) and 2.3(b) on

the other hand, a larger detuning and smaller tunnelling strength are chosen,

and the dynamics are qualitatively different. The amplitude of each well os-

cillates with a different frequency, causing an alternating Josephson current

to oscillate between the wells.

In order to effectively describe the synchronization dynamics of the sys-
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2.3. Phase dynamics and synchronization in the double well

tem, and derive an expression for the boundary between the two distinct

phases, it is convenient to follow [85] in defining new variables describing the

mean condensate density, and the density imbalance,

R =
nl + nr

2
, z =

nl − nr

2
,

while we do likewise for the linear gain terms in each well:

ḡ =
gl + gr

2
, δg =

gl − gr
2

.

In the uniformly pumped double well, one has gl = gr = ḡ, and δg = 0.

With these re-definitions, the dynamics of the system are then captured

more concisely by adding and subtracting the pairs of equations (2.7) and

(2.8) to obtain equations for the mean density, and the density and phase

differences:

Ṙ = 2Rḡ + 2zδg − 2Γ(R2 + z2) (2.9)

ż = 2Rδg + 2ḡz − 4ΓRz − 2J
√
R2 − z2 sinΦ (2.10)

Φ̇ = ∆ + 2Uz − 2z√
R2 − z2

J cosΦ. (2.11)

We note that the dynamics of the total phase are not relevant to synchro-

nization.

At this point, we make a number of assumptions to simplify our analysis.

We will assume that there is significant occupation of both wells, such that

R ≫ z. (2.12)

As the steady state density of a single condensate is proportional to the linear

gain, in order for the above restriction to be true, we must also consider a

pump asymmetry that is small relative to the overall pump strength, i.e.

δg ≪ ḡ. (2.13)

In general, as noted in [85], if the double well is pumped strongly enough to

fulfil the above conditions, the system will be in the Josephson regime [90],

where interactions dominate over tunnelling. We therefore also have

UR ≫ J. (2.14)
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Chapter 2. Synchronization in the double well

Finally, we restrict ourselves to studying the dynamics where the overall

density is in a steady state, or Ṙ = 0. This is a reasonable assumption, as

numerical simulations of the eGPE in the double well show that the total

density rapidly relaxes to the steady state in experimentally relevant pa-

rameter regimes. This is to be seen in Fig. 2.2, where after initial rapid

transient behaviour, the total density remains constant in both synchronized

and desynchronized regimes.

Taking the steady state of (2.9), dividing across by R2, and neglecting

terms of second order in (z/R) gives us the expected condition for the total

occupation of the wells:

R =
ḡ

Γ
. (2.15)

Here, we have used nl,r ≈ gl,r/Γ, so that δg ≈ zΓ, and zδg/R2 ≈ Γ(z/R)2.

Eq. (2.11) also simplifies with the condition (2.12), and by recognizing

that | cosΦ| ⩽ 1, we can use (2.14) to eliminate the trigonometric term, and

rewrite this equation as an expression for the density difference,

z =
∆− Φ̇

2U
. (2.16)

Finally, we can substitute (2.15) and (2.16) into (2.10) to eliminate all depen-

dence on density, and obtain a dynamical equation for the system in terms

of its phase difference:

Φ̈ + 2ḡΦ̇ + 4ḡ
UJ

Γ
sinΦ = 2ḡ

(
∆+ 2

U

Γ
δg

)
. (2.17)

This equation is a generalization of the one derived by Borgh et al. [85] for

non-uniform pumping of the wells. It has the familiar form of the equation

of motion of a damped, driven pendulum [91].

It is useful to analyse the behaviour of this system in the ‘overdamped

regime’, where the second derivative term may be neglected. This corre-

sponds to strong pumping of the system. To see this, we first reparameterize

the equation by defining a dimensionless time, t̃ = (Γ/2UJ)t. For the second

derivative term to vanish, its coefficient must be negligibly small in these

dimensionless units, which is the case if

ḡ ≫ UJ

Γ
. (2.18)

34



2.3. Phase dynamics and synchronization in the double well

The overdamped description of the system then takes on the more approach-

able form,

Φ̇ = λ− sinΦ, (2.19)

where the derivative is now in terms of the new dimensionless time, and

λ =
Γ

U

∆

2J
+
δg

J
. (2.20)

Eq. (2.19) is often called the Adler equation [12], and its behaviour is

well known. Two distinct types of solution are permitted. A synchronized

solution corresponds to a steady state, Φ̇ = 0. This is only possible if λ ⩽ 1,

due to the bounded nature of the sine function. When this is the case,

the phase difference will rotate from its initial condition to a fixed point at

Φ = arcsin (λ), where it will then remain. On the other hand, when λ > 1,

a stationary solution is impossible. The phase difference will continually

rotate, and the individual frequencies are desynchronized. There is thus a

transition from a synchronized to a desynchronized state at λ = 1, or in

terms of the parameters of the polariton double well, at

∆ =
2U

Γ
(J − δg) . (2.21)

In the case of uniform pumping, δg = 0, and we recover the result from [85].

This illustrates how synchronization is a competition between detuning and

tunnelling strength: the larger the energy difference between the two wells,

the greater the tunnelling strength that is required to maintain synchroniza-

tion. The ratio of the nonlinearities in the system affect synchronization

in the same way. When the interaction strength is strong relative to the

gain saturation strength, this diminishes the effect of the detuning, enabling

synchronization to occur at a smaller value of tunnelling strength, and vice

versa.

Two identical wells that experience the same gain and loss will always

be synchronized regardless of tunnelling, as their relative detuning is zero.

However, we see that this is not the case if a gain asymmetry (δg ̸= 0) is in-

troduced. This contributes an extra effective detuning of 2Uδg/Γ. Therefore,

if the system is in a parameter regime that does not support synchronization

under uniform pumping, introducing a gain asymmetry in the opposite di-

rection of the energy detuning of the wells by pumping the lower well more
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Chapter 2. Synchronization in the double well

strongly can synchronize the energies of the condensate. This may be ex-

plained by noticing that the condensate that experiences a higher linear gain

will have a greater occupation, meaning the interactions between particles

will have a greater contribution to the energy of the condensate than in the

more weakly pumped well.

Eq. (2.17) provides another connection between the polariton double well

and the superconducting Josephson junction. The resistively and capaci-

tively shunted junction (RCSJ) model [92,93,94] describes the total current

flow through a Josephson junction. In addition to a supercurrent, this will

typically contain contributions from a displacement current and an ordinary

current. In the RCSJ model, these are accounted for by including a capac-

itor and a resistor in parallel with the Josephson junction in a circuit. The

supercurrent is given by Ic sinΦ, where Φ is now the phase difference across

the junction and Ic is the Josephson critical current. The current through

the capacitor and resistor are CV̇ and V/R respectively, with C capacitance,

R resistance and V voltage. All three currents may be written in terms of

the phase difference across the junction with the Josephson voltage-phase

relation Φ̇ = 2eV/ℏ, which is essentially the analogue of (2.11) for a su-

perconducting Josephson junction. The total bias current is then given by

summing the three distinct contributions:

ℏC
2e

Φ̈ +
ℏ

2eR
Φ̇ + Ic sinΦ = I. (2.22)

This may be analysed in the same way as (2.17). The overdamped limit is

equivalent to having a negligible dimensionless McCumber parameter, β =

2eIcR
2C/ℏ, and in this regime, the transition between DC and AC Josephson

effects is found to be simply I = Ic.

A useful way of visualizing the dynamics of equations such as (2.17) and

(2.22) is by interpreting them as equations of motion for a particle with

position Φ moving in a potential V (Φ). In terms of the parameters of our

coupled condensate model in dimensionless time, this particle has low mass

UJ/(4ḡΓ), and experiences a strong viscous drag force, meaning it effectively

has no inertia. The potential may be calculated as

− dV

dt
= λ− sinΦ, (2.23)

36



2.4. Phase diagram
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Figure 2.4: Washboard potentials for the overdamped polariton double well

(2.19). In (a), λ = 0.5, and the system is synchronized. Our ‘particle’ will

reach a stable fixed point in one of the minima of V (Φ), where Φ will remain

constant. In (b), λ = 1.1, and there are no longer any stable fixed points to

prevent the phase difference from increasing. The frequencies in this case are

desynchronized.

so

V (Φ) = −λΦ + cosΦ. (2.24)

This so-called ‘washboard potential’ [91, 92] is plotted for two values of λ in

Fig. 2.4. When λ < 1, the particle will become trapped in one of the potential

minima of the potential, and so we have the synchronized result, Φ̇ = 0. On

the other hand, at λ = 1, these potential minima become inflection points,

and the particle is free to roll down the slope. Thus, this shows how Φ steadily

increases (or rather rotates, as it is 2π-periodic) for a desynchronized solution

corresponding to λ > 1.

2.4 Phase diagram

Our expression for the phase boundary between synchronized and desynchro-

nized states of the double well of polariton condensates is confirmed by nu-

merical simulations of the eGPE in the double well (2.3). In Fig. 2.5, we plot

phase diagrams distinguishing the synchronized and desynchronized regimes

as a function of tunnelling strength and energy detuning for both symmetric
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Chapter 2. Synchronization in the double well

(a), and asymmetric (b) pumping of the wells. Whether the system is syn-

chronized or not in a given parameter regime is determined numerically by

solving the coupled equations (2.3), and performing a DFT on the resulting

amplitudes to determine the frequency of each condensate, as was done for

Fig. 2.3. These frequencies are then compared to determine synchroniza-

tion. This test is performed iteratively over a grid of points in parameter

space to produce the blue (synchronized) and red (desynchronized) regions

in Fig. 2.5. The analytic result (2.21) is then plotted as a white dashed line

over the numerical data, and is seen to agree well.

(a) (b)

Figure 2.5: Phase diagrams for condensates in a double well potential with

(a) symmetric and (b) asymmetric linear gain coefficients. Analytic results for

the phase boundaries are plotted as white dashed lines. As per (2.3), a positive

detuning corresponds to the minimum of the potential on the left lying above

that on the right, and the converse for negative detuning. The linear gain

terms for (b) are gl = 0.095 meV and gr = 0.105 meV, while both plots have

Γ = 1 µeV, U = 3 µeV.
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2.5. Comparison with experiment

The phase diagrams are plotted for an experimentally valid range of pa-

rameters, which we justify in the following section (2.5.2). Following from

our definitions of the detuning, positive values of ∆ correspond to the con-

densate in the left having a greater single-particle energy than that on the

right and vice versa. The phase diagram is symmetric with respect to this

detuning when the wells are pumped uniformly (Fig. 2.5(a)). At ∆ = 0,

the frequencies of the condensates are synchronized, regardless of tunnelling

strength. However, once an energy detuning is introduced in either direction,

a finite tunnelling strength is required for synchronization. Fig. 2.5(b) shows

the same phase diagram, but with the right well pumped more strongly than

the left. We see that now the condensates are desynchronized at the origin

(∆ = 0, J = 0), as the pump asymmetry effectively shifts the detuning by

2Uδg/Γ. In the top half of the plot, where ∆ is positive, the direction of the

pump asymmetry opposes the detuning. This implies that for a given value of

J , the wells require a greater detuning to be brought into the desynchronized

regime than in the symmetric case. The opposite is true when the positively-

detuned condensate is pumped more strongly than the other one (negative

values of ∆). We note that the condensate interaction strength, U , and gain

saturation coefficient Γ, were kept constant for these phase diagrams. We

know from (2.21) that varying the ratio of these two terms changes the slope

of the phase boundary. Outside of the range of parameters considered in

these phase diagrams, our parameters are no longer in the heavy damping

and/or Josephson regimes, and we expect nonlinear effects to cause the phase

boundary to deviate from a straight line [85].

2.5 Comparison with experiment

2.5.1 Approximation of asymmetric pumping

As mentioned in the previous section, our approximation of an asymmetri-

cally pumped double well by employing different linear gain coefficients for

the condensates on either side is a somewhat crude one. While varying the

pump strength does change the linear gain coefficient in each well, it also

affects several other parameters in our model. This can be seen by con-
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sidering equations of the form (1.19) and (1.20) for each well, which model

the pump reservoir explicitly [45]. Adiabatically eliminating the reservoir

dynamics, and expanding the reservoir densities as in [46], or the following

section 2.5.2, yields an equation of the form of the double well eGPE (2.3)

in terms of parameters such as the pump strength, the reservoir relaxation

and loss rates, and the strength of the interactions between polaritons in

the condensate and the hot excitons in the reservoir. We may compare this

expression directly with Eq. (2.3) to see the relationship between the param-

eters of the two models.

In particular, by doing this one finds that the pump strength from (1.20)

appears in the quadratic interaction term (U in our model), and the lin-

ear oscillation frequency (our ϵl,r). This is because implicit in the eGPE is

the condensate-reservoir interaction energy. This depends on the reservoir

density, which is set by the pump rate, and has contributions to both the in-

teraction term, U , and the linear term, ϵl,r. Pumping one well more strongly

than the other will create more reservoir excitons which interact with the

condensate polaritons in that well. These additional interactions will con-

tribute an extra blueshift to the energies of the more strongly-pumped well.

To account for this, we may absorb this additional difference in energies into

the energy detuning, ∆. We also note that our analysis found that increas-

ing the linear gain of one of the condensates effectively increases its energy

relative to the other. The additional blueshift due to increased condensate-

reservoir interactions which we neglect would appear in the same direction as

the blueshift due to detuning of linear gain parameters, so even if this latter

term is not absorbed into ∆, it does not qualitatively impact our result. We

would therefore expect an experimental analysis of the double well to find

that a small asymmetry in the pumping of the wells will have the effect of

shifting the phase boundary between synchronized and desynchronized states

in the direction of the pump asymmetry. For a given measured energy de-

tuning, ∆, the shift in the position of the boundary would be greater than is

predicted by (2.21) however.

In addition to changing the condensate-reservoir interaction strengths in

the wells, a differing pump strength may also be expected to affect the gain

saturation term, Γ. This can be seen when the two mean-field models are
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2.5. Comparison with experiment

compared in equations 2.31, 2.32 and 2.33 in the following section. However,

it is not unreasonable to imagine a pump mechanism that affects the linear

gain much more strongly than the nonlinear saturation, justifying our con-

sideration of differing values of g between wells, while approximating Γ as

uniform.

2.5.2 Choice of parameters for simulations

When choosing parameters for numerical simulations of the eGPE in the

double well (2.3), we are guided by experimental results for polariton con-

densates. While some of the parameters in our model are experimentally

measured, most are not directly accessible, and must be estimated.

We consider potential wells which confine the condensates in a region of

size∼ 10 µm×10 µm. This is consistent with what is experimentally observed

in confinement potentials arising from disorder [56,95], and potential wells on

this scale have been engineered using spatially patterned pump lasers [83,96].

Rather than the energies of the individual wells, it is their detuning, ∆ that

is relevant to our theory. Detunings of ∼ 0.3 meV have been reported for

localized condensates in disordered samples [50], while similar values of ∆

have also been achieved for ‘polaritonic molecules’, where condensates are

localized in pairs of micropillars [82]. In the latter case, the ground state

energy of one of the condensates is raised by weakly pumping its micropillar,

thus creating a reservoir of excitons there, which interact with the condensed

polaritons.

Pumped sufficiently above threshold, a condensate in such a potential

would be expected to contain ∼ 100 polaritons, based on estimates from

experimental data on emission intensities [6, 95]. This sets the ratio of the

gain parameters, as the steady-state density in a well is n0 = g/Γ. These

individual parameters are not straightforwardly available from experimental

data, as together they describe a range of different mechanisms, including

stimulated scattering from reservoir to condensate, and the decay of both

condensed and uncondensed polaritons through the cavity mirrors. We may

however infer them from reported values of polariton decay rates and relative

pumping strengths.
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Chapter 2. Synchronization in the double well

The linear gain coefficient g describes the net gain or loss of the conden-

sate amplitude, and is defined as g = γ − κ, where κ is the decay due to

losses through the cavity mirrors, and γ is the gain due to scattering from

the reservoir. A value of κ may be obtained directly from experimental data.

