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Summary

In this thesis we discuss and explore several different aspects of the topological
classification of light propagating through matter, or topological photonics. In
particular we will focus on anisotropic materials where the optical response is de-
pendent on the polarisation and direction of propagation of the incoming light. We
will consider both homogeneous dielectric media and periodically patterned optical
materials known as photonic crystals. These explorations will consider either the
weak-coupling regime, where the solutions of the wave equation describe photons,
or the strong-coupling regime, where the solutions describe mixed light-matter
quasiparticles called polaritons.

Our first subject is examining the topological characterisation of the refractive
index surfaces of homogeneous optical materials. We do this by computing a
topological invariant known as a Chern number in the case of different materials.
The materials we consider are biaxial dielectrics with optical activity. In the absence
of optical activity the refractive index surfaces of biaxial materials feature polari-
sation degeneracies. The introduction of optical activity lifts these degeneracies.
We explore whether in combination biaxiality and either of two possible forms of
optical activity can produce optical topological order. We find that the refractive
index surfaces of chiral biaxial materials can have non-zero Chern numbers. We
additionally derive an effective Hamiltonian which paraxially evolves light through
a biaxial optically active material in directions close to a lifted degeneracy.

Next we turn to periodically patterned optical materials. We adapt the derived
Hamiltonian to describe anisotropic, optically active two dimensional photonic
crystals of two differing patterning geometries. The two geometries which we
consider are either a square or a triangular arrangement of the dielectric con-
stituents. For each geometry we examine the topological phase diagrams for each
of the two forms of optical activity as we vary relevant parameters. We find that,
for each geometry and either form of optical activity, topologically non-trivial
iso-frequency surfaces can be achieved. The results of the studies for each form
of patterning is compared and contrasted with each other and with the homoge-
neous material. We additionally explore the possibility of topological edge states
for these anisotropic photonic crystals when they are considered in a finite geometry.

Our final subject concerns the strong-coupling regime of light and matter
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in semiconductors. We focus on bulk direct band-gap semiconductors with the
zincblende crystal structure. When these semiconductors are subjected to a mag-
netic field the dielectric function becomes anisotropic and multiply-resonant. We
find that, in this situation, there is a complicated polariton dispersion relation
which exhibits many topological degeneracies, both in the absence and presence of
non-radiative decay.
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Chapter 1

Introduction & Motivation

1.1 Introduction

A primary focus of science is to classify by comparing and contrasting properties of
distinct systems. In the context of material science this approach allows us to sort
matter into phases which display markedly different behaviour; solids and liquids,
magnetic and non-magnetic. This work is important as it allows understanding of
the behaviour of individual materials by appreciating the divisions into which they
have been sorted rather than necessarily having to conduct an independent investi-
gation into every case. Many of these classifications are understandable within the
Landau theory of symmetry breaking. This theory essentially states that each phase
of matter has a distinct way in which its constituent parts organise themselves and a
transition between two phases is accompanied by a re-organisation of its constituent
parts. This re-organisation changes some symmetry that the previous phase held;
for instance in the liquid to solid phase change the continuous translation symmetry
of the liquid becomes a discrete translation symmetry of the solid. This approach
has however proved unable to categorise all materials, with some phases which
possess the same symmetry yet display qualitatively different behaviour requiring
a new framework to be understood.

These anomalies of classification can be reconciled within the framework of
topology. There are integer topological invariants which can distinguish phases
which have different global arrangements yet look the same locally [1, 2]. The
integer quantum Hall state [3] is an example of a topologically non-trivial phase.
In this phase the non-zero invariant is linked to a quantised Hall conductance [4].
Topological phases can exhibit significant protection against disorder as many of
the possible deformations induced by the disorder will affect the local organisation
but not the global one [5]. Due to these integer invariants interesting effects occur
when materials of differing topological order are placed into contact including
the dissipation-less transport of charge or spin along the interfaces [6]. For these
reasons there is considerable interest in exploring topologically non-trivial systems.

A particular focus in this area has been on the assignation of topological
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invariants to the electronic band structures of solids [7]. In this context the periodic
nature of the solid results in Bloch form solutions [8] of the Schrödinger equation,
for which topological invariants can be calculated [1, 2]. Although formally the
set of invariants is attributable to the Hamiltonian, which provides the mapping
between the periodic Brillouin zone and the Bloch states, one can loosely think
of the integers being attributable to individual bands, provided one holds certain
rules in mind [7]. In particular, the sum of the invariants of any pairs of bands is
conserved across those bands becoming degenerate.

Rather than being intrinsically reliant on electronic systems the concepts of
topological band theory are generally applicable. Far from being a hindrance, the
broad relevance of topology has allowed the discovery of topologically non-trivial
bandstructures in many types of system, such as in optical [9, 10] and acoustical [11,
12] systems. This is the case as the understanding of the underlying mechanisms
which produce a non-zero topological invariant in one setting can be effectively
replicated in other settings.

In this thesis we will examine several aspects of the topological characterisation
of light propagating through matter, or topological photonics [6]. The fundamental
starting point for such examinations are Maxwell’s equations and the wave equa-
tions which follow [13, 14]. We will assess the topological characteristics of the
solutions of the wave equation for various anisotropic optical media. We will con-
sider both homogeneous dielectric materials and periodically patterned photonic
crystals for which there are photonic band structures [15, 16]. These studies will
be set in either the weak-coupling regime, where the solutions describe photons,
or the strong-coupling regime, where the solutions represent mixed light-matter
quasiparticles called polaritons [17, 18].

The first problem we address is the topological characterisation of the refractive
index surfaces of homogeneous optical materials. The materials we consider are
anisotropic and optically active. We consider two distinct types of optical activity
and assess whether it is possible to realise optical topological order for either case.
We also derive a Hamiltonian which paraxially evolves light through one of these
materials in directions close to a special optical axis.

In the two following chapters we make use of this derived Hamiltonian, adapt-
ing it to provide an effective description of two dimensional photonic crystals of
two different patterning geometries. The two geometries which we consider are
square patterned and triangularly patterned. For each geometry we examine the
topological phase diagrams for either form of optical activity. We compare and
contrast the results of these investigations with each other and with the case of the
homogeneous material.
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One of the important properties of topologically non-trivial systems is the appear-
ance of edge states when those bulk systems are considered in a finite geometry.
In chapter 5 we investigate the survival and changing characteristics of these
edge states in systems as the bulk band gaps are closed. Within this examination
we explore the role played by the boundary conditions and whether choosing a
particular termination of the structures allows partial edge states to form. We apply
these insights to assess the prospects of edge states for the photonic crystal models
previously studied.

In the final investigation we explore the strong-coupling of light and matter
in bulk semiconductors. The semiconductors that we consider are zincblende
structures with direct band-gaps. When a magnetic field is applied to one of these
materials the dielectric function becomes anisotropic and multiply-resonant close
to the band-edge. The polariton dispersion relations for light propagating in such
materials are complicated and exhibit many topologically protected degeneracies,
both in the absence and presence of dissipation.