The rate of decay from the condensate is simply the inverse of the polariton

lifetime, which may be calculated directly from the linewidth of the emis-

sion. The decay rate of the population is 2κ, due to the relationship between

density and amplitude. We may demonstrate this with the example of an

unpumped condensate (where imaginary terms are neglected):

∂n

∂t
=

∂

∂t
|ψ|2

= ψ∗∂ψ

∂t
+
∂ψ∗

∂t
ψ

= ψ∗(−κψ) + (−κψ∗)ψ

= −2κ|ψ|2

= −2κn.

Unlike κ, a value for γ does not suggest itself as readily from available data.

The linear gain, γ, and loss, κ, balance at threshold, and as g increases with

pumping strength, P , one may assume a linear dependence of γ on P , as

in [42], implying the gain takes the form

g = κ

(
P

Pth

− 1

)
, (2.25)

where Pth is the pumping at threshold. Indeed, one obtains this exact expres-

sion from the alternative Gross-Pitaevskii model of a polariton condensate

(1.19, 1.20) in the adiabatic limit of instantaneously fast reservoir dynamics.

In this framework, the gain in the GPE has the form

i
∂ψ

∂t
= . . .+

i

2

(
R

P

γR +R|ψ|2 − γC

)
ψ, (2.26)

where, as outlined in Section 1.4, R is the rate of scattering from the reservoir

to the condensate, and γR and γC are the rates at which polaritons decay

from the reservoir and condensate, respectively. From this, the steady state

density is given by

|ψ0|2 =
P

γC
− γR
R
, (2.27)
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2.5. Comparison with experiment

and setting this quantity to zero gives us the threshold pumping strength:

Pth =
γCγR
R

. (2.28)

Using this, we may rewrite the expression for the steady state density in

terms of experimentally accessible parameters,

|ψ0|2 = ns

(
P

Pth

− 1

)
, (2.29)

where ns = γR/R is the saturation density corresponding to the occupa-

tion when the system is pumped at twice the threshold value. Thus, we

may rewrite the fraction in (2.26) in terms of these parameters to see that

just above threshold, when the condensate occupation is small, it may be

expanded as a power series (which we truncate to second order),

γC
P

Pth

(
1

1 + |ψ|2/ns

)
= γC

P

Pth

(
1− |ψ|2

ns

+ . . .

)
. (2.30)

Substituting this in (2.26), we have

i
∂ψ

∂t
= . . .+

i

2

{
γC

(
P

Pth

− 1

)
− γC
ns

P

Pth

|ψ|2
}
ψ. (2.31)

This now has the same form as the damping in (2.1), where g has the form

predicted in (2.25) (we recognize that κ = γC/2), and Γ = (γC/2ns)(P/Pth) =

(RγC/2γR)(P/Pth).

It is clear, however, that this result only holds just above threshold. When

the occupation of the condensate is significant – similar to or greater than ns

– we should replace the expansion in (2.30) with a Taylor series expansion

around the steady-state density [46]. This produces a similar result that has

the same form (2.31), except in this case the gain parameters are

g =
γC
2

(
1− Pth

P

)
(2.32)

and

Γ =
γ2C
2P

=
γC
2ns

Pth

P
. (2.33)

While at first glance, these values of g and Γ appear similar to those in

(2.31), the behaviour is markedly different when the system is pumped far

above threshold. In particular, this approach gives the result that the linear
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Chapter 2. Synchronization in the double well

gain saturates, asymptotically approaching the condensate loss rate as the

pump strength is increased. Of course, there are limitations to this model

of the pump reservoir (2.26), as, much like the eGPE, it is a simplificaton of

the processes that actually occur. Nevertheless, it would appear sensible to

take our value of g to be roughly equal to γC/2 = κ, or half the inverse of the

polariton lifetime. Polariton lifetimes are typically a few picoseconds [35,36],

so this corresponds to g being of order 0.1 meV in our units. We then choose

Γ to be two orders of magnitude smaller to set an appropriate steady state

density.

The interaction strength, U , is also difficult to estimate from experiments

because, as outlined above, both condensate-condensate and condensate-

reservoir interactions contribute to the experimentally-observed blueshift. It

is easier to obtain a value for the dimensionless ratio of nonlinearities U/Γ –

and indeed, the interaction strength only appears in this ratio in the theory

we have developed (2.17). We may estimate the magnitude of this quantity

by considering the model of the population dynamics of a polariton conden-

sate presented in [97] and [95]. This is a generalization of a description of

atom lasers [98]. From this model, one may derive the dissipative part of the

eGPE in terms of the condensate decay rate, the saturation density, and the

interaction strength of a single condensate mode. The latter two quantities

are determined from experimental results for the second-order correlation

function and blueshift above threshold in [97]. The ratio of these two terms

is equal to U/Γ in our parameters, and is found to be ≃ 2. This is in broad

agreement with the estimate of the inverse of this ratio to be ≃ 0.3 in [42].

Therefore, a value of U between 0.001 and 0.01 meV would be consistent

with our estimation of Γ of order 1 µeV. We note that an expression for U in

terms of the parameters of the alternative model given by (1.19, 1.20) may

be derived in the same way as was done for the gain and loss parameters

above. As noted in the previous section, this will have a dependence on the

pump strength, and it may be negative due to the influence of the reservoir.

However, negative values of U give rise to instabilities in the condensate [99],

so we will only consider positive values of U in this work.

We can estimate the inter-well tunnelling J , by assuming Gaussian wave-
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functions in two harmonic potential wells. We may then solve the integral

Jlr = −
∫
ϕ∗
l (x)

[
−(ℏ2/2m)∇2 + V (x)

]
ϕr(x)dx (2.34)

where m is the polariton mass, which we take to be 5.1× 10−5 times the free

electron mass [57], and the wavefunction has the form

ϕl,r(x) =
1

L
√
π
e−((x±a/2)2+y2)/(2L2) (2.35)

with inter-well separation, a, and harmonic oscillator length L =
√

ℏ/(mω).
We may estimate this latter quantity from experimental results. In [57], the

full-width at half maximum (FWHM) of the emission from a single well in

reciprocal space is found to be δk = 0.5 µm−1. For a Gaussian function of

the form (2.35), this reciprocal-space FWHM may be written as (2/L)
√
ln 2,

so this corresponds to a harmonic oscillator length of L ≈ 3 µm. We may

thus construct a corresponding harmonic double well potential of the form

V (x) =

1
2
mω2((x+ a/2)2 + y2), x < 0

1
2
mω2((x− a/2)2 + y2), x ≥ 0.

(2.36)

Putting this all together, one finds that J decays exponentially with well

separation, a. If we restrict ourselves to separations a ⩾ 4L, such that we

are justified in neglecting terms containing the overlap
∫
ϕ∗
l (x)ϕr(x)dx =

exp{(−a2/(4L2))}, we find that J may be at most of order 0.01 meV.

The limitations of this method of estimating J are obvious: the approx-

imations of the potentials and wavefunctions are not particularly realistic,

and the resulting expression also decays exponentially with L−1, so it is

quite sensitive to variations in length scale. It is however useful for providing

an order of magnitude estimate for the tunnelling matrix element. It also

demonstrates how, physically, the effect of tunnelling is increased by moving

the wells towards one another, and reduced by moving them away from one

another. We also note that condensates localized in smaller traps will have

a larger value of J .

Finally, in order to see the synchronization transition predicted by (2.19),

our choice of parameters must place us in the Josephson regime (2.14) as well

as the overdamped regime (2.18). These two constraints enforce the condition

J

g
≪ U

Γ
≪ g

J
. (2.37)
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Chapter 2. Synchronization in the double well

It is not surprising that the values of parameters we have derived from ex-

perimental results above fulfil this condition: both synchronized and desyn-

chronized phases of the polariton Josephson junction have been observed

experimentally [50,56].

2.6 Conclusions

In this chapter, we have analysed the synchronized and desynchronized phases

of the polariton Josephson junction. We followed previous literature on this

system [85,86,88] by writing the extended Gross-Pitaevskii equation in terms

of the amplitudes of two spatially-separated sites, and by using this to derive

a single equation in terms of the phase difference between the condensates.

Connecting this to the classical description of an overdamped pendulum en-

abled us to distinguish between the synchronized and desynchronized phases.

We went beyond the state of the art by considering the effect of pumping the

condensates in each well with different strengths. This was done by introduc-

ing an asymmetry to the linear gain rates in each well. We found that this

pump asymmetry behaves as an effective detuning between the energies of

the wells that is equivalent to the extra blueshift due to interactions resulting

from the difference in steady-state densities.

Understanding the transition between the synchronized and desynchro-

nized regimes of the double well is crucial to the work in the remainder of

this thesis. When the frequencies of the condensates in each well are synchro-

nized, they behave as a single condensate that is not localized in either well.

Thus, the synchronization transition is equivalent to a transition from local-

ized to extended states. In the next chapter, we will extend our analysis to

a large number of potential wells, to determine whether the same transition

occurs.

Additionally, in this chapter we have derived reasonable values for all

of the parameters that appear in the eGPE, through comparison with ex-

perimentally reported values, and through demonstrating the equivalence

between the two commonly-used mean-field models of driven-dissipative con-

densates. These values will be used to guide numerical simulations in the rest

of this thesis.
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Chapter 3

Synchronization in disordered

lattices of condensates

3.1 Introduction

In this chapter we extend the analysis of the polariton condensate in a double

well from the previous chapter to the case of N coupled driven-dissipative

condensates arranged in a chain, or a square lattice. We consider the con-

densates to be localized in potential wells with randomly-distributed depths.

This configuration has been investigated experimentally [57], and approxi-

mates a disordered potential landscape in 1D (chain) and 2D (lattice). As in

the case of the double well, tunnelling through potential barriers separating

neighbouring condensates is possible. This enables pairs of condensates to

overcome the detunings in their energies and synchronize their frequencies.

We address the question of whether it is possible for a common frequency to

be established across the entire lattice. As in the previous chapter, we show

that each condensate may be described as an autonomous phase oscillator.

Our problem then reduces to the more general one of whether frequency syn-

chronization may occur in a lattice of locally-coupled oscillators with random

natural frequencies in one or two dimensions.

The focus of this chapter is therefore not specific to the behaviour of

polariton condensates, but more generally to all systems which may be de-

scribed by the same phase oscillator model as that which we derive from the

extended Gross-Pitaevskii equation on a lattice. To reflect this, much of the
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Chapter 3. Synchronization in lattices

language we use in this chapter is that of coupled oscillators, rather than be-

ing specific to the case of condensates. We refer to ‘oscillators’ having certain

‘frequencies’, and interacting through some ‘coupling’. These terms may of

course be replaced with ‘condensates’, ‘energies’ and ‘tunnelling’, but we do

not wish to limit our descriptions to this framework. We compare our model

to other theories of coupled oscillator from the literature – in particular the

well-known Kuramoto model [69]. The description of our system is in fact

equivalent to a nearest-neighbour generalization of the Kuramoto model with

a modified coupling term. We demonstrate that the non-Kuramoto coupling

has a significant effect: it allows synchronization to occur in large lattices,

formed from macroscopic numbers of oscillators, for dimensions d < 4. This

is contrary to the behaviour found in lattices of locally-coupled Kuramoto os-

cillators, where synchronization becomes impossible in the limit of an infinite

number of sites [76,77].

We do this by demonstrating that the continuum limit of the oscilla-

tor model is a Kardar-Parisi-Zhang equation [100] with time-independent

noise [101, 102, 103, 104]. The KPZ equation is a stochastic nonlinear dif-

ferential equation that was originally formulated in the context of interface

growth, and may be used to describe a broad class of phenomona related to

kinetic roughening [105]. This is because solutions to the equation – at least

in low dimensions – are found to be rough, as a result of the noise term. In

the three and a half decades since its introduction, many different physical

systems have been shown to lie in the KPZ universality class. In particu-

lar, it has been very successful in describing the dynamics of nonequilibrium

systems that experience disorder. Of course, polariton condensates are such

systems. However, the disordered lattices of condensates that we describe in

this chapter do not belong to the KPZ universality class. We consider spa-

tial disorder rather than time-dependent noise, and as such, the continuum

limit of our model may have smooth, regular solutions. Systems in the KPZ

universality class are considered, however, in the final chapter of this the-

sis, where the impact of noise on lattices of driven-dissipative condensates is

studied. In this chapter, mapping our KPZ-like model to an imaginary-time

Schrödinger equation with a random potential allows us to derive the phase

boundary for synchronization and characterize the frequency and phase pro-
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3.2. Derivation of phase oscillator model

files. These analytical predictions agree with numerical simulations in one

and two dimensions.

Our results are significant in the context of driven-dissipative conden-

sates. While experimental demonstrations of lattices of polariton conden-

sates localized in potential wells have shown that a synchronization transi-

tion occurs for small systems [57], we show that this phenomenon persists in

the thermodynamic limit. It is therefore characteristic of a non-equilibrium

phase transition, where the change in character of the steady-state of the

system in the thermodynamic limit gives rise to singularities in its proper-

ties. Furthermore, we demonstrate that phase and frequency ordering in a

driven-dissipative gas of bosons are not always destroyed by static disorder,

despite recent evidence that the superfluid-insulator transition which occurs

in equilibrium [53] is not present out of equilibrium [55].

3.2 Derivation of phase oscillator model

We begin our analysis in the same way as we did in the case of the double well

in the previous chapter; except this time, instead of considering two sites, we

are considering many. We thus expand the condensate order parameter over

the basis set of the wavefunctions localized in each well, labelled by index i:

Ψ(x, t) =
N∑
i

ψi(t)ϕi(x). (3.1)

We then substitute this in the extended Gross-Pitaevskii equation (1.15),

and multiply on the left by ϕ∗
j(x) and integrate over the sample to obtain

an equation for the amplitude of the jth site. We assume a ‘tight-binding’

type configuration where the wavefunctions are localized on each site, so that

the overlaps between sites are small, and we may neglect terms containing

this quantity [106]. As before, we take the wavefunction on each site to be

normalized, so the density on each site is a dimensionless number of particles.

Our N coupled equations then take the form

i
∂ψj

∂t
=
[
ϵj + U |ψj|2 + i

(
g − Γ|ψj|2

)]
ψj −

∑
<k>

Jjkψk. (3.2)
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These are identical to the equations for the double well (2.3), except now,

instead of a single tunnelling term, the sum over nearest neighbours (in-

dicated by <k>) describes tunnelling between each site and those directly

adjacent to it. This sum has two terms in 1D, and four on a two-dimensional

square lattice. As before, ϵj is the single-particle energy of the jth well, Uj =∫
|ϕj|4 U dx is the polariton-polariton interaction strength, gj =

∫
ϕ∗
j g ϕj dx

and Γj =
∫
|ϕj|4 Γ dx describe the gain and loss due to pumping and decay,

and Jjk = −
∫
ϕ∗
l (x) [−(1/2m)∇2 + V (x)]ϕk(x)dx.

Figure 3.1: A schematic of a 1D chain of polariton condensates. Polaritons

condense in the minima of the periodic potential generated by the pump. Tun-

neling between sites enables neighbouring condensates with different energies

to synchronize their frequencies.

The physical system that we have in mind is the experimental realization

of a lattice of polariton condensates described in [57]. In this experiment, the

potential wells are created by a spatially-patterned pump laser. A regular

grid of sites on the sample are pumped, each with the same intensity, creating

reservoirs of hot excitons. These excitons relax to form condensed polaritons,

which are repelled by the excitons still in the reservoirs. The polariton con-

densates form in the areas between pump spots. Due to the regularity of the

pump profile, we may consider uniformity of the parameters, Uj = U , gj = g,

Γj = Γ and Jjk = J across the lattice. Due to disorder in the sample, ϵj

varies from site to site, however this variation is small relative to the depth

of the wells, so its impact on the other parameters in the model is negligible.

The impact of spatio-temporal disorder arising from the pumping, which is

smaller still, is not considered here, and will be discussed in Chapter 5. To

account for disorder in well depths, we take the ϵj to be randomly distributed
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3.2. Derivation of phase oscillator model

with standard deviation σ. The magnitude of the standard deviation then

characterizes the disorder strength.

Reparameterizing Eq. (3.2) as before in terms of the density and phase

at each site yields N pairs of coupled equations of the form (2.7, 2.8):

ṅj

2nj

= g − Γnj + J
∑
<k>

√
nk

nj

sin(θk − θj) (3.3)

θ̇j = ϵj + Unj − J
∑
<k>

√
nk

nj

cos(θk − θj). (3.4)

We take the same approach as in the previous chapter to simplify these ex-

pressions. One sees from Eq. (3.3) that in the absence of tunnelling, the first

two terms imply that the occupation of each site relaxes to the steady-state

density g/Γ with rate 2g. Once again, we are interested in the dynamics

of the system far above threshold, where this is the fastest timescale in the

system. In this case, we may adiabatically eliminate the densities on each

site by setting ṅj = 0. Furthermore, as each site is pumped far above thresh-

old with the same strength, we may assume that the variation in densities

between sites is relatively small, so that δnjk ≡ nk − nj ≪ nj. We may

therefore also set the square root factors to unity.

It is then straightforward to solve (3.3) for ṅj, which we substitute into

(3.4) to obtain a dynamical equation for the phase at each site:

∂θj
∂t

= ϵj +
g

α
+ J

∑
<k>

[
1

α
sin(θk − θj)− cos(θk − θj)

]
. (3.5)

Here, we have introduced the dimensionless parameter α ≡ Γ/U . This ratio

of the two nonlinearities that appear in the eGPE may be interpreted as a

nonequilibrium control parameter: it is zero in an equilibrium condensate

[55].

We may verify that this equation captures the behaviour of the phase

dynamics of the eGPE by comparing frequency profiles obtained by solving

this model and the full eGPE (reparameterized as Eqs. (3.3) and (3.4)).

These are plotted in Fig. 3.2, with values of parameters consistent with the

ranges determined in Section 2.5.2. The good agreement between the results

obtained using both methods demonstrate the validity of the assumptions

taken in simplifying (3.3) and (3.4) in an experimentally accessible parameter

regime.
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Figure 3.2: Average frequencies of a chain of 100 condensates, calculated by

solving the reparameterized eGPE given by Eqs. (3.3) & (3.4) (red triangles),

and the phase-only model given by Eq. (3.5) (blue circles). The same choice of

random energies ϵj , distributed with σ = 50 µeV was used for each simulation.

The values of the tunnelling matrix element were varied from plot to plot and

were (from top to bottom): J = 0.03 meV, J = 25 µeV, J = 0.1 µeV. The

values of the other parameters used were g = 50 µeV, U = 50 µeV, Γ = 10

µeV. Averages were taken over 6 ns.

Eq. (3.5) is an equation which describes the phase dynamics of a system of

coupled self-sustained oscillators. In the absence of tunnelling, each conden-

sate has a frequency set by the energy of the potential well, ϵj, blueshifted

by the interaction energy. As a result of our adiabatic elimination of the

on-site occupations, this blueshift g/α is uniform across the lattice. We may

therefore simplify the appearance of (3.5) by redefining the zero of our fre-

quency scale to absorb this term into the ϵj. We are free to shift the scale

of our energies in this way by transforming to a rotating frame in the con-

text of oscillators. We may then visualize each condensate as a mechanical

oscillator that is set to rotate at this natural frequency. However, when J

is non-zero, the oscillators are coupled through the trigonometric terms, so

there is a contribution to the frequency of oscillation on a given site from the

52



3.2. Derivation of phase oscillator model

motion of the neighbouring oscillators. Physically, this occurs through an ex-

change of particles as the condensates tunnel through the potential barriers.

In our analogy of mechanical oscillators, such as clocks, physically connect-

ing neighbouring oscillators facilitates the coupling of their motions through

exchange of phonons. This coupling enables synchronization of oscillators

that initially have a range of different frequencies.

We know that for two oscillators, (3.5) has a synchronized solution for

J/α > |ϵ1 − ϵ2|, because upon setting N = 2 and subtracting the two equa-

tions, we have Eq. (2.19), which we derived and solved for the double well.

Indeed, one can see from the numerical simulations of (3.5) in Fig. 3.2 that

a 1D chain of 100 coupled oscillators may have full frequency synchroniza-

tion, partial synchronization or complete desynchronization, depending on

the strength of the coupling. One might again expect synchronization to

depend on the other parameters in the model in a similar manner to the case

of two sites. Characterizing synchronized and desynchronized states is more

complicated when a large number of oscillators are involved, however. Keep-

ing track of the natural frequency of each oscillator is no longer practical, or

even possible in many cases. Instead, we treat the ϵj as random variables,

and determine the probability of synchronization as a function of their stan-

dard deviation, σ. In fact, we can exploit the freedom of parameters in our

model by dividing (3.5) by σ, and choosing 1/σ as our unit of time. This

simplifies our analysis, as the model is now dimensionless, and only contains

two parameters, α and J/σ.

We must consider the possibility that the number of sites and dimension-

ality may also impact synchronization. Our goal is to determine if any type

of synchronization occurs in the thermodynamic limit (N → ∞, t → ∞),

and if so, to characterize the various phases that exist in terms of the param-

eters in our model. At this point it is instructive to review previous work on

lattices of coupled oscillators, and to compare and contrast our model with

the locally-coupled Kuramoto model, which is discussed in Section 1.6.3 in

the introduction.
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3.3 Probability of synchronization in a chain

of condensates

The similarities between our model (3.5) and the locally-coupled Kuramoto

model (1.26) are clear. They only differ by the cosine term that appears

in the coupling function in (3.5). The inclusion of the cosine term has the

effect of making our coupling function non-odd in its arguments, and it has

been suggested that this may bring about synchronization more readily than

through purely odd coupling, as is the case in the Kuramoto model [72,75,76].

We see that in the limit of very small α, our model approaches the Kuramoto

model, as the sine term in the coupling function dominates, and the cosine

term becomes negligible. We therefore expect to see the behaviour predicted

by (1.27) for finite lattices if we choose a very small value of α.
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Figure 3.3: Probability of synchronization of chains of condensates of varying

lengths, determined by solving Eq. (3.5) with α = 0.01. Each probability is

estimated from 100 disorder realizations, each simulated up to a time tσ =

1.8 × 104. The curves in (a) are fits to the Gumbel distribution. The data

plotted in each graph is the same, however in (b), each set of probabilities are

plotted as a function of the coupling strength scaled by the length of the chain.

The curve in (b) is the Kolmogorov-Smirnov distribution, approximated by the

first 100 terms in the sum (1.27).

This is illustrated in Figure 3.3, where we plot the probability of synchro-

nization of chains of oscillators of various lengths with normally-distributed

54



3.3. Probability of synchronization in a chain of condensates

random on-site energies as a function of the dimensionless coupling, J/σ, with

α = 0.01. We see in Fig. 3.3(a) that for each chain length, Psync increases

smoothly from zero and approaches a value of one. The range of J over which

this occurs is shifted progressively higher for longer chains, however. We ver-

ify that this behaviour is consistent with the Kuramoto model in Fig. 3.3(b)

by re-plotting the same data, but with the x-axis now scaled by
√
N . The

data then all collapses onto the Kolmogorov-Smirnov distribution (1.27), in-

dicating that the results are equivalent to those of a Kuramoto model with

coupling strength J/α. The unscaled data in plot (a) are fitted to Gumbel

cumulative distribution functions, exp{(− exp{(−(x− µ)/β)})} with shape

parameters µ and β. This has a similar form to the Kolmogorov-Smirnov

distribution.

To determine the probability of synchronization across the chain for a

given coupling strength, Psync(J), we first solve the set of coupled equations

(3.5) numerically to obtain a frequency for each condensate. We employ

closed boundary conditions, such that the 1st and Nth oscillators in each

chain are only coupled to one neighbour. Rather than considering instan-

taneous frequencies, we calculate an average frequency by solving for the

phase at two times, θj(ti) a short time after the initial transient behaviour

has decayed, and θj(tf ) some time later. This average frequency is then

Ωj =
θj(tf )− θj(ti)

T
, (3.6)

where T = tf − ti. We consider two neighbouring sites to be synchronized if

the difference in their average frequencies is less than the smallest numerically

resolvable frequency, π/T . The chain is then globally synchronized if all pairs

of neighbouring sites are entrained in this way. This routine is then repeated

for 100 random disorder realizations, and Psync(J) is estimated from the

fraction of realizations that return a synchronized result. The error bars on

the plots give the statistical error of this probability. A suitable value of T

over which to calculate the average frequency was determined by following

this routine to calculate Psync(J) using the same set of disorder realizations

and steadily increasing T until the results converged.

The general synchronization behaviour of our model (3.5) is seen when

α is large enough for us to see the contribution of the cosine term. This is
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Figure 3.4: Probability of synchronization of chains of condensates of varying

lengths, determined by solving Eq. (3.5) with α = 1. As in the previous figure,

each probability is estimated from 100 disorder realizations, simulated up to

a time tσ = 1.8× 104, and the curves are fits to the Gumbel distribution.

generally the case for polariton condensates, where α is typically in the range

0.1−1, as discussed in Section 2.4. We plot the probability of synchronization

of chains of various lengths again in Fig. 3.4, but this time with α = 1. Psync

again increases smoothly with J/σ from zero towards a value of one for each

length. In contrast to the results in the small-α limit however, the position

and width of these curves is almost independent of system size. The
√
N

scaling of the data seen in Fig. 3.3 – the signature of the 1D local Kuramoto

model – is certainly absent.

The fact that the typical coupling strength at which a chain of oscillators

described by (3.5) synchronizes is largely independent of system size suggests

that there is a synchronization transition in the limit of thermodynamically

large systems. We note that while the transition from desynchronized be-

haviour to synchronization in these figures is smooth and occurs gradually

over a range of coupling strengths, for a single realization of disorder, the

transition is a sharp one. This sharp transition occurs at slightly different
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3.4. Continuum approximation

coupling strengths for different realizations, giving rise to the shape of the

curves we see in Fig. 3.4. The fact that the Psync follows a Gumbel distribu-

tion suggests that synchronization of an individual realization is related to

an extreme value in the random natural frequencies. The reason for this will

become clear in the following sections.

3.4 Continuum approximation

Further insight into the synchronization transition in our coupled oscillator

model may be obtained by considering the continuum approximation of the

equations (3.5) when they describe a synchronized state. To do this, we

expand the trigonometric functions to second order in the phase difference

[12,107,108]. Writing (3.5) in 1D, we have

∂θj
∂t

= ϵj +
J

α
{sin(θj+1 − θj) + sin(θj−1 − θj)}

− J {cos(θj+1 − θj) + cos(θj−1 − θj)}
(3.7)

≃ ϵj +
Ja2

α

(
θj+1 + θj−1 − 2θj

a2

)
− 2J + Ja2

(
(θj+1 − θj)

2

2a2
+

(θj−1 − θj)
2

2a2

)
,

(3.8)

where in the second line, as well as making a Taylor expansion, we have

multiplied and divided by the lattice constant, a2. The continuum limit

is valid when the phase varies slowly across the lattice. Then, the phase

differences between each pair of sites are small. In this case, the terms

in brackets containing the phases on different sites converge to the second

derivative and first derivative squared of the phase. This is also the case

in higher-dimensional lattices, where the sine and cosine terms become a

Laplacian and the square of the gradient respectively in the continuum limit.

We also choose the lattice constant as our new unit of length, and set a = 1

in our equations henceforth. We then have

∂θ(x, t)

∂t
= ϵ(x) +

J

α
∇2θ + J (∇θ)2 , (3.9)

where ϵ(x) is a random function that is uncorrelated beyond the scale of the

lattice constant, such that it has correlations

⟨ϵ(x)ϵ(x′)⟩ = σ2δa(x− x′). (3.10)
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Chapter 3. Synchronization in lattices

A uniform energy shift g/α − 2Jd has been absorbed in the definition of

ϵ(x), d being the dimensionality of the system. For ease of analysis however,

we may consider ϵ(x) to have zero mean and unit variance, by resetting the

zero of our energy scale through a transformation to a rotating frame, and

choosing the dimensionless timescale outlined above, t′ = σt.

This continuum approximation is only valid for oscillators whose fre-

quencies are synchronized. The sine and cosine functions are only well-

approximated by a Taylor expansion when their arguments are small. If

neighbouring phases are not locked to one another, their difference will grow

in time, and the continuum description will not be accurate. To be precise,

the phase differences must be O(a) in order to justify the convergence of the

derivatives, and the exclusion of higher order terms from the expansions [12].

We also note that the result in (3.9) is not unique to our model. A contin-

uum equation of this form may be derived for any model of locally coupled

oscillators of the form θ̇k = ωk +
∑

<l> q(θl − θk), where q(x) is a generic

coupling function that is neither purely even nor odd. Therefore, the results

derived in this chapter are relevant to a general class of coupled oscillator

models.

We may gain insight into the synchronized and desynchronized phases

of our model by performing a self-consistency check on the continuum ap-

proximation. The sine and cosine terms in the lattice model become ∇2θ

and (∇θ)2 in this approximation. As the trigonometric functions are both

bounded to have range between 1 and −1, the same must be the case for the

gradient terms in order for (3.9) to accurately capture the behaviour on the

lattice. This condition follows from the compactness of the phase, θ(x, t),

and it places a strict limit on the scale of its spatial variations. Therefore,

we may analyse the solutions of (3.9) and apply this constraint to determine

the parameter regimes that correspond to synchronized and desynchronized

states.

Eq. (3.9) has a similar form to the Kardar-Parisi-Zhang (KPZ) equa-

tion [100,105]. As outlined in the introduction to this chapter, this stochastic

differential equation has been shown to describe a wide range of nonlinear

systems that experience noise or dissipation. Our model is not exactly equiva-

lent to this, however. The difference between Eq. (3.9) and the KPZ equation
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3.4. Continuum approximation

is that the random term in our model, ϵ(x), only has a spatial dependence,

whereas the corresponding KPZ noise term is random in space and time. Of

course, in the same way as we have arrived at (3.9), the KPZ equation may

be derived from the eGPE describing a nonequilibrium condensate without

spatial disorder, but including a space-time noise term arising from the gain

and loss. Indeed, this connection between the complex Ginzburg-Landau

equation and the KPZ equation has been made before in the context of po-

lariton condensates [65,66,109,110], and we will review this further when we

discuss the impact of noise on our model in Chapter 5.

Although our consideration of purely spatial disorder leads to different

universal behaviour, we may be guided by the KPZ equation when interpret-

ing the behaviour of our continuous model. The phase, θ(x, t), behaves like

the height of an interface, with a growth rate ϵ(x) which is random in space

but not in time. The behaviour of the solutions to (3.9) may be understood

by applying a Cole-Hopf transformation

Z(x, t) = exp(αθ), (3.11)

enabling us to rewrite Eq. (3.9) in a linear form, at the cost of introducing a

multiplicative disorder term:

∂Z(x, t)

∂t
=
J

α
∇2Z + αϵ(x)Z. (3.12)

Equations of this form describe the evolution of a population with diffusion

and random autocatalytic amplification [101, 102], as well as the partition

function for a directed polymer in a random potential [103, 104]. To solve

it, we recognize that it also takes the form of an imaginary-time Schrödinger

equation for a particle of mass α/2J in a random potential V (x) = −αϵ(x).
The general solution of (3.12) can then be expressed as the linear combination

of states,

Z(x, t) =
∑
n

cnφn(x)e
−Ent, (3.13)

where φn(x) are the eigenstates of an effective Hamiltonian Ĥ = −(J/α)∇2−
αϵ(x), with corresponding energies En. Unlike the solutions to the Schrödinger

equation in real time, each of the terms in the sum in (3.13) decays, with
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Chapter 3. Synchronization in lattices

rate En. The result of this is that Z(x, t) approaches the ground state wave-

function of the potential V (x) for t → ∞. For long but finite times, Z(x, t)

will have contributions from a small number of low-energy states.