In the balance of this chapter we introduce concepts which are relevant to the
developments to follow and survey the state of the art of the fields as they stand.
This will begin with a general introduction to topology, Berry phases and Chern
numbers. We shall then explain how these concepts apply to topologically non-
trivial phases in two dimensions, three dimensions and non-Hermitian systems.
Interleaved in these discussions we will introduce the existing theories and reali-
sations of such phases. From there we will lay some more specific foundations on
which this thesis will build. We will particularly focus on the role that iso-frequency
surfaces play in describing the propagation of light through materials and on the
polaritons that result from the strong-coupling of light to matter excitations in
semiconductors. In each instance we will detail how the previously introduced
topological concepts have become relevant in these areas and the further directions
which will be explored in this thesis.

1.2 Topology, Berry Phase and Chern Numbers

1.2.1 General Introduction

Topology is the study of the properties of geometrical objects that are preserved
under smooth continuous deformations of the object. The allowable continuous de-
formations consist of, among others, bending, stretching, twisting and compressing
but do not include processes which tear the object or join it to other objects. Those
properties which are preserved by the permissible deformations are topological
properties. These topological properties can be captured by appropriate topological
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invariants which allow objects to be distinguished.

(A) g=0
(B) g=1 (C) g=2

FIGURE 1.1: Three surfaces with different values of the genus invari-
ant, g.

A familiar example of a topological invariant is the genus, g, of a surface, which
equals the number of holes an object has. In figure 1.1 we show three surfaces of
different genera. The sphere, which has no holes, is topologically distinct from the
torus and both are topologically distinct from the double torus. One could imagine,
by smooth deformations, transforming the sphere into any topologically equivalent
object, for instance a cube, but the only way to transform the sphere into a torus
would involve discontinuous processes.

This global topological property of these surfaces, the number of holes, can be
related to local geometric properties of the surfaces themselves. In this case the rela-
tion is known as the Gauss-Bonnet theorem [4]. It relates the Gaussian curvature K,
a local geometric property, to the genus by an area integral over the surface consid-
ered M:

1
2π

∫
M

K · dA = (2− 2g). (1.1)

1.2.2 Berry Phase

The Gauss-Bonnet theorem is not unique in linking local geometric quantities to
global topological properties - there are further examples in which topological quan-
tities are expressible in terms of integrals over suitable local quantities. One such
example is that of the Berry phase [19]. The Berry phase is relevant when a Hamilto-
nian depends on a parameter which undergoes adiabatic cyclic evolution in param-
eter space. Under these circumstances the wavefunction can accrue an additional
geometric phase in addition to the familiar dynamical phase. This Berry phase can
be expressed as an integral of local quantities, either the so-called Berry connection
or Berry curvature, as we shall shortly address. In this instance the geometry of
the wavefunctions dependence on the parameters determines whether the phase is
non-zero. In particular if we consider a Hamiltonian which depends on some set
of parameters R then clearly the eigenvalues and eigenvectors will also depend on
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those parameters according to

H(R)|n(R)〉 = En(R)|n(R)〉. (1.2)

If we consider the parameters R to vary in time then the time-dependent wave
function can be written as

|n(R(t))〉 = exp{iγn(t)} exp{− i
h̄

∫ t

0
En(R(t′))dt′}|n(R(0))〉. (1.3)

In the equation (1.3) above γn(t) is the Berry phase and is determined by

γn(t) = i
∫ t

0
〈n(R(t′))| ∂

∂t′
|n(R(t′))〉dt′ = i

∫ R(t)

R(0)
〈n(R)|∇R|n(R)〉 · dR. (1.4)

Under cyclic parameter evolution R(0) = R(t) and the Berry phase is

γn =
∮

C
An(R) · dR =

∫
S

Fn(R) · dS. (1.5)

In equation (1.5) we have introduced the Berry connection, An(R) =

i〈n(R)|∇R|n(R)〉, and the Berry curvature, Fn(R) = ∇R×An(R), which are the pre-
viously mentioned local quantities. The second equivalence in equation (1.5) follows
via Stokes’ theorem. The Berry phase is only non-zero in cases where the parameter
evolution encloses a point where the phase of the wavefunction is indeterminate.
Such points are known as singularities of the wavefunction. Consequently, there is
a link between non-zero Berry phases and Hamiltonians which feature degenera-
cies in their eigenvalue spectra [19, 20]. To illustrate this point we shall consider the
Hamiltonian of a continuum massless Dirac fermion of the form:

H(k) = kxσx + kyσy. (1.6)

This Hamiltonian has a degeneracy, known as a Dirac point, at k = 0. The eigen-
states of the Hamiltonian are

|±〉 = 1√
2
(exp{−iφ(k)},±1)T (1.7)

where φ(k) = arctan
( ky

kx

)
and the superscript T indicates that the row vector

should be transposed. The Berry phase, by equation (1.5), is then given by
γ = 1

2

∮
∇kφ(k) · dk. This integral takes the value π and for this reason Dirac points

are said to have a topological index of 1
2 .

1.2.3 Chern Numbers

In a periodic medium the eigenstates take the form of modulated plane-waves
known as Bloch wavefunctions: ψk(r) = exp{ik · r}uk(r), where uk(r) has the same
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periodicity as the material. In this context one can regard the wavevector k as an ex-
ternal parameter, and consider the Berry phase acquired around loops in reciprocal
space. One special possible loop in reciprocal space is that around the first Brillouin
zone, which is the fundamental area of wavevector space for a periodic system. For
a two dimensional periodic system a topological invariant known as the first Chern
number is obtained when the Berry curvature is integrated over the first Brillouin
zone:

2πCn =
∫

Fn(k)dk. (1.8)

This topological invariant counts up the number of phase windings of the Bloch
states over the first Brillouin zone. It is zero whenever the Bloch functions do not
feature any singularities over this domain [21].

Chern numbers are, in general, difficult to calculate however. They are usually
calculated in one of two ways - directly or indirectly. Direct calculation techniques
include either low energy continuum expansions around each inequivalent de-
generate point [6] or judicious numerical integration [22]. Indirect calculation
techniques infer a non-zero Chern number from the presence of edge states when
considering a finite geometry.

For a two-band system a method for calculating the Chern number is provided
in a work by Sticlet et al. [23]. This approach applies to insulators which can be
treated by an effective Hamiltonian model. Any two band Hermitian Hamiltonian
can be decomposed into the sum of products of functions times the identity matrix
and the three Pauli spin matrices. The functions multiplying the Pauli matrices can
be considered as an effective magnetic field, h(k), due to the equivalence of such a
Hamiltonian to that of an electron in a magnetic field. Sticlet et al. [23] showed a way
to determine the Chern number from the sum of the topological index associated
with the Dirac points of a truncated Hamiltonian:

C =
1
2 ∑

k∈Di

sign(∂kx h× ∂ky h)isign(hi). (1.9)

Here Di are the inequivalent Dirac points, which are determined by the k for which
h(k) = 0 having already set an arbitrary one of the components hi(k) = 0. Each
topological index is then the Berry phase divided by 2π times the sign of the "mass
term", which gaps that Dirac point. The mass term is the hi(k) that has been chosen.
It was emphasised in Sticlet et al. [23] that, due to the periodicity of these lattice
models, the sum of the Berry phases (or circulations) over the first Brillouin zone
will always be zero. This means that to achieve a non-zero Chern number the mass
term must change sign over the Brillouin zone in a manner that separates Dirac
points with net circulation. We will now detail the solution of a toy model which
shows how this can be done and the implications of non-zero topological invariants.
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1.3 Topological Insulators in Two Dimensions

To further explore this concept of a topologically non-trivial material we shall con-
sider a representative model. The model we consider is a lattice generalisation of the
continuum massive Dirac Hamiltonian [6]. This model describes an insulator with
spinless fermions arranged in a square lattice geometry. We consider two orbitals on
each site, with the two orbitals possessing different parities (for instance these could
be an s-type orbital and a p-type orbital). Given that the orbitals differ in parity the
coupling between them must be an L = 1 angular momentum coupling. The lowest
order coupling in k of the appropriate form is sin(kx)± i sin(ky). In this model we
additionally allow intra-orbital dispersion that is even in k. The Hamiltonian of the
model is

H(k) = sin(kx)σx + sin(ky)σy +
(
2 + m− cos(kx)− cos(ky)

)
σz, (1.10)

where m ∈ R is taken to be an adjustable parameter.

1.3.1 Bulk Topological Invariants

Following the approach of Sticlet et al. [23] to determine the Chern number
we initially focus on the case when h3(k) = 0. In this instance the reduced
Hamiltonian represents a system with four degeneracies in the first Brillouin zone.
These degeneracies are located at the points in reciprocal space where the h1(k)
and h2(k) components vanish simultaneously. These points occur at (kx, ky) =

{(0, 0), (π, 0), (0, π), (π, π)}. The local behaviour of the reduced Hamiltonian
around each of these points is that of a Dirac fermion, meaning each of these points
has a Berry phase of ±π. The Chern number is then calculated by summing up the
product of the vorticity and the sign of h3(k) for each Dirac point. This procedure
results in a Chern number of:

C =
1
2
{
(+1)[sgn(m)] + 2(−1)[sgn(2 + m)] + (+1)[sgn(4 + m)]

}
. (1.11)

Examining equation (1.11) we see that the topological phase diagram as a function
of the parameter m is partitioned into four regions. The boundaries between these
regions are the values m = −4, m = −2 and m = 0. At each of these values the
band structure closes at some point in the Brillouin zone. As m is tuned through
these values the band structure closes and re-opens which can result in a change of
Chern number [7]. These three values of m are the only values at which the band
structure closes and hence the only locations of topological phase transitions. Using
equation (1.9) we determine the Chern numbers in each of the four regions to be:
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C =


0 m < −4
1 −4 < m < −2
−1 −2 < m < 0

0 m > 0

(1.12)

FIGURE 1.2: Three plots showing the zero contour lines of each com-
ponent of h(k) over an enlarged Brillouin zone. Each plot considers
a different value of m. In the left plot m = −3, in the central plot
m = −1 and in the right plot m = 1. Within each plot the zero contour
lines are each a different colour; the zero contour line of h1(k) is dis-
played in turquoise, that of h2(k) is displayed in light green and that
of h3(k) is brown. The shaded regions are those in which h3(k) > 0.
The vector field (h1(k), h2(k)) is overlaid in blue.

To better appreciate the origin of these topologically non-trivial phases we can
examine plots of the components of h(k) over the first Brillouin zone for different
values of m. In figure 1.2 we examine plots showing the zero contour lines of each
of the three components of h(k). Each plot considers a distinct value of m which are
chosen so that we are in three distinct phases. In the left plot m = −3, in the central
plot m = −1 and in the right plot m = 1. In each plot the light brown shaded region
corresponds to the areas for which h3(k) > 0. Furthermore we display the vector
field (h1(k), h2(k)) in blue. Equation (1.9) tells us that the Chern number depends on
the vorticity around each of the distinct Dirac points as well as the sign of the mass
term at each of those points. The vorticity of each Dirac point is independent of the
value of m. The zone centre and zone corner Dirac points have a positive vorticity,
while those at the face centres have negative vorticity. This net zero vorticity follows
from the version of the Poincaré-Hopf theorem [24] applicable to the Brillouin zone
torus. The value of m does affect the sign of the mass term at each of the lifted Dirac
point degeneracies. In the rightmost plot the sign of h3(k) is the same across all of
the Brillouin zone and hence the sum of the products of the vorticities and masses
of each Dirac point is zero. In the other two cases h3(k) changes sign over the Bril-
louin zone in such way that the zero contour line separates Dirac points of opposite
circulations. This is the origin of the non-zero Chern number in each of these phases.
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FIGURE 1.3: Three plots showing the bulk band structure of the
Chern insulator over the first Brillouin zone. Each plot considers a
different value of m. In the left plot m = −3, in the central plot
m = −1 and in the right plot m = 1.

It is not possible to infer the topological phase from the bulk band-structures of
the Hamiltonian (1.10). Figure 1.3 shows the bulk band structure of the Hamiltonian
for each of the values of m considered in figure 1.2. These band structures are the
eigenvalues of the Hamiltonian (1.10) whereas it is the eigenvectors that determine
the Chern number. The morphology of the bulk bands does play some role in the
understanding of the finite geometry band structures as we shall now explore.

1.3.2 Edge States

One of the hallmarks of topologically non-trivial materials is the bulk-boundary
correspondence [25, 26]. When two materials with a different value of a topological
invariant are put into contact then there must be a degeneracy to reconcile this
difference. As this degeneracy is enforced by the boundary it therefore describes
low-energy states bound locally to the edge [27]. In the case of our idealised Chern
insulator these edge states propagate chirally and without diminishing in intensity.

In order to examine the prospect for edge state formation one has to math-
ematically incorporate the boundary into these Chern insulator models. The
introduction of the boundary means that one of the wavevector components can
no longer characterise the solutions. Instead one must perform a discrete Fourier
transform on this component and move to a mixed real space and wavevector space
representation [6]. The result of this is a large matrix to diagonalise. The matrix is
tri-diagonal, representing on site and nearest neighbour hopping, with each entry
itself a two-by two block, representing the two orbitals on that site. If one chooses
to consider a finite system with N sites along the y direction (say), then the resulting
finite geometry Hamiltonian is a 2N × 2N matrix.