In dimensions d < 4, these low-lying states will be exponentially localized,

about some dilute positions xn, with localization length ζ [102,108,111]:

φn ∼ e−|x−xn|/ζ . (3.14)

We may calculate the localization length by considering how the terms in

the Hamiltonian scale with the size of the wavefunction [112]. The kinetic

term scales with ζ as (J/α)ζ−2, while the potential term scales as (ασ)ζ−d/2.

The former scaling relation is evident from the Laplacian in the kinetic term,

while the latter follows from the average value of a random function over a

region of size ζ. Equating these two terms, we have the relation

J

αζ2
∼ ασ

ζd/2
, (3.15)

which we may manipulate to find

ζ ∼
(

J

α2σ

)2/(4−d)

. (3.16)

In Figs. 3.5 and 3.6 we plot some phase and frequency profiles obtained

by solving the discrete coupled oscillator model (3.5) at various times. These

solutions agree qualitatively with those of the continuum model, given by

Eqs. (3.11) and (3.13). We include plots for both one and two dimensions

because although our analysis above is valid for all d < 4, these are the rele-

vant dimensionalities for polaritonic systems. In both cases, multiple peaks

are evident in the phase profile at short times, each of which corresponds

to a localized, low-energy state of the Hamiltonian Ĥ. The corresponding

energies appear as plateaus in the frequency profile. The low-lying states

have negative energies, and so they grow in magnitude, corresponding to a

steadily increasing phase in the region controlled by each localization centre.

The ground state, with the lowest energy, grows fastest, and eventually dom-

inates the sum in (3.13), giving a solution with a single peak in the phase

profile, and a single frequency (corresponding to the ground state energy of
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Figure 3.5: Phase (left column) and frequency (right column) profiles in a

chain of 800 coupled oscillators, obtained by solving (3.5) with J/σ = 3.33 and

α = 1. The oscillators initially have a uniform phase, and periodic boundary

conditions are employed. The profiles are shown after times tσ = 100 (top

row), 600 (middle row), and 24000 (bottom row).

Ĥ). We only see synchronization across the lattice of oscillators after enough

time has passed for all but the ground state term in (3.13) to ‘die off’. The

phase profile of a synchronized state is then given, from (3.11), (3.13) and

(3.14) by

θ(x, t) =
1

α
lnZ(x, t)

≃ C − 1

α

( |x− x0|
ζ

+ E0t

)
, (3.17)

where C is a constant term that may be subtracted off, as the zero of the

phase scale is arbitrary. We have used this phase symmetry when plotting the

phase profiles in Figs. 3.5 & 3.6, where we subtracted off the average phase at

each time. Of course, unlike the height of a surface described by a KPZ-like

interface model such as (3.9), the phase variable is defined modulo 2π. We

plot our phase profiles over a range that is much larger than this to illustrate

the insights that may be gained from the behaviour of the interface model.
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Chapter 3. Synchronization in lattices

Figure 3.6: Phase (left column) and frequency (right column) profiles in a two

dimensional lattice of 512× 512 coupled oscillators, obtained by solving (3.5)

with J/σ = 3.33 and α = 1. The oscillators initially have a uniform phase,

and periodic boundary conditions are employed. The profiles are shown after

times tσ = 50 (top row), 300 (middle row), and 1700 (bottom row).

To fully capture the periodicity of the phase, one may imagine wrapping

the plots around a cylinder of unit radius, although the practicality and

functionality of such a visualization are debatable.

The discrepancy between the sign of the frequencies in one and two di-

mensions arises from the fact that for the 2D plots, the g/α term in (3.5) was

removed through a transformation to a rotating frame, while this was not

done for the 1D simulations. Thus, the phases in 1D behave like a surface

with average growth rate (g/α−2Jd)/σ = 16.67−6.67 = 10, while the corre-

sponding average growth rate in 2D is −2Jd/σ = −13.3. In both figures, the

frequencies synchronize to a value that is slightly higher than these averages,

which is to be expected, as from Eq. (3.17), the synchronization frequency is

related to the ground state energy by

θ̇ = −E0

α
, (3.18)
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with E0 the energy of the state localized in the deepest potential well.

Periodic boundary conditions were used when solving (3.5) to obtain the

phase and frequency profiles in Figs. 3.5 and 3.6, to approximate an infinite

system.

3.5 Phase diagram

Following the above analysis, we can now derive the scaling form of the phase

boundary between synchronized and desynchronized states in the phase os-

cillator model (3.5). As mentioned in the previous section, the continuum

version of this model has a ‘speed limit’ beyond which it is no longer con-

sistent in approximating the behaviour of a lattice of oscillators. This limit

is

|∇θ| ≲ 1. (3.19)

From (3.17), we have

|∇θ| = 1

αζ
=

[
αd
(σ
J

)2]1/(4−d)

, (3.20)

so applying the constraint (3.19) to this gives us the condition for synchro-

nization
σ

J
αd/2 ≲ 1. (3.21)

This condition is relevant for d < 4, as localized solutions to Eq. (3.12) are

not guaranteed otherwise. Lattices of polariton condensates may only be

realized in one or two dimensions, however, so this theory suffices to describe

these systems.

The above inequality is not a strict one, as we cannot say at which precise

value of the phase gradient our continuum approximation will break down.

We know however, from the numerical results of synchronization probabilities

in 1D shown in Fig. 3.4, that attempting to derive a sharp threshold for

synchronization of oscillators with random frequencies is, if not a fruitless

task, then not a particularly worthwhile one. Tails on the distributions of the

random natural frequencies mean that there is still a non-zero probability of a

lattice being desynchronized for values of parameters that would correspond

to synchronization in the vast majority of disorder realizations, and vice versa
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Chapter 3. Synchronization in lattices

in parameter regimes that tend towards synchronization. Furthermore, our

analysis up to this point is not specific to a certain distribution of random

frequencies, and an upper bound for synchronization may not be general

to all distributions. What we do have is a description of how the phase
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Figure 3.7: Phase boundary for synchronization for (a) a 1D chain of 800

oscillators, and (b) a 2D square lattice of 128 × 128 oscillators. Jc is defined

as the value of J corresponding to a probability of synchronization of 0.5.

The points are numerical values, computed as discussed in the text. The solid

lines show fits to the predicted slopes of 0.5 (a) or 1 (b). The dashed line in

(a) is the phase boundary for synchronization for a chain of 800 Kuramoto

oscillators.

boundary between desynchronized and synchronized phases of our locally-

coupled oscillator lattice scales with the parameters of the model in d < 4.

We verify this scaling with numerical simulations in one and two dimensions

in Fig. 3.7. We define the critical coupling strength Jc as the centre of the

transition in the probability plots, such that Psync(Jc) = 0.5. Our analysis

implies this should scale as

Jc ∼ σαd/2. (3.22)

This dependence of Jc on α is confirmed in Fig. 3.7. The data points

are generated by simulating Eq. (3.5) for one hundred disorder realizations

to obtain Psync(J), and fitting the resulting data to a Gumbel extreme-value
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distribution, as we did for Fig. 3.4. We then use the fitted parameters to

calculate Jc. This distribution is expected from the analysis above, because

the probability that a given sample is synchronized is the probability that Ĥ

has a ground-state localization length greater than a certain value or, equiv-

alently, that the magnitude of its ground-state energy is less than a certain

value. Since the ground-state energy is an extreme value – the lowest energy

among the states – this quantity is the cumulative distribution function for

an extreme-value distribution, and since the density of states in a band tail

vanishes exponentially, it should be the Gumbel one.

The solid curves in Fig. 3.7 are then square-root (1D) and linear (2D)

functions which are fitted to the data, to demonstrate the dependencies pre-

dicted in (3.22). On the 1D phase diagram, we also show the prediction of

the local Kuramoto model (1.26) with coupling strength K = J/(ασ) for a

chain of N = 800 sites. A critical coupling strength for this Kuramoto model

is determined by numerically evaluating the sum in (1.27) to find Psync = 1/2

when K
√
N ≃ 0.83. We then have Jkura

c /σ = 0.83
√
Nα. While this crit-

ical coupling – for our model without the cosine term – diverges for large

N , for a small system it can nonetheless lie below Eq. (3.22) at small α.

This explains the crossover seen at small α in Fig. 3.7(a), and also why the

synchronization probabilities in Fig. 3.3 show scaling with
√
N . This is the

standard finite-size behaviour if the cosine term is relevant in the renormal-

ization group sense: such terms, even if they are small at the lattice scale,

grow with distance, and control the physics in sufficiently large systems. In

small systems, however, the growth can be cut off by the system size. If

much larger chains were included in the small-α plots (Fig. 3.3), we would

expect to see the positions of the curves saturate at a finite J/σ, as predicted

by Eq. (3.22). As the leftmost data point on the 1D plot corresponds to

a synchronization crossover at a coupling strength determined by the local

Kuramoto model, it is not included in the fit to the line of slope 0.5.

Although our numerical results agree with Eq. (3.22) for α ≲ 1, they

disagree in the opposite regime, where we find large sample-to-sample fluc-

tuations and many states which are desynchronized even at large J . This

may be related to dynamical instabilities in that regime [113, 114]. In any

case, Eq. (3.16) holds only in the weak disorder regime where the localiza-
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tion length ζ is larger than the lattice spacing a = 1, and the localization

length at the transition is, from Eqs. (3.16) and (3.22), ζc ∼ 1/α. More gen-

erally, ζc > 1 is needed so that space can be treated as continuous, as in Eq.

(3.9), at the phase boundary. Importantly, the existence of a synchroniza-

tion transition in the continuum regime implies the phenomenon is universal,

and independent of the details of the lattice or disorder. We note that a syn-

chronization transition for one dimensional chains of oscillators with non-odd

nearest-neighbour coupling was previously identified by Östborn [75]. That

analysis, however, predicts a critical Jc which differs from Eq. (3.22), and

does not agree well with our numerical results.

3.6 Discussion of results

3.6.1 Behaviour of localization length in the thermo-

dynamic limit

Our expression for the ground-state localization length, Eq. (3.16), comes

from a standard argument [102] equating the kinetic energy and the depth of

a typical potential well, ασ/ζd/2. In principle one should use not the depth of

a typical well, but that of the deepest of all the wells of size ∼ ζ because the

ground state wavefunction will generally be localized in the deepest potential

well. In a system of size L, there are ∼ (L/ζ)d such wells. For a normal dis-

tribution of well depths, the typical well depth and that of the deepest well

differ by a factor
√
d ln (L/ζ), which seems to lead to the surprising conclu-

sion that the localization length vanishes in the thermodynamic limit. This

would mean, in our analysis, that Jc diverges in this limit, and there is ulti-

mately no synchronization. However, one should bear in mind that physical

systems are never infinite, although they may be very large. As was pointed

out in the careful analysis of Ref. [102], this factor grows extremely slowly

with N = Ld, and it is not large, even in a macroscopic system. For example,

for (L/ζ)d = NA ∼ 1023 we have
√
d ln (L/ζ) ∼ 7. Thus, it does not prevent

synchronization in the limit of a large physical system. Furthermore, this

formal divergence arises from the assumption of an unbounded distribution

of well depths, which does not occur in practice. If we consider the natural
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frequencies at each site ϵj to have a bounded distribution, then this would

imply a bound on a depth of the potential wells, and no divergence of Jc.

3.6.2 Time taken for synchronization

As outlined in Section 3.4, even when a collection of oscillators described by

Eq. (3.5) has a synchronized solution, there is a transient time before which

the onset of synchronization occurs. This corresponds to the timescale on

which multiple low-energy states still contribute to the sum in the solution

(3.13) to the imaginary-time Schrödinger equation for a particle in a random

potential (3.12). This effect is clearly seen in Figures 3.5 and 3.6, where

multiple frequencies are still observed for chains and lattices of oscillators up

until tσ ≈ 500, before synchronized solutions appear later.

The exact value of this transient time to synchronize depends on the

particular random distribution of natural frequencies in an individual sample.

For our numerical calculations of the probability of synchronization of a

chain of oscillators, the range of time over which to perform the simulations

was chosen by first solving for Psync over steadily increasing time periods,

until the results converged – i.e. it was clear that the transient time had

been exceeded for each realisation we were considering. We concluded that

tσ = 1.8×104 was sufficiently long for the parameter regimes and system sizes

under consideration. It was evident from observing the results of individual

realisations, however, that some samples synchronized on timescales that

were much smaller than this.

Considering the form of Eq. (3.13), one sees that the key parameter which

determines the time taken for a sample to synchronize is the difference be-

tween the energies of the two lowest-lying states. We can estimate how the

synchronization time scales with the parameters in our model by considering

the situation where enough time has passed such that only the two lowest-

lying states contribute to the sum in (3.13). The solution then has the form

Z(t) ≈ C0e
−E0t + C1e

−E1t, (3.23)

where all factors in the wavefunction that do not depend on time have been

absorbed into the terms C0 and C1. Dividing across by the first (ground
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state) term, we can see that the second term (j = 1 state) is negligible when

(E1 − E0)t≫ 1. (3.24)

We may then say that the synchronization time scales as

tsync ∼ (E1 − E0)
−1. (3.25)

It is possible to determine the scaling of this quantity using a similar proce-

dure to the one employed to calculate the localisation length of these states.

As before, we recognise that the depths of the potential wells will be normally

distributed. The difference in magnitude of the depths of the two lowest wells

is then known to be of order [102]

(E1 − E0) ∼ ασζ−d/2[d ln (L/ζ)]−1/2. (3.26)

For ease of calculations, we will once again neglect the logarithmic factor on

the basis that it grows very slowly with system size. We may then substitute

the expression (3.16) for the localization length in the above equation, and

invert it to obtain the following scaling relation for the synchronization time:

tsync ∼ Jd/(4−d)σ−4/(4−d)α−(4+d)/(4−d). (3.27)

Again, this expression is expected to be valid for dimensions d < 4. We must

caution, however, that this result is a rough estimate. It has not been tested

numerically, and some of our assumptions, such as completely neglecting

the trigonometric terms, may not be justified in all cases. For example,

our simplifications mean that the scaling in Eq. (3.27) does not have any

dependence on system size. Previous numerical simulations to determine the

probabilities of synchronization of chains of various lengths suggest, however,

that systems with more sites take longer to synchronize, so a more detailed

investigation into synchronization times may prove useful.

3.6.3 Comparison with continuum limit of Kuramoto

model

It is interesting to compare our analysis and results with those for the nearest-

neighbour Kuramoto model. One may expand the sine function in (1.26)
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3.6. Discussion of results

and take a continuum limit in the same way as we did to obtain Eq. (3.9).

However, the absence of an even component to the coupling means that the

nonlinear term is absent, and the continuum theory for Kuramoto oscillators

is
∂θ(x, t)

∂t
= ω(x) +K∇2θ. (3.28)

This equation describes a linear interface-growth model that is related to the

Edwards-Wilkinson equation [107,115] with static disorder, in the same way

as Eq. (3.9) is related to the KPZ equation. It was shown in [76] that the

phase-phase correlation functions for (3.28) diverge with the lattice size, for

any fixed separation, when d ≤ 2. This divergence is not consistent with the

expansion of the trigonometric functions, so the assumed synchronized state

does not occur.

Physical insight into the difference between this model and (3.9) can be

obtained by considering the behaviour of the phase gradients. The phase

gradients in a synchronized solution of the Kuramoto model can be obtained

using an Imry-Ma [112] argument, similar to that previously outlined for the

disordered polariton condensate in Ref. [55]. Integrating (3.28) over a region

of space of linear dimension L, we see that the first term on the right-hand

side is a random walk, which scales with the size of the region as Ld/2. It

is related, in the polariton case, to the net random current generated in

the region. This must balance the second term, which is related, by the

divergence theorem, to the current flowing through the boundary. We see

this second term is, at most, of order |∇θ|Ld−1. Comparing the two terms,

we have that the phase gradients at the boundary of the region scale at

least as fast as |∇θ| ∼ L(2−d)/2. This implies they diverge as
√
L in d = 1,

which is consistent with the results from [77] described in Section 1.6.3. This

scaling is also consistent with a logarithmic divergence in d = 2 [76]. This

highlights the key difference between our model and the Kuramoto model.

Synchronization is dependent on the phase gradients being bounded. The

inclusion of the nonlinear term resulting from the cosine coupling in (3.5)

has the result that the phase gradients in this model, given by (3.20), are

independent of the size of the region considered. Thus, in that case, there

can be solutions with |∇θ| ≲ 1 everywhere, and the synchronized state is

self-consistent.
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Chapter 3. Synchronization in lattices

We note that these self-consistency arguments do not rule out complete

synchronization for lattices of Kuramoto oscillators in three or more dimen-

sions. However, Strogatz and Mirollo have shown that this does not occur

in any finite dimension [77]. They also do not rule out the possibility of

partially synchronized states, where a macroscopic number of oscillators en-

train to a single frequency. Numerical studies suggest that this may occur

for Kuramoto oscillators, but only in three or more dimensions [107].

3.6.4 Results in the context of polariton condensates.

We have shown how driven-dissipative condensates, initially localized with in-

dependent energies in the minima of a lattice potential, may synchronize their

energies and behave as a single delocalized condensate with a well-defined en-

ergy. While experimental evidence had indicated that this crossover occurs

in small systems [50,57], we have demonstrated that there is a critical point

at which a common energy is attained that is independent of the scale of

the system. This point is identified in Eq. (3.22). In addition to frequency

synchronization, this phase transition marks the onset of phase order across

the condensate. We see from Figures 3.5 and 3.6 that the establishment of

a single frequency across the lattice corresponds to a smooth phase profile

with a single peak. This means that the phase correlation length is at least

of order the system size – one of the signatures of condensation. We can

thus say that we have shown that a driven-dissipative condensate in a static

disorder potential may exhibit both phase and frequency order.

It is worth noting that the continuum model for a random lattice po-

tential (3.9) may also be derived directly from the eGPE with a random

potential. If one considers a single state, rather than many localized states

in a lattice potential, Eq. (2.1) may be reparameterized by writing the order

parameter in terms of a density and a phase through the Madelung trans-

formation, Ψ(x, t) =
√
n(x, t) exp(−iθ(x, t)). The resulting equation may

then be separated into its real and imaginary parts, yielding equations for
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the time dependence of the phase and density respectively,

∂n

∂t
=

1

m

(
n∇2θ +∇θ∇n

)
+ 2(gn− Γn2), (3.29)

∂θ

∂t
=

1

2m

(
(∇θ)2 − 1√

n
∇2(

√
n)

)
+ Un+ V (x). (3.30)

If one then makes the assumption that the fluctuations in the density are

small, so that it varies slowly in space, and rapidly relaxes to its steady

state, we may neglect the spatial and temporal derivatives of n. Eq. (3.29)

then becomes

n(x, t) =
g

Γ
+

1

2mΓ
∇2θ. (3.31)

Substituting this expression for the density in (3.30), we obtain,

∂θ

∂t
=

1

2mα
∇2θ +

1

2m
(∇θ)2 + V (x) +

g

α
. (3.32)

If the potential V (x) seen by the condensate is a truly random δ-correlated

function like the continuum version of the lattice potential ϵ(x), then this

equation is equivalent to (3.9), where once again, the constant factor of g/α

may be absorbed into the energy scale. (We can see from the definition of J

on a lattice (2.34), that J/a ≈ 1/(2m) if we approximate the overlap integral

as ∼ a.) This manipulation of the CGLE is well-established, appearing in

textbooks [12,73], as well as contemporary papers investigating the coherence

properties of driven-dissipative condensates with spatio-temporal noise [65,

66,109].

The continuum limit of a synchronized lattice of driven-dissipative con-

densates therefore coincides with the description of a condensate in a random

potential, so long as in both cases, spatial variations in density are small. This

may be achieved through strong, uniform pumping of the system. In the case

when the continuum phase model is describing a lattice of condensates, we

have shown that there is a bound on the spatial variation of the phase in the

continuum model. As the currents in the lattice – represented by gradient

terms in (3.9) – are sine functions, they must be of order 1 or less (when

the unit of length is taken to be the lattice constant). When the gradients

exceed this, the lattice may no longer be described by this continuum model,

and the condensate splits into regions with different energies.
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Chapter 3. Synchronization in lattices

This localization of a condensate does not require a lattice, however.

It may occur in the minima of a random potential. Therefore, we ex-

pect a threshold disorder strength to exist above which the model (3.32)

breaks down. We may gain insight into how this happens by consider-

ing the fact that the phase of the condensate order parameter is a com-

pact variable. Solutions to (3.32) must be invariant under transformations

θ(x, t) → θ(x, t)+2πm(x, t), where m(x, t) is an integer-valued function. As

pointed out in the supplemental material to [113], this additional symmetry

leads to cases where either the spatial or temporal derivative of the phase

may not exist. This occurs when the phase varies rapidly in space and time,

which can cause phase slips of magnitude 2π to appear, which may be in-

terpreted as space-time vortices in one dimension. Such vortices are defined

analogously to quantized spatial vortices in superfluids [116]. They corre-

spond to the line integral of the gradient of the phase around a closed loop

in space-time taking the non-zero value of ±2π. The relevant physics may

then be captured by a discrete model, such as that which we derived from a

lattice potential (3.5).

While it is tempting to claim that our lattice model and its continuum

approximation describe how a spatially random potential causes a single

driven-dissipative condensate to fracture and become localized, a full analysis

of this, including the role played by vortices, would require us to consider

density fluctuations. To do so, the system should be modelled by the full

extended Gross-Pitaevskii equation (2.1). Despite this, the phase model does

demonstrate the existence of both spatially extended and localized regimes

for a condensate in a random potential, corresponding to the synchronized

and desynchronized solutions to the lattice equations.

3.7 Conclusions

We have shown that a model for coupled phase oscillators, which describes

a disordered lattice of polariton condensates, has a synchronized state that

survives in the limit of a macroscopic number of oscillators. At the criti-

cal coupling strength, given by Eq. (3.22), tunnelling between condensates

overcomes the localizing effects of the random potential, leading to a state
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with a single frequency, and a stable phase profile. We have thus identified a

nonequilibrium phase transition that may be observed in lattices of driven-

dissipative condensates. This transition, and the existence of a synchronized

state in a large lattice may be important for applications of polariton con-

densation in areas such as analogue simulation.

The synchronized state we find is not expected for Kuramoto oscillators

on a finite-dimensional lattice with nearest-neighbour couplings [76,77,107].

It arises from the non-odd coupling between the phases, which gives a relevant

nonlinear term in the continuum limit. That same form will appear for

any system of coupled oscillators in which the coupling function is neither

purely even nor odd. That will generally be the case, so that our work

implies that other coupled oscillator systems can support synchronized states,

notwithstanding disorder in their frequencies.
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Chapter 4

Superfluid response of a

disordered chain of

driven-dissipative condensates

4.1 Introduction

Having determined in the previous chapter that lattices of disordered driven-

dissipative condensates may exhibit phase and frequency order, and behave

as a single delocalized condensate, in this chapter we address the question of

whether such a delocalized condensate on a disordered lattice is a superfluid.

This is in part motivated by the parallels between the nonequilibrium syn-

chronization transition and the Bose glass-superfluid transition that occurs

in equilibrium bosonic systems [53]. Superfluidity is perhaps the most spec-

tacular phenomenon associated with Bose-Einstein condensation, although a

superfluid is not necessarily a BEC, and vice versa [117]. Polariton conden-

sates have been observed to exhibit superfluid behaviour, such as dissipation-

less flow [28, 118]. A perturbative analysis has shown, however, that spatial

disorder inhibits superfluidity in nonequilibrium condensates [55]. The su-

perfluid response of a disordered driven-dissipative condensate is found to

decay exponentially with system size, and thus vanishes in the thermody-

namic limit.

Our lattice model of the phase dynamics of driven-dissipative condensates

provides a non-perturbative framework to test this claim. We reproduce the

75



Chapter 4. Superfluidity in disordered chains

analysis of [55] by calculating the superfluid stiffness, or the energy response

of our system to the application of a phase twist across the boundaries of a

region. Numerical simulations of our model confirm the previously reported

findings. In the absence of disorder, we find a finite superfluid stiffness in

line with analytic predictions, however once random on-site energies are in-

troduced, this disappears. We discuss these results in the context of the

connection between the phase dynamics of a driven-dissipative condensate

and the localized eigenstates of the Hamiltonian of a particle in a random

potential that was outlined in the previous chapter. This description pro-

vides a framework to understand why a superfluid response is not present for

a condensate in a random potential.

4.2 Definition of superfluid stiffness

To investigate if a driven-dissipative condensate is a superfluid, we measure

its superfluid stiffness. This is defined as the free energy response to a slow

change in the phase, θ, of the condensate order parameter. This may be

calculated by imposing a phase difference of φ between two ends of a region

separated by distance L. The phase must vary somehow along this region,

and it will have an average gradient given by

⟨∇θ⟩ = φ

L
. (4.1)

Using this, one may calculate the free energy cost of this phase twist. It is

given by

∆F = fs

(φ
L

)2
V, (4.2)

where the coefficient fs is known as the superfluid stiffness, or helicity mod-

ulus of the system [119], and V is its volume.

This quantity is related to superfluidity because the gradient of the con-

densate order parameter is proportional to the current velocity in the con-

densate. One may see this by considering the extended Gross-Pitaevskii

equation:

iℏ
∂Ψ

∂t
=

(
− ℏ2

2m
∇2 + V (r) + U |Ψ|2

)
Ψ+ i

(
g − Γ|Ψ|2

)
Ψ. (4.3)
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4.2. Definition of superfluid stiffness

As the density of the condensate is given by

n(r, t) = |Ψ(r, t)|2 = Ψ∗Ψ, (4.4)

we may obtain the dynamics for the density by multiplying the eGPE on the

left by Ψ∗ and subtracting the complex conjugate. The resulting expression

then has the form of a continuity equation,

∂n

∂t
+∇ · j = 2(gn− Γn2), (4.5)

where the terms on the right-hand side are sources and sinks resulting from

pumping and decay of the condensate. These cancel in the steady state when

the density is n0 = g/Γ. The quantity

j(r, t) = − iℏ
2m

(Ψ∗∇Ψ−Ψ∇Ψ∗) (4.6)

is the standard expression for a quantum current density [18]. This may be

simplified by substituting the explicit form of the wavefunction, Ψ(r, t) =√
n(r, t) exp(−iθ). This yields

j = −nℏ
m

∇θ, (4.7)

and so the condensate velocity is

v = − ℏ
m
∇θ. (4.8)

This quantity is irrotational – it has zero curl – which is characteristic of a

superfluid.

Imposing a steady phase twist of φ across a superfluid thus has the effect

of adding an additional boost to its velocity of vs = (ℏ/m)∇φ. This raises

the kinetic energy of the system by

∆E =
1

2
ρsv

2
sV, (4.9)

where V is the volume of the gas, and ρs is the superfluid density. Comparing

Eqs. (4.2) and (4.9) gives the relation

fs =
ρs
2m

(4.10)
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Chapter 4. Superfluidity in disordered chains

between helicity modulus and superfluid density. Thus, ‘twisting’ the phase

of the order parameter of a system by imposing a phase difference across the

boundaries is equivalent to driving a supercurrent through the system. If

the system is a superfluid, the supercurrent will increase its free energy, as

in (4.2). We can therefore determine if a system has a superfluid response

by using Eq. (4.2) to calculate its stiffness.

4.3 Numerical results for a chain of conden-

sates

4.3.1 Calculating the superfluid stiffness

As outlined in Section 3.6.4, the phase dynamics of a driven-dissipative con-

densate extended over a random potential are captured by the synchronized

regime of the discrete oscillator model which we derived in the previous chap-

ter,
∂θj
∂t

= ϵj + J ′
∑
<k>

[
1

α
sin(θk − θj)− cos(θk − θj)

]
, (4.11)

where J ′ = J/σ, and we have set our energy scale such that the ϵj are

distributed with zero mean and unit variance. We are also once again working

in units where ℏ = 1. We may therefore determine whether superfluidity is

possible in the presence of a random potential in one dimension by calculating

the superfluid stiffness of a chain of condensates described by (4.11). We

follow the method of [55] by considering a chain of length L + 1 sites with

continuous boundary conditions, and applying a phase twist of θL − θ0 = φ

between the boundaries. We have given the first site in the chain an index

of 0 for clarity.

To measure the energy cost of a phase twist, we compare the frequency

of the condensates that result from solving for the right-hand side of (4.11)

both with and without twisted boundary conditions. The superfluid stiffness

is then [55]

fs = lim
φ→0

L2

φ2
[ω(φ)− ω(0)] , (4.12)

where ω(φ) is the frequency obtained by solving (4.11) with a phase twist of
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φ. As we are considering a synchronized chain of condensates, this frequency

is the same at each site.

We solve for these frequencies numerically by first evolving (4.11) with

no twist over a sufficient time, T , for a synchronized steady state to be

reached. The phases and frequencies in this steady state are then taken

as the initial conditions for simulations of the twisted model. As we are

investigating superfluidity for a synchronized chain, all numerical simulations

are performed well inside the synchronized regime, where J ′ ≫ 1. A phase

twist is then applied to the boundary terms. The coupling functions on the

boundaries then become

1

α
[sin(θ1 − θ0) + sin(θL − θ0 + φ)]

− [cos(θ1 − θ0) + cos(θL − θ0 + φ)]
(4.13)

and

1

α
[sin(θ0 − θL − φ) + sin(θL−1 − θL)]

− [cos(θ0 − θL − φ) + cos(θL−1 − θL)] .
(4.14)

The coupled equations are once again solved with the synchronized initial

conditions and modified boundary terms, and the steady-state frequency of

the oscillators in the twisted case is compared with the untwisted frequency

to obtain the superfluid stiffness. We plot the results for the superfluid

stiffness obtained numerically for both a chain with uniform on-site energies

(ϵj = 0 ∀j), and one with normally-distributed random energies in Fig. 4.1.

As expected, a ‘clean’ chain with no disorder in the on-site energies dis-

plays a non-zero superfluid stiffness. We can see this by assuming that the

phase twist takes the form of a local gauge transformation,

θ̃j = θj + φ(j/L). (4.15)

Applying this transformation adds a constant current to the arguments of the

coupling functions: θ̃j+1 − θ̃j = θj+1 − θj + φ/L. Considering the boundary

terms, one sees that writing (4.11) in terms of the transformed variables θ̃j

with periodic boundary conditions is equivalent to imposing twisted bound-

ary conditions on the model in terms of the original variables θj.
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Figure 4.1: The frequency difference that results from applying a phase

twist of φ across a chain of condensates with uniform (red circles) and random

(green pentagons) on-site energies. The data is generated by solving (4.11)

for chains of length 400, 600 and 800 sites, and twists of φ = π/8, π/4, 3π/8,

π/2. Frequencies were compared after a time tσ = 15000, when a steady state

had been reached, and coupling J ′ = 10 was used throughout. The expected

behaviour for stiffness in the clean case, as discussed in the text, is plotted as

a blue line.

The steady state of the clean chain of condensates exhibits phase as well

as frequency synchronization, so in this case, (4.11) with all ϵj = 0 and

untwisted boundary conditions reads

∂θj
∂t

= −2J ′. (4.16)

Applying the transformation (4.15), this becomes

∂θj
∂t

= −2J ′ cos
(φ
L

)
, (4.17)

which, in the limit of small twisting angle and large chains may be expanded

as
∂θj
∂t

= −2J ′ + J ′
(φ
L

)2
. (4.18)
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Subtracting (4.16) from (4.18) gives a superfluid stiffness of

fs = J ′, (4.19)

which is confirmed numerically by plotting ∆ω = J ′(φ/L)2 alongside the

data in Fig. 4.1. This finite value for the stiffness is as expected for the

eGPE in free space [120]. Once disordered energies are added to the system,

the superfluid stiffness collapses to zero, however. This is in agreement with

what has been previously observed in [55].