In figure 1.4 we display the finite geometry band structure resulting from
diagonalising the Hamiltonian for 20 sites along y. In each case we consider a
distinct value of m which correspond with those used in figures 1.2 and 1.3. In
each instance we can understand most of the finite geometry band structure as a
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FIGURE 1.4: Three plots showing the finite geometry band structure
of the Chern insulator when a termination is introduced along the y
direction. Each plot considers a different value of m. For the left plot
m = −3, for the central plot m = −1 and for the right plot m = 1.
In each case we have terminated the structure after 20 sites. The bulk
states are coloured black while the edge states are displayed in red.

projection of the bulk band structures of figure 1.3 onto a single direction. There are
however notable exceptions. In the two cases that are topologically non-trivial we
see bands which cross the bulk band-gap. These are the edge solutions associated
with the non-zero topological invariant. The group velocity of the edge states, ∂kx ε,
is either positive or negative for each mini-band. The eigenvectors from the finite
geometry calculation give additional information regarding the distribution of the
edge states in the mixed real and reciprocal space.

FIGURE 1.5: Two density plots showing the spin-summed squared
magnitude of the eigenvectors ψkx , i,σ for each of the Chern insulator
edge states. For this plot we have considered a finite system of 20
sites along y and we have considered the case m = −1.

In figure 1.5 we examine the eigenvectors for the two red coloured mini-bands
in the central plot of figure 1.4. Here we show density plots of the spin-summed
squared magnitude of the eigenvectors ψkx ,i,σ. Along the y-axis we display the real
space sites along the y direction while along the x axis we display the kx wavevector
component. We see that the two red mini-bands do indeed correspond to edge
localised solutions; which reside on the top and bottom edges of the material
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respectively. The combination of the always positive or negative group velocity and
the spatial profile of the edge solutions means that we have chiral edge states.

1.3.3 Physical Realisations

The Chern insulator model explored in the previous subsections is an idealisation,
designed to exemplify the essential features of systems with non-zero Chern
numbers. Nevertheless there are related proposals and experimental observations
that have essentially the same features. The first example was the theoretical model
of Haldane [28]. In this work a honeycomb lattice tight-binding model is adopted
which consists of two inter-penetrating triangular lattices of different atomic
species, A and B. There is coupling both between the sub-lattices and within each
sub-lattice. There is also an on-site energy difference between the two sub-lattices,
which breaks inversion symmetry. Additionally there are phase factors attached to
the hopping between sites on the same sub-lattice. These phase factors mimic the
effect of a magnetic field in breaking time-reversal symmetry, but there is no overall
flux. As this theory is defined on a hexagonal lattice there can be Dirac points at the
two inequivalent zone corners, as in graphene [29]. Haldane showed that, when
these Dirac points are gapped, the Chern number of the model is C ∈ {−1, 0, 1}
[28]. Which of these Chern numbers is realised then depends on the hopping
strengths, the on-site energy difference and the phase factors. Within the space of
these parameters there exist finite areas (or volumes) for each of the three possible
Chern numbers. The boundaries between these areas of different Chern numbers
correspond to a set of parameters for which the gap closes at one or both of the
Dirac points.

The theoretical proposal by Haldane [28] has much in common with the Chern
insulator model previously addressed. In both cases there are locations in the first
Brillouin zone at which the band gap of the models can close. In both cases tuning
the parameters of the model through these degeneracies can result in a change of
the topological phase. The only major difference between the two models is the
number of tunable parameters and hence how complicated the topological phase
diagram is.

Although realising the Haldane model [28] in an electronic context has proved
difficult, the model provided the basis for a proposal for topologically non-trivial
electromagnetic states [9, 10]. In this proposal a two dimensional photonic crystal
was arranged in a triangular geometry resulting in zone corner Dirac points for the
transverse electric modes. These degeneracies were then lifted by considering a
Faraday effect term which breaks time-reversal symmetry. The resulting split bands
have Chern numbers of ±1. This work ignited interest in optical topological order
resulting in more proposals for [30, 31] and experimental realisations of [32, 33]
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topologically non-trivial photonic systems. In most of these systems the decoupling
of the polarisation states and the wavevector within the two dimensional Brillouin
zone was relied upon.

Beyond optics this proposal also set a typical course towards achieving topo-
logical order in myriad settings. This conventional developmental route relies on
a triangular patterning of the system in order to produce Dirac points in the band-
structure. Having achieved these Dirac points the idea is to introduce a perturbation
so as to lift the degeneracies resulting in bands with non-zero Chern numbers. This
approach has been used in, among others, acoustic [11, 12], polaritonic [34–36],
magnonic [37] and mechanical [38] settings.

The Chern number is not the only kind of topological invariant possible for
two dimensional insulators. Systems that have a non-zero Z2 topological invariant
are also possible [2]. The first model proposed for such an occurrence was again
focused on graphene, this time with the addition of a spin-orbit effect [39]. This
minimal model is essentially two copies of the Haldane insulator model, one for
each electronic spin. The 4 × 4 matrix model consists of de-coupled 2 × 2 blocks.
Due to time-reversal symmetry the Chern number of each of these blocks sum to
zero, but their difference is linked to this Z2 invariant. These Z2 insulators also
exhibit a bulk-boundary correspondence. For these materials the edge states are
helical rather than chiral. This means that electrons of each spin travel in opposite
directions around the boundary of these materials. A more realistic proposal for a
system that realises a non-zero Z2 invariant was set in semiconductor quantum well
heterostructures [40] which have a stronger spin-orbit interaction. In this instance
the effective Hamiltonian consists of two time-reversal partner versions of the
Chern insulator model introduced earlier. For such systems this Z2 invariant was
quickly confirmed by edge transport measurements [41]. Photonic systems which
realise polarisation-resolved helical edge states due to a non-zero Z2 invariant
have also been proposed [42]. In that proposal the authors suggested designing a
two dimensional lattice of metamaterials which possess a bi-anisotropic response
designed to mimic the spin-orbit coupling of electronic systems. This scheme was
implemented experimentally under similar conditions resulting in the desired
photonic Z2 insulator [43].

1.4 Topological Features in Three Dimensional Dispersions

In three dimensions there are several classes of topologically non-trivial materials.
These classes can be divided into the topological insulators, which have a complete
bulk band gap, and the topological semi-metals, which do not. In the former
category is a three dimensional generalisation of the Z2 topological insulator [44–46]
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that was introduced in the previous sections while in the latter there are systems
which exhibit topologically robust degeneracy structures [47, 48].

The proposals for 3D Z2 topological insulators [44–46] have considered both
cases where the insulator is built from coupled layers of 2D Z2 topological insulators
and those for which the 3D topological insulator has no obvious 2D counterpart.
The former type of three dimensional topological insulator is known as a weak
topological insulator while the latter is a strong topological insulator [6]. Three
dimensional Z2 topological insulators have been theorised [49, 50] and realised
[51, 52] in several electronic settings. Beyond electronic settings weak 3D Z2

topological insulators have also been proposed [53] and experimentally observed
[54] in photonic systems. In this context the original 2D photonic Z2 insulator [42]
was essentially extended to 3D again using the bi-anisotropic metamaterials this
time arranged in a 3D hexagonal lattice.

Topological semi-metal phases are a fast emerging research area [55]. These
semi-metal phases exhibit degeneracies which can be either isolated or extended.
There are three principal variants of these gap-less phases; the Weyl semi-metal
[56], the Dirac semi-metal [57, 58] and the nodal line semi-metal [48]. In the first two
cases the degeneracies are isolated points in the 3D Brillouin zone, while in the latter
case the degeneracies are extended lines in reciprocal space. The difference between
the Weyl and Dirac semi-metal phases is in the number of bands coming into contact
at the degenerate point; in the former case there are two while in the latter case there
are four. In both the Weyl and Dirac semi-metal phases the low-energy dispersion
around the degeneracies is linear and thus the dispersion resembles that of a Weyl
or Dirac fermion respectively. These phases were experimentally realised in various
3D electronic systems [59–62].

The 3D topological phases which we will be most concerned with in this thesis
are gap-less phases which feature emergent Weyl points. The Weyl points are robust
degeneracies in two senses. Firstly their presence is immune to the smooth variation
of parameters of the underlying material and secondly the points themselves carry
a topological charge of ±1. The topological charge must be distributed throughout
the Brillouin zone such that the net charge is zero and hence there must always
be a matching number of positive and negatively charged degeneracies. These
Weyl points can locally be described by the Hamiltonian H(k) = kiνijσj with the
topological charge of each point determined by sgn(det(νij)). The momentum space
Berry curvature associated with each Weyl point is that of a monopole. Owing to
this the charge can alternatively be understood as the Chern number obtained by
integrating the curvature over a chosen momentum space surface which encloses
the degeneracy.
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In three dimensional Weyl semi-metal phases, as in gapped 2D and 3D topo-
logical phases, there is a bulk-boundary correspondence. In this instance when
the system is terminated in an appropriate direction open momentum space arcs
connecting Weyl points of opposite charge are observed in the surface Brillouin
zone. These open contours are known as Fermi arcs. Three dimensional Weyl
semimetals along with their surface states have been proposed and realised in
optical [63–68] and acoustic [69–71] settings also.

To explore these Weyl semi-metals we can consider a model Hamiltonian [72].
The Hamiltonian we consider describes a 3D tight-binding model of spinless
fermions. The lattice is made of layers of two inter-penetrating square lattices each
of a different species, A or B. The Hamiltonian is

H(k) = 2t1 sin
[

1
2
(kx + ky)

]
σx + 2t1 sin

[
1
2
(kx − ky)

]
σy+

+
[
∆− 2t2

(
cos(kx) + cos(ky)

)
+ 2t3 cos(kz)

]
σz,

(1.13)

where t1 represents the strength of hopping between the A and B sub-lattices in the
same layer, t2 represents the strength of hopping between atoms of the same species
in the same layer, t3 represents the strength of hopping between atoms of the same
species in adjacent layers and ∆ represents the sub-lattice energy difference. The
lattice spacing has been chosen as ax = ay = az = 1. Degeneracies occur at points
in reciprocal space where each component hi(k) of the Hamiltonian (1.13) vanish
simultaneously. Clearly the h1(k) and h2(k) components both vanish at (kx, ky) =

(0, 0) and (kx, ky) = (π, π). The solutions of h3(k) = 0 for each of these (kx, ky) pairs
leads to two equations:

cos(kz) = −
(

∆
2t3
− 2t2

t3

)
, (1.14)

cos(kz) = −
(

∆
2t3

+
2t2

t3

)
. (1.15)

The values of the quantities ∆/2t3 and 2t2/t3 determine if there are solutions to
h3(k) = 0 at all . If there are solutions each of the equations contributes a pair of
Weyl points at ±kz of opposite helicity.

Figure 1.6 shows the topological phase diagram of the Hamiltonian (1.13). There
are two distinct gapped insulator phases and three Weyl semi-metal phases. The
two insulator phases are a normal topologically trivial insulator and a quantum hall
insulator, respectively. The three Weyl semi-metal phases represent solving either of
the two equations (1.14) and (1.15) individually or both simultaneously.

We shall focus on the phase WSM1; where the two Weyl points occur at
(kx, ky) = (0, 0). We shall fix ∆/2t3 = 1 = 2t2/t3 such that the two Weyl points
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FIGURE 1.6: A phase diagram representing the topological phases
of the Hamiltonian (1.13). The phases are displayed in the accom-
panying legend. The phases NI and QHI represent normal insula-
tors and quantum Hall insulators respectively. The phases labeled
WSM represent one of three different Weyl semi-metal phases. In the
phase WSM1 there are two Weyl points which appear along the line
kx = ky = 0. In the phase WSM2 there are two Weyl points which
appear along the line kx = ky = π. In the phase WSM3 there are four
Weyl points which appear at each of the locations of the WSM1 phase
and the WSM2 phase.

occur at kz = ±π/2 as shown in the figure 1.7.

The expansion of the Hamiltonian around the points (0, 0,±π/2) results in the
local behaviour:

H(k) ' t1(kx + ky)σx + t1(kx − ky)σy ∓ 2t3(kz ∓
π

2
)σz. (1.16)

From this expansion we can determine that the charges of these two Weyl points
are c = ±sgn(t3). As the ratios of ∆/2t3 and 2t2/t3 depart from unity the Weyl
points move along the line kx = ky = 0. Beyond certain critical values the Weyl
points meet and annihilate, either at kz = 0 or kz = π, and we reach one of the
gapped insulator phases.

Introducing terminations of the system in two surfaces parallel to either the
xz or yz planes will result in Fermi arc surface states which join the projections
of the two Weyl points in the surface Brillouin zone. Figure 1.8 shows a portion
of the surface band structure which results from introducing terminations to the
bulk Hamiltonian (1.13) in the xz plane. In this chosen finite geometry kx and kz

remain good quantum numbers but ky can no longer characterise the solutions.
In this figure we can see the open curve degeneracy joining the two Weyl points.
In this case if the Fermi energy is assumed to be zero then the Fermi surface will
just consist of this open arc joining the two Weyl points. The local colouring of the
surface bands indicates that these Fermi arcs are an edge feature.
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FIGURE 1.7: Density plot representing the magnitude of the vector
h(k) over the three dimensional Brillouin zone. The magnitude of
this vector represents half the splitting between the two bands of the
band structure. The parameters have been chosen so that we are in
the phase WSM1. The two Weyl points, for these parameters, occur
at (0, 0,±π

2 )

FIGURE 1.8: A plot taken from Delplace et al. [72] showing two of
the surface bands of the WSM1 phase plotted over a shifted surface
Brillouin zone. In Delplace et al. [72] terminations of the bulk Hamil-
tonian (1.13) in the xz plane were considered. The surface band struc-
ture shows the open Fermi arc degeneracy joining the projections of
the bulk Weyl points which are indicated by W− and W+. The sur-
faces are coloured according to the legend and represent the average
position 〈y〉 of the corresponding states.