4.3.2 Analysis of phase profiles with twisted boundary

conditions

The contrasting results for the stiffness in clean and disordered chains may

be better understood by comparing the phase profiles that result from solv-

ing (4.11) both with and without a phase twist across the boundaries. These

profiles are plotted in Figure 4.2. A phase twist across the boundaries at-

tempts to drive a current through the condensate. This occurs in the clean

case, where we see a constant phase gradient appear in the phase profile when

a twist is applied. This current raises the energy of the chain because of the

stiffness, fs = J ′, as seen in Fig. 4.1.

The disordered chain of condensates is resistant to the establishment of

such a current, however. Unlike in the case of the clean chain, without

applying a twist to the boundaries, the phase profile of the synchronized

chain already has a current flowing in it. The shape of this profile was

predicted by the connection between the phase oscillator model (4.11) and

the imaginary-time Schrödinger equation for a particle in a random potential

in Section 3.4. As described by Eq. (3.17), in the continuum limit, the phase

profile is proportional to the natural logarithm of the exponentially-localized

ground state wavefunction. The random potential ‘seen’ by the particle is

essentially the continuum limit of the on-site energies, but inverted, and

scaled by α. The point around which the wavefuction is localized therefore

corresponds to the largest ‘hill’ that appears in the energy landscape (or

the deepest well, when flipped upside-down). This results in a peak-like

structure to the phase profile: the phase decreases linearly in either direction
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Figure 4.2: Phase profiles of clean (a) and disordered (b) chains of oscilla-

tors with twisted and untwisted boundary conditions. Profiles are obtained

by evolving (4.11) for tσ = 15000 until a steady state is reached, with the

resulting phases and frequencies for the untwisted simulations then used as

initial conditions for the simulations with phase twists.

away from the position of the ground state. As the current is proportional to

the gradient of the phase, a synchronized chain of condensates has a current

of constant magnitude. This current always flows away from the position of

the ground state, so this localization centre acts as a current source.

Imposing periodic boundary conditions on the chain is equivalent to con-

sidering a periodically repeating energy landscape, and therefore multiple

identical ground state wavefunctions, separated by distance L. The phase on

each site is influenced by its nearest ground state. Halfway between neigh-

bouring localization centres, we must then have a current sink where the

phase gradients change sign. An example of this may be seen near the 180th

site in Fig. 4.2(b).

Unlike in the clean case, the application of a phase twist between the

boundaries of the disordered chain does not produce a homogeneous response

of the form (4.15). Instead, only the phases of the sites between a boundary

and the nearest current sink (bottom of a valley in the phase profile) are

shifted. In Fig. 4.2(b), due to the position of the ground state, and the

direction of the phase twist, the phases of the leftmost sites are all shifted

above their values in the untwisted case by a magnitude of φ. If the random
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energies of the sites produced a phase peak in the left half of the chain, the

current sink would appear on the right of the chain, and the phases of sites

to the right of this would instead be reduced by this amount. The current in

the chain then remains unchanged by a phase twist except in the immediate

vicinity of the sink that appears L/2 sites from the ground state, where there

is a localized response corresponding to a slight shift in the position of the

sink. This is in agreement with results from [55], where the current response

to a phase twist is found to be localized within a narrow domain wall.

We note that the results in [55] were derived for a 2D condensate, while

our simulations were carried out on a one-dimensional chain. Our analysis in

the previous chapter shows that the phase profiles of delocalized condensates

in 2D have the same general shape as in 1D, with currents flowing away

from a ground state localization centre. This can be seen in Fig. 3.6. The

discussion above then straightforwardly generalizes to two dimensions.

4.4 Conclusions

In this chapter, we have verified the results of [55] in one dimension by nu-

merically calculating the superfluid stiffness of a chain of driven-dissipative

condensates. Once disorder is introduced into the chain through random

on-site energies, the stiffness vanishes. This implies that a nonequilibrium

condensate in a disordered potential is not a superfluid. Although we did

not systematically consider arbitrarily small disorder strengths in our sim-

ulations, no energy response to a phase twist was observed over a range of

parameter values. In the context of the results of [55], we do not expect such

systems with any magnitude of disorder to exhibit superfluid stiffness.

The phase profile of a synchronized chain of condensates which we de-

rived in the previous chapter is useful for furthering our understanding of

the reaction of a non-equilibrium condensate to phase twists. An extended

condensate in a random potential – or equivalently, a synchronized lattice of

condensates – has a peak in the phase profile that corresponds to the position

of the ground state wavefunction of particle which is localized in a random

potential. This peak acts as a current source, and applying a phase twist

across the boundaries of a region of the lattice does not change the magni-
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tude of this current, which will be constant throughout any sample. Instead,

the current response is localized in a narrow domain wall corresponding to a

current sink.

The absence of superfluidity in driven-dissipative condensates in the pres-

ence of disorder is in contrast with the behaviour of equilibrium condensates.

There are clear similarities between a desynchronized disordered lattice of

condensates containing several different regions of common frequencies and

the equilibrium Bose glass phase. As a synchronized chain of condensates

with random on-site energies is not a superfluid, however, the phase transition

which we identified in the previous chapter is not merely a non-equilibrium

analogue of the Bose glass-superfluid transition.
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Chapter 5

Phase correlations and the

impact of noise on condensates

in one dimension

5.1 Introduction

In this chapter, we examine the first-order field correlation functions of lat-

tices of disordered driven-dissipative condensates, or equivalently, conden-

sates in random potentials. We show that in addition to being entrained to

a common frequency, synchronized lattices exhibit phase coherence – that is,

the fields at each site are perfectly correlated.

We then examine the impact of time-dependent noise on both phase and

frequency order in one-dimensional systems. First, we consider ‘clean’ lat-

tices with no static disorder. We review the connection between the complex

Ginzburg-Landau equation describing a clean condensate in the presence of

noise and the Kardar-Parisi-Zhang (KPZ) equation of growing interfaces.

As a result of this, phase correlations in one-dimensional condensates decay

exponentially, and therefore phase order is not present in a chain of conden-

sates which are subject to time-dependent disorder. Such chains nevertheless

exhibit frequency synchronization.

We also examine the behaviour of chains of condensates subject to only

time-dependent disorder, whose phase dynamics may not be mapped to a

continuum KPZ equation. In a way, this is the noisy analogue of the desyn-
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Chapter 5. Phase correlations and the impact of noise

chronized regime for the lattices discussed in Chapter 3; however, the fre-

quencies of such oscillators remain synchronized in this case. This regime

is characterized by the presence of space-time vortices, which occur at large

noise strengths. These are equivalent to phase slips of 2π occurring between

neighbouring sites.

In the final section of the chapter, we reintroduce a static disorder pro-

file, and consider disordered chains that are also subject to random, time-

dependent noise. Our numerical simulations show that while the phase pro-

files of such systems still retain the characteristic peaked shape of the syn-

chronized chain with static disorder, the presence of noise causes exponential

decay of the visibility of the phase correlation functions. This behaviour

is characteristic of the kinetically roughened phase profiles of the KPZ and

Edwards-Wilkinson universality classes. We note also that noise may cause

desynchronization to occur at lower static disorder strengths than predicted

for the clean model in Chapter 3. Finally, we propose a phase diagram

characterizing the phase- and frequency-ordered parameter regimes of one-

dimensional lattices of coupled driven-dissipative condensates.

5.2 Phase correlations in disordered chains

It is evident from the phase profile of a synchronized chain of oscillators

described by the model (3.5) outlined in Chapter 3 (see Figures 3.5, 3.6 or

4.2(b) for example), that in addition to frequency synchronization, there is

phase order across the system. This is not phase synchronization: as we

found in the continuum limit, any amount of disorder in the on-site energies

gives rise to a constant phase gradient of |∇θ| = [αd(σ/J)2]1/(4−d). This

quantity must be less than one, so for a synchronized lattice with random

on-site energies, the phase at each site is offset from its neighbours by a small,

constant amount.

We may quantify this phase order by considering a first-order spatial

correlation function of the condensate wavefunction over the length of the

chain. The standard general form of a correlation function is

C(x,x′; t, t′) =
⟨Ψ∗(x, t)Ψ(x′, t′)⟩√

⟨|Ψ(x, t)|2⟩⟨|Ψ(x′, t′)|2⟩
(5.1)
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where Ψ(x, t) is the condensate order parameter, and the angular brackets

represent an average over disorder.

We will only consider one-dimensional chains of condensate for our anal-

ysis in this chapter. The amplitude of the condensate wavefunction on each

site of the chain is given by ψj(t) =
√
nj(t) exp(−iθj(t)). In the regime where

our phase-only model is valid, the density nj is uniform across the chain, so

the normalization is trivial, and the correlation function simplifies to

C(x, x′; t, t′) = ⟨exp(−i[θj(t)− θl(t
′)])⟩ , (5.2)

where x′ − x = a(l − j), with a the lattice constant.

As we are interested in spatial correlations, we take an equal-time cor-

relation function, C(x,x′). It is not necessary for us to consider an average

over static disorder realizations because we are interested in the features of

individual samples, as may be accessed experimentally. Furthermore, the

shape of the phase profile in a synchronized steady state is always the same,

regardless of the random distribution of energies. All that differs from one

realization to another is the position of the peak. In experiments, such corre-

lation functions are typically determined by sending the condensate emission

to a Mach-Zender interferometer, which interferes the emission with an im-

age of itself that is reflected through an origin point x = 0 at the centre of

the sample [57]. This gives the correlator C(x,−x). One may also take the

origin to be the first site on the left of the chain, and interfere the emission

from every other site with this one to obtain the function C(x, 0).

We plot both of these correlation functions for a single realization of

random energies across a chain of 800 sites in Figure 5.1. The sinusoidal

shape of the real part of the correlation functions corresponds to bright and

dark fringes in an interference pattern. This is the expected emission from a

smooth, sloped phase profile. Such fringes are typically observed experimen-

tally when two coherent, spatially separated sources of light are interfered

with one another. These fringes appear across the length of the chain, indi-

cating coherence across the entire sample. This pattern is also seen experi-

mentally for a 2D lattice of polariton condensates, in the regime where the

frequencies of the sites are synchronized [57].

The data points in Fig. 5.1(b) and (c) are joined with lines for ease of
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Figure 5.1: (a) Phase profile of a synchronized chain of 800 driven-dissipative

condensates, obtained by solving Eq. (3.5) with J/σ = 10 and α = 1. The

real parts of the correlation functions C(x,−x) (b) and C(x, 0) (c) of the

amplitudes on the chain corresponding to this phase profile are also shown.

For the correlation function in (b), the origin was chosen to be the centre of

the chain, n = 400, while for (c) it was chosen to be the leftmost site, n = 1.

visibility. We note that the density of fringes will be greater for larger phase

gradients. The imaginary part of these correlation functions (not shown) is

also sinusoidal in shape, due to the complex exponential form of Eq. (5.2).

A relatively large coupling strength, J/σ, was chosen for our simulation so

that the fringes may be easily distinguished from one another.

In Fig. 5.1(b), the fringe pattern is interrupted in the region x/a = (120−
250). This is caused by the peaks in the phase profile, where the gradient

switches sign. This is consistent with the form of the correlation function

(5.2). It behaves sinusoidally when the argument – given by the difference
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5.3. Condensates in the presence of noise

in phases at two sites – increases linearly. In the locality of a peak, this

argument is no longer linear, and the correlation function deviates from its

sinusoidal behaviour. This has less of an effect in the correlation function

C(x, 0), shown in Fig. 5.1(c), however interruptions to the regular pattern

are also visible at the positions of the peaks at sites ∼ 280 and ∼ 680. This

effect would be less evident in larger samples, where there is still only a single

peak. The visibility of the fringes may be obtained from the amplitude of

the correlation function, or |C|. As there is no time-dependent disorder to

average over, C is simply a complex exponential function, so the visibility is

constant and equal to one across the chain.

We have labelled the x-axis of the plots of correlation functions in Fig. 5.1

with x/a. In the case of Fig. 5.1(c) (and other plots of C(x, 0) in this chapter),

this is the same as the ‘Site’ label which we employ for phase profiles (such

as Fig. 5.1(a)), as the origin of this coordinate system is chosen to be the

leftmost site. However, for the correlation function C(x,−x) in Fig. 5.1(b),

we choose the origin to be the centre of the chain, n = 400, so that half of

the sites in the chain have a negative value of x. For consistency, we will

follow the convention of labelling the x-axes of phase plots with ‘Site’, and

correlation functions with x/a for the remainder of the chapter.

5.3 Condensates in the presence of noise

So far we have only considered lattices of condensates with spatial disorder

in their on-site energies. However, as mentioned in the introduction, there

is inevitably some spatio-temporal noise associated with the gain and loss

in a driven-dissipative system [63]. This may be modelled by considering a

stochastic extended Gross-Pitaevskii equation (seGPE):

i
∂Ψ

∂t
=

[
− 1

2m
∇2 + V (x) + U |Ψ|2

]
Ψ+ i

(
g − Γ|Ψ|2

)
Ψ+ ξ(x, t). (5.3)

Here, the new stochastic term, ξ(x, t) is a Gaussian white noise term such

that

⟨ξ∗(x, t)ξ(x′, t′)⟩ = 2D̃δ(x− x′)δ(t− t′), (5.4)

where, as mentioned in Section 1.5.2, the strength of the fluctuations, D̃ is

set by the the parameters g and κ. In models that explicitly consider the
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reservoir dynamics, the noise strength is often taken to be approximately

equal to the single particle loss rate [65, 109]. In terms of the parameters of

our model, we consider D̃ ≈ g.

The impact of noise on a clean condensate, where V (x) = 0 in (5.3), has

been the subject of much research in recent years [109,121]. In particular, it

has been shown that when fluctuations in the density are small, the conden-

sate phase obeys a Kardar-Parisi-Zhang (KPZ) equation [65,66,110,113].

This may be seen by following a similar procedure to that outlined in

Section 3.6.4, keeping track of the additional noise term, which we assume

to have both real and imaginary components. This yields the KPZ equation,

∂θ(x, t)

∂t
= ν∇2θ +

λ

2
(∇θ)2 + η(x, t), (5.5)

where ν = 1/(2mα), λ = 1/m, and η(x, t) is the rescaled Gaussian noise,

with strength

D =
Γ

2g

(
1 +

1

α2

)
D̃. (5.6)

A more detailed derivation of the KPZ equation from the complex Ginzburg-

Laundau equation may be found in [65].

The KPZ equation has a very similar form to the continuum model of the

phase dynamics, (3.9), which we derived in Chapter 3. The only difference is

that the true KPZ equation, which we consider here, has a time-dependent

noise term in place of the static disorder from Eq. (3.9). This leads to gen-

erally different universal behaviour, which we will outline here.

5.3.1 KPZ physics

While the KPZ equation was initially formulated to describe the dynamics

of growing interfaces [100], it has since been shown that a wide range of

nonequilibrium processes involving disorder, from burning paper to polymer

growth, lie in the KPZ universality class [105,122,123]. This class is charac-

terized by the scaling behaviour of the interface width, or roughness function,

defined as

W (L, t) =

〈
1

L

∫ (
θ(x, t)− θ̄(t)

)2
dx

〉1/2

, (5.7)

where L is linear size of the sample, θ̄ = (1/L)
∫
θ(x, t)dx is the spatial

average of the phase (or interface height), and the angular brackets, as usual,
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5.3. Condensates in the presence of noise

represent an ensemble average over disorder realizations. The KPZ width has

been shown to obey a Family-Vicsek scaling relation [100,124],

W (L, t) ∼ Lχf(t/Lz), (5.8)

where the scaling function is defined as

f(u) =

uβ, u < 1

1, u > 1.
(5.9)

In one dimension, the exponents are related by z = χ/β, so two distinct

regimes exist: a transient or dynamic regime in which the roughness increases

with time as W ∼ tβ, and a stationary regime, when the roughness has

saturated to a value of W ∼ Lχ. The crossover from the former regime to

the latter then occurs when t = Lz [122].