1.5 Topological Features of Dissipative Systems

The systems we have considered up to this point have been Hermitian and therefore
all possess real eigenvalue spectra. There is however a growing interest in aspects
of non-Hermitian systems which exhibit gain and loss. This began with the work of
Bender and Boettcher who noticed that PT symmetric systems have real eigenvalue
spectra [73]. A PT symmetric Hamiltonian is one which is invariant under the
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combined action of the parity, P, and time reversal, T, operators. In quantum
mechanics the Hamiltonian is usually assumed to be Hermitian resulting in real
eigenvalues and unitary time evolution which conserves the overall probability.
An interesting aspect of non-Hermitian PT symmetric Hamiltonians is that they
can also display unitary time evolution and hence could describe new classes of
complex quantum theories [74].

Beyond PT symmetry there is interest in systems that display dissipation and
amplification more generally. In these systems the eigenvalues can be complex with
unconventional consequences. Many of these curiosities are linked to the presence
of exceptional points - locations in parameter space where two or more complex
eigenvalues and their associated eigenvectors coalesce. These exceptional points
often, but not always, occur at points in parameter space where PT symmetry is
broken [75]. Initially it was believed that one such unconventional aspect is that as
exceptional points are encircled once in parameter space the modes are swapped,
and thus it requires twice encircling the exceptional point in order to return to
the original state [76]. Even then the states have accumulated a Berry phase of
π, so it would therefore take four circuits to return fully to the original situation
[77]. Such a perspective of state-flips and geometric phases however requires the
instantantaneous eigenstates to be followed upon the encircling evolution. The
non-Hermitian nature of these systems however can lead to a breakdown of the
adiabatic theorem [78, 79]. Recently it was shown that the effect of the breakdown
of the adiabatic theorem is that the direction of encircling of the exceptional point
completely determine the eigenvalue sheet which one ends up on [80]. The presence
of exceptional points also gives rise to novel edge features as discussed by Leykam
et al. [81]. In Leykam et al. [81] the authors discovered that there are two types of
topological charges associated with exceptional points, one a generalisation of the
Berry phase and a second one with no Hermitian counterpart, which in combination
can produce myriad diverse edge theories.

These ideas have a natural relevance to optics where there is a ubiquitous
presence of both gain and loss due to, for example, stimulated emission and
material absorption [75]. Recognition of this has sparked interest in designing PT
symmetric optical systems, for instance coupled waveguides one with gain and the
other with matching loss [82]. In this system there is a change in behaviour between
the PT symmetric phase, with real eigenvalues, and the broken PT phase, where
the eigenvalues are complex. In the unbroken PT phase a symmetric exchange of
input light intensity between the two waveguides occurs while in the broken phase
intensity is confined to, and amplified in, the gain waveguide irrespective of which
waveguide it was incident upon. The transition point between these two regimes
is an exceptional point. There has been much interest in recognising exceptional
points in optical systems [83]. Some of this interest has focused on steering optical
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systems to exceptional points, allowing mode selection [84], and on going through
exceptional points, resulting in unconventional behaviour in laser systems [85].
Beyond marked behaviour changes achieved by traversing through exceptional
points there is interest in exploiting the topological structure of the eigenvalue
sheets around the exceptional points in optical systems [86].

The type of systems which exhibit exceptional points need not be especially com-
plicated, in either a mathematical or physical sense. As an example we shall consider
a simple model of coupled lossy modes that exhibits exceptional point physics:

H =

(
ω1 − iγ1 µ

µ ω2 − iγ2

)
. (1.17)

In equation (1.17) ω1 and ω2 are two distinct mode frequencies and γ1 and γ2 are
the corresponding loss rates. The coupling strength between the modes is µ. The
eigenvalues of this model are

E± =
ω1 + ω2

2
− i

γ1 + γ2

2
±

√
µ2 +

(
ω1 −ω2

2
+ i

γ1 − γ2

2

)2

. (1.18)

The difference of the two eigenvalues only depends on the difference of the two
mode frequencies and the differences of the two loss rates and not the average of
the mode frequencies and loss rates. As such to find exceptional points we need
only examine the difference in these quantities for a chosen fixed coupling µ.

FIGURE 1.9: The real and imaginary parts of the eigenvalues of the
Hamiltonian (1.17). For this plot we have considered ωav = 1 and
γav = 1. The chosen coupling strength is µ = 0.1.

Figure 1.9 shows the real and imaginary parts of the eigenvalues as a function
of the difference in mode frequencies and difference in loss rates. We see that an
exceptional point occurs at (δω, δγ) = (0, 0.1), corresponding to the difference in
loss rates matching the strength of coupling.

In figure 1.10 we examine the local dispersion of the real (continuous lines)
and imaginary (dashed lines) parts of the eigenvalues around the exceptional
point. For this picture we fix the two mode frequencies to be equal. We see that
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FIGURE 1.10: The real (continuous) and imaginary (dashed) parts of
the eigenvalues of the Hamiltonian (1.17) along the line ω1 = ω2.

there are extended degeneracies in the real parts and in the imaginary parts of the
eigenvalues. These extended degeneracies are non-overlapping except at the two
exceptional points locations at δγ = ±µ = ±0.1 indicated by the black dashed
gridlines. The dispersion away from the exceptional points for both the real and
imaginary parts exhibit square-root dependence, a hallmark of the lowest order
exceptional point.

1.6 Iso-Frequency Surfaces

The previous sections have considered the topological classification of band
structures, i.e. assigning topological invariants to the surfaces ω(k), where k is
either (effectively) a two dimensional or three dimensional wavevector. It is also
possible however to characterise a different surface: the iso-frequency surface of a
material. This construction is a closed surface in wavevector space representing all
the wavevectors that a wave of a given frequency can propagate with. In electronic
settings a well known example of one of these surfaces is the Fermi surface which
is the surface of all wavevectors that can propagate at the Fermi frequency. In
optical systems the analogous surface is set by the frequency of the incoming light.
The iso-frequency surface is then an important descriptor of the refraction and
polarisation behaviour of the material in optical contexts.

These iso-frequency surfaces, when gapped, can also be characterised by a
Chern number. This characterisation has been done for two diverse optical systems,
in either a direct or implicit manner. In the first the iso-frequency surfaces of a
homogeneous uniaxial hyperbolic material with chirality are shown to be topo-
logically non-trivial [87]. In the second system the authors considered the related
Floquet “quasi-energy” surface of a two dimensional photonic crystal [88].
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This first approach, by Gao et al. [87], studies the iso-frequency surfaces of
effectively homogeneous uniaxial hyperbolic metamaterials with chirality. In this
context, prior to the introduction of chirality, the iso-frequency surface has three
sheets and features two isolated degeneracies between pairs of the sheets. For a
chosen frequency the sheets of this surface represent the allowed wavevectors that
light of a given polarisation can propagate in the uniaxial hyperbolic material with.
The degeneracies of the surface are quadratic intersections rather than the linear
Dirac point crossings in section 1.2. In this instance the quadratic degeneracies have
a topological index of ±1 rather than the ± 1

2 of Dirac points. The introduction of
chirality then lifts both degeneracies resulting in non-zero Chern numbers for each
sheet of the iso-frequency surface. The distinction between the topological indices
of linear and quadratic degeneracies can have global consequences on the allowable
Chern numbers of the surfaces, as we shall later explore.

It is worth examining the work of Gao et al. [87] in relation to the Chern
insulator model presented in section 1.3. One difference is in the work of Gao et
al. [87] the relevant reciprocal space is not the Brillouin zone torus but rather the
sphere of propagation directions. This is a noteworthy distinction as in the work
of Gao et al. [87] the degeneracies are not generated by lattice effects but rather by
the anisotropy of the optical material. A second difference is that the authors here
are considering the polarisation texture in reciprocal space [89] as generating the
topologically non-trivial result rather than some complicated orbital hybridisation
behaviour in reciprocal space. In this context the Dirac points and zeroes of the mass
terms, discussed in section 1.3, are then polarisation features known as C-points and
L-lines [90, 91]. C-points are directions in reciprocal space where the polarisation
state is purely circularly polarised, either left-handed or right-handed. L-lines are
directions in reciprocal space along which the polarisation state is linear. In the
language of polarisation optics a non-zero Chern number results from the L-lines
separating C-points of different handedness [89].

The second relevant proposal to discuss, by Rechtsman et al. [88], considers
a paraxial wave equation describing light propagating out of the plane of a two
dimensional photonic crystal. In this case the two-dimensional photonic crystal is
formed by a triangular arrangement of evanescently coupled waveguides in the
xy plane. Each waveguide is extended along the z-direction, forming a helix. By
transforming the coordinates into ones which follow these helices Rechtsman et al.
[88] showed that an effective external field appears in the paraxial wave equation.
A tight-binding adaptation of this paraxial wave equation was implemented and
analysed using Floquet theory. Within this framework the authors calculated the
Floquet “quasi-energy” band structures and inferred a non-zero Chern number
from finite geometry calculations and experiment. The work in Rechtsman et al.
[88] follows a similar approach to the conventional developmental route outlined in
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subsection 1.3.3. In particular, a triangular geometry was considered in Rechtsman
et al. [88] so as to produce Dirac point degeneracies in the bandstructure and a
perturbation, the effective external field induced by the helical waveguides, lifts the
degeneracies producing a topologically non-trivial result.

Although not explicitly stated, focusing on these Floquet “quasi-energies” is
similar to analysing iso-frequency surfaces of photonic crystals. Rechtsman et al.
[88] are looking at the form of the quasi-invariants which evolve the field along the
structure. The “quasi-energy” surface is in fact a closed surface in wavevector space
meaning that the surface is more accurately described as a quasi iso-frequency sur-
face. The Floquet quasi-invariants are therefore similar to the iso-frequency surface
if one thinks of the latter as a surface of kz(kx, ky). In the work of Rechtsman et al.
[88] a scalar wave equation was employed, implicit in which is an assumption that
the polarisation state is completely decoupled from the direction of propagation.
This assumption is generally not the case; for instance polarisation mixing occurs
for light propagating in anisotropic materials.

In this thesis we shall present work which is complementary to these two
diverse realisations of optical topological order. As in the work of Gao et al. [87]
we will eschew the reliance on a particular form of lattice patterning to produce de-
generacies and instead rely on the intrinsic polarisation degeneracies of anisotropic
dielectrics. We will consider both homogeneous materials, as was done in Gao et
al. [87], and periodic structures. In the former instance the distinction between our
work and that of Gao et al. [87] is that we will consider several different forms of
biaxial anisotropy rather than uniaxial anisotropy. In the latter case the distinction,
as well as considering more general anisotropic materials, is that the topology of the
Brillouin zone torus differs compared to the sphere of propagation directions. Such
a difference in topology will require a different polarisation texture in reciprocal
space and will therefore have a different topological phase diagram to that of the
homogeneous material. The work we present will be complementary to that of
Rechtsman et al. [88] in the sense that we will also consider light propagating out of
the periodic plane of a two dimensional photonic crystal. The distinction for us is
that we will exploit the effective optical spin-orbit coupling of anisotropic materials
rather than considering the decoupling of the polarisation and the direction of
propagation in reciprocal space.

1.7 Light-Matter Coupling in Semiconductors & Topological
Polaritons

The concepts introduced in the previous sections do not belong to any one branch
of physics. They principally emerged in electronic settings but are being rapidly



22 Chapter 1. Introduction & Motivation

appropriated by many other diverse settings. In the previous sections we primarily
focused on the relevance of topological concepts to optical systems as that shall
be one of the two primary settings of the work presented in this thesis. The other
setting we shall be considering is that of exciton-polariton systems.

An exciton is an elementary excitation of a semiconductor. This excitation
comprises a valence band hole and a conduction band electron which are bound
by their Coulomb attraction [17]. There are in fact a number of discrete exciton
energy levels just below the semiconductor band-gap as well as the continuum
of unbound yet interacting electron and holes above the electronic band-gap [92].
For light impinging upon a semiconductor, with a frequency just below that of
the band-gap frequency, the excitons make a significant contribution to the optical
response of the material [93]. The effect of the excitons is to heavily modify the linear
photonic dispersion resulting in mixed light-matter modes known as polaritons [17].

These polaritons have proved an interesting platform to study myriad phenom-
ena. In particular microcavity polaritons resulting from the coupling of heavy-hole
quantum-well excitons to photonic cavity modes have allowed polariton condensa-
tion [94] and consequently polariton lasing [95], among many other effects. Within
the microcavity polariton setting there has also been several proposals [34–36] and
a realisation [96] of various topological insulators in two dimensions characterised
by non-zero Chern numbers. These schemes have considered the implementation
of triangular two dimensional lattice potentials for either the excitonic [34, 36] or
the photonic component [35] of the polaritons so as to produce Dirac point in the
polaritonic band-structure. The degeneracies at the Dirac points were then lifted
due to the Zeeman splitting of the bright excitons arising from the introduction
of a magnetic field. The result of this is to achieve the desired set of topologically
non-trivial bands.

The study of topological effects in polaritonic systems is however not as mature
as in electronic and optical settings. The topological features of three dimensional
dispersion relations of polaritons have yet to be explored. Similarly the possibility
of polaritons as a platform to study non-Hermitian topological effects has yet to be
fully examined. One of the intentions of this thesis is to focus on these inchoate ar-
eas. We shall do this by considering the dispersion relations of the magneto-exciton-
polaritons of bulk semiconductors. In comparison to the spectrum of quantum well
excitons, the exciton spectrum of bulk semiconductors is more complex. This is the
case as the excitons formed between the light-hole valence band and the conduction
band electrons need to be included for the bulk semiconductor. The resulting dis-
persions therefore promise to be rich in structure and consequently an interesting
platform to study for three dimensional topological features and, when dissipation
is included, non-Hermitian effects also.
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1.8 Outline of Thesis

In this thesis we consider the topological characteristics, both in terms of topological
invariants and topologically protected degeneracies, of various photonic systems.
This work leads to new theoretical understanding of the topological characteristics
of bulk homogeneous dielectrics, patterned two dimensional photonic crystals and
bulk magneto-exciton-polaritons.