We will focus on 1D systems, where the values of the scaling exponents

are known exactly to be χ = 1/2, β = 1/3, and z = 3/2 [100]. In fact, one

dimension is a special case, where the static scaling behaviour is identical to

that of the Edwards-Wilkinson model, which is the linear equation obtained

by setting λ = 0 in (5.5).

This enables the straightforward calculation of the static correlation func-

tion, C(x, x′). The linear nature of the Edwards-Wilkinson equation means

that it may be solved through Fourier decomposition. As the noise is Gaus-

sian, its Fourier components are independent random processes, which are

also δ-correlated in time. The Fourier modes of the phase, θk, are then also

independent processes, obeying

∂θk
∂t

= −νk2θk + ηk(t). (5.10)

From this, we can show that these modes have variance

⟨|θk|2⟩ =
D

νk2
(5.11)

in the long-time, stationary limit. As the Fourier modes of the phase are

related to the random variables ηk(t) through a linear transformation, the

stationary distribution of phase modes is also Gaussian [105]. As a result of

this, the equal-time field correlation function may be written as

C(x, 0) ≈ exp

(
−1

2
⟨[θ(x, t)− θ(0, t)]2⟩

)
. (5.12)
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The field correlator in the exponent may then be determined from the Fourier

modes [122], yielding the result

C(x, 0) ≈ exp

(
−D

2ν
x

)
. (5.13)

This exponential decay of correlations mean that long-range phase order

is absent in 1D driven-dissipative condensates. Of course, in the case of

weak noise (small D), the phases may appear correlated over the extent of

a finite system. This statement may be formalized by defining the phase

correlation length, L = 2ν/D as the distance over which the correlation

function decreases by exp(−1).

The above result is expected from the scaling properties of the 1D KPZ

interface width (5.8). As the static and dynamic scaling exponents are pos-

itive, the phase profile becomes rougher as both L → ∞ and t → ∞. In

general, a smooth profile, such as the solution to (3.5) or (3.9) (and as shown

in Figure 5.1(a)) exhibits phase order, while a rough one (such as those in

Figure 5.2) does not. When L is greater than the system size, the phase

profile may look smooth; however, larger random features will appear if one

considers larger systems.

5.3.2 Noisy coupled oscillators

As in the case of static disorder, driven-dissipative condensates in the pres-

ence of noise are closely related to coupled noisy oscillators. As discussed

in Section 3.6.4, Eq. (5.5) is distinct from the traditional KPZ equation de-

scribing the dynamics of the height of an interface, because the phase θ is

a compact variable. This implies the possibility of the existence of phase

defects, specifically space-time vortices [113]. Once again, to fully capture

this aspect of the physics, it is instructive to consider a discrete model. Of

course, discretizing (5.5) yields the phase oscillator model (3.5) which we

derived from the eGPE in Chapter 3, with the time-independent random

energies ϵj replaced by a discrete version of η(x, t). We will write this using

the parameters from the eGPE on a lattice, as

∂θj
∂t

= J
∑
<k>

[
1

α
sin(θk − θj)− cos(θk − θj)

]
+ ηj(t). (5.14)
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Figure 5.2: Phase profiles obtained by solving (5.14) for a chain of length

N = 800, with D/J = 0.08, and α = 1. Phases are shown at t1 = 100/J ,

t2 = 4000/J and t3 = 10000/J .

Here, ηj is a random on-site energy that also fluctuates randomly in time as

⟨ηj(t)ηl(t′)⟩ = 2Dδ(t− t′)δjl, (5.15)

and we have absorbed all constant terms into the energy scale such that this

noise has zero mean. For our numerical simulations of noisy systems, we

reduce the number of parameters in the system by transforming to dimen-

sionless units, where t′ = Jt and D′ = D/J .

In Figures 5.2 and 5.3, we plot the phases, θj, and field correlators,

C(x, 0) = ⟨ψjψ1⟩ = ⟨Re[exp(−i(θj − θ1))]⟩ obtained from solving (5.14) over

a chain of 800 sites. The jagged, rough nature of the phase profile is immedi-

ately evident, and as we can see from the profiles at different times, its shape

is constantly changing. These features are characteristic of a dynamically

roughened surface in one dimension. The phase width in the first plot in

Fig. 5.2 appears smaller than in the subsequent two, and it appears to have

saturated by t2 = 4000/J .

Correspondingly, exponential decay is clearly visible in the plot of the

field correlation function in Fig. 5.3. Unlike the static-disorder field corre-

lators we plotted in Section 5.2, these noisy correlation functions do require
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Figure 5.3: (a) Equal-time field correlation function of the system whose

phases are plotted in Fig. 5.2. An ensemble average is calculated by taking the

mean of 500 correlators calculated at equally-spaced times between t = 6000/J

and t = 16000/J . (b) The same data plotted on a log scale over the first 80

lattice sites. The data is seen to exhibit the exponential decay predicted by

Eq. (5.13). Only the real part of the correlation function is plotted because as

predicted by Eq. (5.12), the imaginary part is negligibly small in comparison.

averaging over disorder. This is achieved by evolving (5.14) from a flat initial

condition for a long time (up to t = 16000/J), and calculating the equal-time

correlation functions at 500 different times, separated by 20/J , once the sta-

tionary regime is reached. As the disorder realizations given by ηj(t) are

independent at different times, if sufficient time is allowed to elapse between

equal-time correlators for the phase profile to evolve significantly, taking the

average of these correlation functions is equivalent to an ensemble average.

C(x, 0) is seen to decay exponentially before fluctuating around zero for large

values of x/a. These fluctuations represent uncorrelated behaviour, and we

suggest that their magnitude could be reduced by taking a disorder average

over a greater number of stochastic trajectories.

The decay of spatial correlations is confirmed to be exponential, with

correlation length L = 2J/(Dα) = 25 sites, by plotting the data alongside

exp(−x/25) in Fig. 5.3(b). These are in good agreement with one another

over a short range. We see from Fig. 5.3(a) that C(x, 0) approaches a value

of one exponentially again as x approaches the system size. This is due to

the periodic boundary conditions employed in our numerical simulations.
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Of course, as well as modelling the phase dynamics of a driven-dissipative

condensate, Eq. (5.14) is also a model of a chain of noisy coupled oscillators.

It is clear from the discussion above that the phases of these oscillators do

not exhibit any long-range order, but what about their frequencies? Perhaps

surprisingly, given the appearance of the phase profiles in Fig. 5.2, such chains

of oscillators are synchronized. This may be seen by considering the average

frequency of each oscillator:

Ωj(t) =
θj(t)− θj(0)

t
. (5.16)

We may rearrange this to write the phase at each site as a function of time

in terms of its average frequency up to that time as

θj(t) = tΩj(t) + θj(0). (5.17)

Now, the spread of the average frequencies as a function of time may be

defined analogously to that of the phases (which is given by a discretized

version of Eq. (5.7)) as

WΩ(t) =

〈
1

N

N∑
j

(
Ωj(t)− Ω̄(t)

)2〉1/2

, (5.18)

for a chain of N oscillators [114]. The spatial mean of the average frequencies

is Ω̄(t) = (1/N)
∑N

j Ωj(t). If, for simplicity, we consider a flat phase profile

for the initial conditions, the phase at each site may be written as θj(t) =

tΩj(t). It is then clear that the spread of the phases may be written as

Wθ(t) = tWΩ(t). As (5.14) is a discretized KPZ equation,Wθ(t) has the same

scaling behaviour as its continuous counterpart, W (L, t), so Wθ(t) ∼ t1/3,

before saturating at Wθ ∼
√
Na. The frequency width then behaves as

WΩ(t) ∼ t−1/3, so even in the case of an infinitely large chain, all frequencies

will tend to a common value as t → ∞. We note that the above holds true

regardless of initial conditions.

This result should not be totally unexpected. After all, there is no disor-

der in the natural frequencies of the oscillators. While the dynamics of the

phases at each individual site are erratic, they all still evolve at the same

average rate. (This rate is zero as Eq. (5.14) is written, but we can add

any constant term to this equation and see the same general behaviour.) In
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fact, even if all forms of coupling are removed, the oscillators will still be

synchronized. In this case, their dynamics are described by

∂θj
∂t

= ω̄ + ηj(t), (5.19)

where ω̄ is a common natural frequency, which we are free to set to zero. Eq.

5.19 simply describes a random walk of a phase θj around a mean position

of ω̄t. The variance of a random walk process in 1D with δ-correlated noise

of strength D is given by

⟨(θj − ω̄t)2⟩ = 2Dt. (5.20)

In this case, we may say that each phase diffuses around its expected value,

andD may be referred to as a diffusion constant [12]. The standard deviation

of each phase from its expected value is then
√
2Dt, and as each oscillator

has the same natural frequency, this is also the value of the phase width,

Wθ. Therefore, even in the absence of any coupling, the frequency width for

noisy oscillators still obeys WΩ(t) ∼ t−1/2, and their average frequencies are

synchronized.

5.3.3 Physics beyond the KPZ regime

Just as in the lattice with static disorder, the continuum approximation of

Eq. (5.14) is not always valid. As discussed in Chapter 3, the limited range

of the trigonometric functions implies that in the continuum, one has the

condition |∇θ| ≲ 1. Thus, the discrete lattice model given by (5.14) has

behaviour that is not described by the KPZ equation.

Specifically, this behaviour is seen when the noise is strong enough to

‘kick’ the phase of one of the oscillators enough such that it rapidly slips

by an amount 2π relative to its neighbours. Such a phase slip appears as a

vertical gap of ∼ 2π in a phase profile plot such as Figure 5.2. As mentioned

in Chapter 3, these phase slips may be interpreted as space-time vortices in

a continuum theory [113]. If one treats time as a second spatial dimension,

and calculates the line integral of the gradient of the phase around a closed

loop containing a single such event, the result will be non-zero, specifically

±2π. These features are a direct result of the compactness of the phase.
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Unlike in the case of the static disorder, phase slips do not bring about

desynchronization. The temporally random nature of the noise means that

such phase slips are isolated events. Furthermore, even though they will

occur more frequently at larger noise strengths, without static disorder in

the natural frequencies of the oscillators, slips of +2π and −2π between any

given pair of oscillators are equally likely to occur. This has the result that

the phases do not ‘run away’ from one another as they do in the case of

desynchronized lattices with static disorder. An equivalent statement is that

although the space-time vortex density in the system increases with noise

strength, as long as no static disorder is present, there will be an equal

number of vortices and antivortices.

For unbounded noise, the probability of a phase slip occurring is never

zero [12], however at low noise strengths, they will occur so infrequently that

very large systems and/or very long times are required to see them. In this

case, the KPZ equation is still a reasonable continuum approximation, and

the phase width has the scaling given by (5.8) with KPZ exponents. However,

as D is increased, the vortex density increases, and a gradual transition from

KPZ-like t1/3 scaling to diffusive t1/2 scaling of the phase width is observed

[113,114]. This is consistent with the noise overcoming the coupling so that

each phase behaves like that of a single noisy oscillator. Despite the existence

of these two distinct regimes, frequency synchronization is present in both,

as per the discussion above.

In [113] and [114], a third regime is also reported, where turbulent phase

dynamics are observed. This corresponds to the sudden increase in frequen-

cies at individual sites, or a rapid increase in space-time vortex density, and

is observed to occur at large nonlinearities. This is similar to our observa-

tions for lattices with static disorder, where expected synchronization was

not observed for values of α > 1. Although we have restricted our investiga-

tions to the regime where α ≤ 1, it would appear from the results reported

in [114] that this turbulent behaviour occurs when the KPZ correlation length

– L = 2J/(αD) in terms of the lattice parameters – is less than one lattice

site. If this turbulence is merely a transient effect, as suggested [113, 114],

it will not destroy synchronization in the long-time limit, however the issue

warrants further scrutiny beyond the scope of this thesis.
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5.4 Impact of both spatial disorder and noise

on driven-dissipative condensates

We are now ready to combine the models considered in the previous two sec-

tions, and examine the behaviour of the extended Gross-Pitaevskii equation

with both static disorder and stochastic noise. We will do this by numeri-

cally solving the discrete phase-only approximation to the eGPE on a one-

dimensional chain. This is a set of coupled differential equations for noisy,

disordered oscillators:

∂θj
∂t

= J
∑
<k>

[
1

α
sin(θk − θj)− cos(θk − θj)

]
+ ϵj + ηj(t). (5.21)

Here, ϵj and ηj are as they were defined in Eqs. (3.5) and (5.14), with

strengths σ and D respectively. As before, this model is expected to de-

scribe the phase dynamics of a one-dimensional lattice of localized, driven-

dissipative condensates, in the regime where fluctuations in the condensate

densities are small. To this end, we have once again assumed uniformity in

the pumping and disorder strengths. The noise η is taken to fluctuate on the

scale of the lattice spacing, which is the smallest length scale in the model.

Eq. 5.21 may also be viewed as a discrete model of a one-dimensional con-

densate in a random δ-correlated static potential. In addition to this, it is

a generalization of the locally-coupled oscillator model (3.5) to include the

impact of noise. As in the previous section, for numerical simulations, we

will choose J−1 as our unit of time, so that the system only depends on the

two dimensionless disorder strengths, σ/J and D/J , as well as the nonequi-

librium control parameter α. We will take α to be one for our calculations

in this section, as we have done up until now in this chapter.

As in the clean case studied in Chapter 3, solutions to this model may be

either synchronized or desynchronized. The synchronized solutions of (5.21)

are different to those in the clean case, however. While the phase profiles in

this regime display the long-range peaked structure found in the case of static

disorder, because of the noise term, the phase of each oscillator is no longer

constant in time. This may be seen in Figure 5.4, where phases from three

different times have been overlaid on one another. These fluctuations around

the noise-free result mean that on short length scales, the phases resemble a
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Figure 5.4: Phase profiles obtained by solving (5.21) for a chain of 800

oscillators, with σ/J = 0.05 and D/J = 0.08. t1 = 11200/J , t2 = 11200/J

and t3 = 11400/J

kinetically roughened surface.

This is confirmed by calculating the spatial field correlation function,

C(x, 0), which is plotted in Figure 5.5. While – as in the static case –

interference fringes are evident in this plot, the visibility of these fringes

decays exponentially. This may be seen in Figure 5.6, where the initial decay

of the visibility is shown to match that of a KPZ surface with equivalent

noise strength. Regardless of static disorder, the phases have correlation

length L = 2J/(Dα). This suggests that while finite chains of oscillators

described by the full model with noise (5.21) may exhibit phase order for

sufficiently small D, phase correlations will vanish in the thermodynamic

limit. This would be in line with the behaviour of the clean system, where

noise destroys the phase correlations. Indeed, the correlation functions in

Figures 5.5 and 5.6 are in line with the previously-discussed experimental

results for a 2D lattice [57]. While interference fringes are observed in that

case, their visibility is found to decay exponentially.

We note, however, that the decay in Fig. 5.6 slows down after its initially
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Figure 5.5: Real spatial correlation function of fields with the phases plotted

in Fig. 5.4. An ensemble average is taken over noise, but not static disorder

by taking the mean of 500 static correlation functions at equally-spaced times

between t = 6000/J and t = 16000/J .

exponential behaviour, and the visibility of the fringes does not go to zero.

There could be a number of explanations for this – for example, we may

not have averaged over enough independent realizations of the noise – but

further investigations would be needed to definitively rule out the existence

of phase order.

A more interesting question is how noise affects frequency synchroniza-

tion. Much of the discussion in Sections 5.3.2 and 5.3.3 still holds. When

Eq. (5.21) has a valid continuum approximation, the phases of neighbouring

oscillators are locked to one another, and are therefore synchronized. How-

ever, as in the clean case, the noise may induce phase slips between neigh-

bouring oscillators. Now, however, these slips are not equally likely to occur

in each direction. As every oscillator is now being driven with a different

frequency, oscillators with greater natural frequencies than their neighbours

will accumulate extra rotations when provided with enough of a ‘kick’ by the

noise. This may be understood for a pair of oscillators by considering the
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range. The visibility of this correlation function is plotted over this, and

compared with the theoretical prediction for the clean KPZ equation with the

same noise strength, C(x, 0) = exp(−αDx/(2J)).

potential plotted in Fig. 2.4(a). Noise can give the ‘particle’ in this picture

enough energy to overcome the potential barrier and hop into one of the

neighbouring potential minima. A difference in natural frequencies means

that this potential is sloped, so the particle is far more likely to jump over

the smaller potential barrier, and proceed down the slope, increasing the

phase difference between the oscillators [12].

When both static disorder and noise are weak, phase slips are rare, and

the average frequencies of the oscillators will remain synchronized. However,

for example if |∇θ| = ασ/J is just less than one for a chain with static

disorder, the addition of noise may be just enough to tip the system over

into a desynchronized regime. Unlike in the clean case where the phase

width of uncoupled oscillators scales as
√
t, an equivalent disordered system

has WΩ = a constant, so Wθ ∼ t, and a true desynchronized regime exists.

While our numerical simulations of Eq. (5.21) have demonstrated that

noise may cause desynchronization in parameter regimes that give synchro-
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Figure 5.7: Phase diagram showing the three distinct regimes permitted

by the noisy, disordered phase oscillator model in 1D (5.21), as a function of

the strengths of each type of disorder. The phase transition for solely static

disorder is as defined in Chapter 3: σ∗ = J/
√
α.

nized results in its absence, we have not formally established its impact on

the phase boundary that we derived for the noise-free case (3.21). Neverthe-

less, we have enough information to suggest a phase diagram characterizing

the distinct classes of solution permitted by (5.21) in 1D, as a function of the

strengths of the static and time-dependent disorders.

This phase diagram is shown in Figure 5.7. There are generally three

regimes in this diagram. From our analysis in Chapter 3, and the numerical

results for correlation functions presented in Section 5.2, the behaviour of a

chain of condensates subject to only static disorder is known exactly. This

regime lies on the x-axis of the figure. For any given static disorder realisation

there is a critical disorder strength, below which the frequencies of each

site will be synchronized. Additionally, in this synchronized regime, the

amplitudes of spatial correlation functions of the condensate wavefunction

are found to remain constant across the sample. This indicates that the

phases of the condensates in this regime are all ordered. We refer to this
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as ‘long-range phase order’, although it is worth noting that in contrast to

the off-diagonal long range order that is characteristic of 2D equilibrium

BECs, the driven-dissipative systems that we are considering are not also

superfluids. This was established in Chapter 4. This synchronized, phase-

ordered regime is indicated by the thick blue line on the x-axis. Above the

critical disorder strength, σ∗, frequency synchronization breaks down, as does

phase order.

We also know what behaviour to expect for ‘clean’ chains which expe-

rience noise, but no spatial disorder. Such systems lie on the y-axis of the

diagram. As outlined in Section 5.3, these chains always have synchronized

frequencies in the long-time limit, regardless of noise strength. Spatial cor-

relations of the wavefunction, on the other hand, are found to decay expo-

nentially, and so there is no phase order in this regime. We therefore refer to

this regime as exhibiting frequency order, but no phase order.

This leaves the the more general behaviour of a lattice of condensates

subject to both types of disorder, or the area of the plot that is away from

both axes. From the discussion above and the decay of spatial correlations

seen in Fig. 5.6, we do not expect any long-range phase ordering in such

systems. Furthermore, as our simulations indicate that adding noise to chains

with spatial disorder makes desynchronization more likely, the right hand side

of the diagram describes systems with no order in phases or frequencies. We

label this as ‘Desynchronized’, and it also includes systems without noise

which lie on the x-axis. There must then be some crossover from the region

of frequency synchronization along the y-axis (no static disorder) to this

desynchronized region. Unlike the sharp synchronization transition that we

have shown to exist for a lattice with purely spatial disorder, we anticipate

that this crossover occurs gradually. We have therefore indicated its presence

by a dashed line in the figure. Moving up or right off either axis will see an

increasing density of space-time vortices, and as discussed above, when both

types of disorder are present, these lead to desynchronization. It is possible

that the y-axis of the diagram is the only region with true frequency order

and no phase order, and further analysis is needed to determine the exact

nature of this desynchronization crossover in the presence of noise.

Finally, we note that this is just a two-dimensional slice of a three-
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dimensional phase space. This work has not considered the behaviours of

the different phases under large variations in α, however that is an avenue of

future research.

5.5 Conclusions

In this chapter we have studied a number of generalizations to, and impli-

cations of, the phase oscillator model which we derived in Chapter 3. We

have established that disordered lattices described by this model have long-

range phase order in addition to synchronized frequencies. We have also,

however, shown that this phase order is only present in the special case of

no spatio-temporal noise.

We demonstrated this by generalizing the phase oscillator model to in-

clude a white noise term. In the absence of spatial disorder, this model is then

a discretized KPZ equation. This is characterized by dynamically roughened

phase profiles, and exponentially decaying spatial field correlation functions.

The addition of noise to our model also brings about desynchronization

more readily when combined with static disorder, however no synchronization

occurs in a clean, noisy chain of oscillators. The various regimes of this model

are characterized in the phase diagram plotted in Figure 5.7. This picture of

the various phases may be expanded by considering how they vary with the

nonequilibrium control parameter, α.

Our results in this chapter are focused on the case of one-dimensional

systems. It would be interesting to extend the analysis in this chapter to

two dimensions, not least because polariton condensates typically occur in

2D, but also because the extension is not necessarily a trivial one. The KPZ

scaling differs from 1D to 2D, while the physics beyond the KPZ regime in 2D

is also the subject of much ongoing research, with a Berezinskii-Kosterlitz-

Thouless (BKT)-like transition from a disordered state to an ordered one

expected to occur [125,126].
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Conclusions and future

directions

In this thesis, we have investigated aspects of the phase dynamics of dis-

ordered driven-dissipative condensates using the framework of the complex

Ginzburg-Landau equation. From this starting point, we have developed

a phase oscillator model which, in its continuous limit, is related to the

Kardar-Parisi-Zhang equation. Using this model, we have derived results for

driven-dissipative condensates in disordered systems, particularly in the area

of synchronization. We will summarize these below. While working only with

the phase of the order parameter and neglecting the dynamics of the con-

densate densities is an approximation, and does not capture all the physics

of the system, this enables us to connect the description of driven-dissipative

condensates with that of coupled classical oscillators, and nonlinear models

such as the KPZ equation. We were thus able to exploit the universality of

our model, and use techniques developed for these different systems to gain

a greater understanding of the physics of nonequilibrium condensates. Fur-

thermore, the parameter regimes within which our approximations are valid

coincide with those often found in experiments, and results derived using our

model appear to be in line with experimentally reported findings.

We first considered synchronization of two spatially separated conden-

sates in a double well. We extended previous analytic results which classified

the synchronized and desynchronized regimes of this system, by consider-

ing asymmetric pumping of the two wells. This was achieved by following
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a previous analysis [85] for two different spin states of a single condensate,

and generalizing it to consider spatially separated modes, each experienc-

ing differing linear gain terms. We found that asymmetry in the pumping

contributes an additional effective detuning of the condensate energies, and

acts to shift the position of the phase boundary between the two phases in

parameter space. Our analytic work was supported by numerical simula-

tions of the extended Gross-Pitaevskii equation in the double well. At this

point, we also determined suitable values for the parameters in our model

through calculations involving experimentally reported results. This guided

our numerical simulations throughout the project.

In the third chapter, we extended the synchronization dynamics of the

double well to the case of a square lattice of condensates with random on-site

energies. We derived a connection between the Gross-Pitaevskii equation de-

scribing N condensates localized in a lattice potential, and a locally-coupled

phase oscillator model. While this model has a similar structure to the well-

known Kuramoto model, the additional nonlinear cosine term in the coupling

function of our model means that it exhibits a synchronization phase tran-

sition. In the thermodynamic limit, it is possible for all of the oscillators on

such a lattice to entrain their frequencies, despite the disorder. This contrasts

with the behaviour of the locally-coupled Kuramoto model, where no such

macroscopic synchronized state exists [77]. We derived the phase boundary

analytically for lattices of dimension d < 4 by demonstrating that the con-

tinuum limit of our oscillator model is equivalent to a Schrödinger equation,

which describes the dynamics of a single particle in a random potential in

imaginary time. This system is known to have localized solutions. By con-

necting the expression for the localization length with the upper bound that

exists for currents that may flow on a lattice, we derived a condition for

synchronization in terms of the relevant parameters in the model.

This result is important in a number of contexts. It demonstrates that

an arbitrarily large disordered lattice of condensates may synchronize its

energies and act as one mode, emitting at a single frequency. This is useful

for experimental realizations of polariton condensates and their proposed

application as classical or quantum simulators [58,59]. Furthermore, it shows

that a static random potential does not necessarily destroy long-range order
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in a driven-dissipative condensate. More generally, however, the main result

of this chapter holds for the large class of systems which may be described by

our oscillator model. We have shown that a non-odd trigonometric coupling

function is sufficient for entrainment of locally coupled oscillators on a regular

lattice. To our knowledge, conclusive evidence had not previously been shown

for a true synchronization transition in large populations of locally coupled

oscillators, although previous works have presented numerical simulations

and other arguments suggesting that this may occur in the 1D case [75,108].

While our identification of the synchronization phase transition shows

that a single, ordered state may exist across a disordered lattice of driven-

dissipative condensates, in the following section, we demonstrated that this

state is not a superfluid. This was achieved by numerically calculating the

superfluid stiffness of a synchronized state of our lattice model. In contrast to

a clean lattice, applying a phase twist across the boundaries of our model does

not change the energy of the system, and so it does not support a superfluid

current. This verifies previous analytic and numerical results [55]. Despite

the absence of superfluidity, we demonstrated that a synchronized lattice of

condensates with random on-site energies does have long-range phase order

by calculating first order correlation functions of the condensate field.

Finally, we generalized the previous results for disordered lattices to in-

clude the effect of spatio-temporal noise. This was done for the case of one

spatial dimension. We showed that the addition of such a stochastic term

to our equations with static disorder causes the visibility of spatial field cor-

relations to decay exponentially. This decay is also seen for clean systems

with noise. Therefore, it appears that the correlation functions of a driven-

dissipative condensate are not significantly affected by a static disordered

potential, and that the long-range phase order we identified in synchronized

lattices of condensates is not robust against noise. Despite this, noise is not

expected to destroy the synchronization transition identified in Chapter 3,

and a lattice of oscillators described by our model that experience both spa-

tial disorder and noise may have synchronized frequencies.

A number of extensions to the work in Chapter 5 immediately suggest

themselves. We have not yet conclusively determined the behaviour of the

phase boundary between synchronized and desynchronized regimes in the
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presence of both spatio-temporal and static disorder. The existence of both

synchronized and desynchronized states separated by a phase boundary in

the case of static disorder, and the absence of a desynchronization for solely

spatio-temporal fluctuations, enabled us to propose a phase diagram as a

function of both types of disorder. However, despite preliminary numeri-

cal results demonstrating that the addition of noise to systems with static

disorder can bring about desynchronization more readily, the exact form of

the phase boundary in the presence of noise has yet to be determined. A

more comprehensive numerical analysis of the system, coupled with further

analytic work may prove fruitful.

In addition to this, our phase diagram does not completely span the three-

dimensional parameter space of the lattice model. The parameter α controls

the strength of the nonlinearity in the continuum phase model, while in terms

of driven-dissipative condensates, it quantifies how far out of equilibrium the

system is. As noted in Chapter 3, we had difficulty verifying our analytic re-

sults for the phase boundary numerically when α > 1, and remarked that this

corresponds to the localization length, ζ becoming smaller than the spacing

between sites on the lattice. Furthermore, recent work [113] has reported a

phase transition at low noise strength for the clean version of this model as

this parameter is increased. Although values of α in excess of one lie outside

the experimentally accessible parameter regime for polariton condensates,

this may not be the case for other systems that are described by this model.

It would therefore be of interest to further study the synchronization proper-

ties of the system at large values of α, and produce a complete phase diagram

of the system.

Finally, our analysis of the impact of noise on our system in the final

chapter was limited to one dimension. While we showed in Chapter 3 that

solutions to our model of disordered oscillators look broadly the same in one

and two dimensions, this is not the case for noisy systems. Phase correlations

are also found to decay for the KPZ universality class in 2D [65], however the

scaling exponents are not identical to those in 1D. Furthermore, the physics

beyond the KPZ regime in two dimensions is also different to the 1D case.

The role of spatial vortices must be considered, as a Berezinskii-Kosterlitz-

Thouless (BKT)-like transition from a disordered state to an ordered one is
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expected to occur [125]. Although polariton condensates may be experimen-

tally realized in one dimension, they typically occur in 2D. It would therefore

be useful to fully extend the analysis in this chapter to two dimensions.

A more general potential extension to this work would be to consider

different forms of coupling between condensates on a lattice. As mentioned

earlier in this work, lattices of polariton condensates which are propagating

states have recently been the subject of some interest, both theoretically and

experimentally. These have been proposed as simulators of many complex

systems, such as the XY model [58,127]. In these configurations, the coupling

between sites has a significant dissipative component. It may be interesting

to see how the inclusion of complex terms in the coupling functions in our

model would affect our results.
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equilibrium Berezinskii-Kosterlitz-Thouless transition in driven-dissipative

condensates (a),” EPL (Europhysics Letters), vol. 133, p. 17002, Jan. 2021.

[126] V. N. Gladilin and M. Wouters, “Noise-induced transition from superfluid

to vortex state in two-dimensional nonequilibrium polariton condensates,”

Physical Review B, vol. 100, p. 214506, Dec. 2019.

[127] K. P. Kalinin and N. G. Berloff, “Polaritonic network as a paradigm for

dynamics of coupled oscillators,” Physical Review B, vol. 100, p. 245306,

Dec. 2019.

123


	Summary
	Acknowledgements
	List of Publications
	Introduction
	Motivation
	Exciton-polaritons
	Driven-dissipative condensates
	Theoretical model of non-equilibrium condensates
	Disorder and localization of polariton condensates
	Spatial disorder
	Spatio-temporal noise

	Synchronization of coupled oscillators
	Definitions and conventions
	The impact of noise on coupled oscillators
	Synchronization of large populations of oscillators and the Kuramoto model

	Notes on numerical simulations

	Synchronization of two coupled driven-dissipative condensates
	Introduction
	The Gross-Pitaevskii equation in the double well
	Phase dynamics and synchronization in the double well
	Phase diagram
	Comparison with experiment
	Approximation of asymmetric pumping
	Choice of parameters for simulations

	Conclusions

	Synchronization in disordered lattices of condensates
	Introduction
	Derivation of phase oscillator model
	Probability of synchronization in a chain of condensates
	Continuum approximation
	Phase diagram
	Discussion of results
	Behaviour of localization length in the thermodynamic limit
	Time taken for synchronization
	Comparison with continuum limit of Kuramoto model
	Results in the context of polariton condensates.

	Conclusions

	Superfluid response of a disordered chain of driven-dissipative condensates
	Introduction
	Definition of superfluid stiffness
	Numerical results for a chain of condensates
	Calculating the superfluid stiffness
	Analysis of phase profiles with twisted boundary conditions

	Conclusions

	Phase correlations and the impact of noise on condensates in one dimension
	Introduction
	Phase correlations in disordered chains
	Condensates in the presence of noise
	KPZ physics
	Noisy coupled oscillators
	Physics beyond the KPZ regime

	Impact of both spatial disorder and noise on driven-dissipative condensates
	Conclusions

	Conclusions and future directions
	Bibliography