In chapter 2 we examine the topological invariants that can be assigned to the
refractive index surfaces of anisotropic optically active bulk dielectric media. We
examine specifically the L-lines and C-points for light propagating through biaxial
dielectrics and how these polarisation degeneracies can lead to non-zero Chern
numbers once gyromagnetic effects are introduced. In this chapter we also derive
an effective Hamiltonian which paraxially evolves the field along one of the optic
axis directions of the biaxial dielectric.

In chapters 3 and 4 we make use of the Hamiltonian derived in chapter 2,
adapting it to describe light propagating through two dimensional photonic crystals
with two different lattice geometries. In chapter 3 we consider square patterned
photonic crystals while in chapter 4 we consider triangularly patterned photonic
crystals. In each chapter we determine the Chern number of the iso-frequency
surface for crystals primarily composed of biaxial materials with one of two
possible forms of optical activity. For all combinations of form of lattice and optical
activity we examine the topological phase diagrams. We compare the topological
phase diagrams achieved in each geometry and contrast them with those of the
homogeneous materials considered in chapter 2.

In chapter 5 we examine the bulk-boundary correspondence of topologically
non-trivial materials. We investigate this correspondence for two different bound-
ary conditions; one of which explicitly includes the adjacent material. For each type
of boundary condition we explore the fate of the edge states as the bulk band gap
is closed. We also explore the role that the orientation of the boundary plays in the
emergence of edge states. Using these insights we address the question of edge
states for the bulk photonic crystal models developed in the previous chapters.

In chapter 6 we investigate the topological features that are present in the three
dimensional dispersion relations of magneto-exciton-polaritons. The multiple
conduction and valence states participating in the exciton ground state result,
when a magnetic field is applied, in an anisotropic and multiply resonant dielectric
response. The polariton dispersions that follow host a wealth of topologically pro-
tected degeneracies both in the absence of dissipative effects and when dissipation
is included. We examine this plethora of topologically protected features for the
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representative case of gallium arsenide.
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Chapter 2

Propagation of Light Through
Anisotropic Optically Active
Materials

2.1 Introduction

In this chapter we study the propagation of light through homogeneous anisotropic
materials which additionally exhibit gyrotropic effects. The anisotropy we consider
is that of an optically biaxial crystal resulting from low crystal symmetry [13].
In these materials double refraction is the norm, with the two refractive indices
as well as the natural polarisation state of the light varying with the direction of
propagation through the material [97]. These refractive indices coalesce and come
apart four times over all possible propagation directions. These points of contact
in direction space are the conical intersections of the refractive index surfaces and
shall be of primary interest in this chapter.

We shall see that the introduction of optical activity can cause these conical
intersections to disappear resulting in two distinct refractive indices for light
travelling in any direction [14]. With this addition the polarisation state is in
general that of elliptic polarisation, with departures from this general state worthy
of attention. These departures are in the form of either C-points or L-lines, the
former being points in direction space at which the polarisation is circular and
the latter being contours in direction space along which the polarisation is linear [91].

The totality of refractive indices in direction space defines two closed surfaces,
each of which has an associated polarisation state in every direction. A topological
invariant can be associated with the polarisation states defined over these surfaces.
Whether this invariant is non-zero or not is determined by the nature of the optical
activity considered. We study the invariants of the surfaces corresponding to
biaxial optically active materials within the framework developed by Berry and
Dennis [91]. As discussed in chapter 1, this work is a complementary study of the
topological invariants of the refractive index surfaces of homogeneous materials to
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that conducted by Gao et al. [87].

As well as assessing these surfaces in their entirety we are also interested in the
behaviour of the refractive indices locally to one of the conical intersections. We
will pursue this interest by deriving a Hamiltonian which evolves the displacement
field through an arbitrary biaxial optically active material in the paraxial limit. This
Hamiltonian shall extend that of Jeffrey [98], including higher order terms in the
local dispersion. The derived Hamiltonian shall be a central result of this chapter
and will be used extensively in the following chapters 3 and 4. In these chapters we
shall re-adapt this Hamiltonian in order to describe periodic anisotropic optically
active media patterned in two different geometries.

To this end we begin with, in section 2.2, an introduction to Maxwell’s equations
and the constitutive relations in a general sense. We shall then proceed to the partic-
ular constitutive relations of biaxial materials featuring either of two forms of optical
activity. With the nature of the induced response in biaxial gyrotropic materials es-
tablished we move onto examining the propagation of disturbances through these
materials in section 2.3. This is done through a 2× 2 matrix eigenvalue problem for
the transverse displacement field, as developed by Berry and Dennis [91]. The eigen-
values of this problem are related to the refractive indices, while the eigenvectors de-
termine the polarisation state of the displacement field both of which are examined
in section 2.4. The polarisation structure additionally has an associated topological
invariant which we discuss in subsection 2.4.3. Having discussed these surfaces in
generality we then move to the aforementioned local paraxial approximation ap-
proach in section 2.5. This approach facilitates the derivation of a Hamiltonian that
evolves the field along an optic axis direction, which we consider in section 2.6.

2.2 The Constitutive Relations of Anisotropic Optically Ac-
tive Materials

Maxwell’s equations are the fundamental description of the propagation of light.
They are a set of coupled differential equations describing the temporal and spatial
evolution of the electric and magnetic field of a disturbance as the disturbance moves
through space. The equations can be written in an arbitrary medium as

∇ ·D = ρ f , (2.1)

∇ · B = 0, (2.2)

∇× E = −∂tB, (2.3)

∇×H = j f + ∂tD. (2.4)
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In the above eqs. (2.1) to (2.4), E and B are the free space electric and magnetic fields,
D and H are the induced electric and magnetic fields in the material considered
and ρ f and j f are the free charge density and current density respectively. In what
follows we shall be exclusively interested in describing the spatial and temporal
evolution of the fields in the situation where the charge and current densities are
zero, thus p f = 0 and j f = 0 henceforth.

The description of the medium under consideration is fully accounted for by a
set of constitutive equations that relate the free space electric and magnetic fields
(E, B) to those induced in the material (D, H). The induced fields can be expanded
as a power series in the free fields and in most circumstances it is sufficient to retain
only the linear terms in this expansion. The response may however be non-local in
either space and/or time:

D(r, t) =
∫

dt′
∫

dr ′
[

ε(r ′, t′)E(r− r ′, t− t′) + α(r ′, t′)B(r− r ′, t− t′)
]

, (2.5)

H(r, t) =
∫

dt′
∫

dr ′
[

β(r ′, t′)E(r− r ′, t− t′) + ν(r ′, t′)B(r− r ′, t− t′)
]

. (2.6)

Spatial non-locality will only be important when considering light whose wave-
length is of the scale of the structure probed. This situation will not be treated in
this chapter so we can take the response to be local. The temporal non-locality can
be dealt with by taking the Fourier transform and using the convolution theorem to
arrive at the constitutive relations

D(r, ω) = ε BP(r, ω)E(r, ω) + α BP(r, ω)B(r, ω), (2.7)

H(r, ω) = β
BP
(r, ω)E(r, ω) + ν BP(r, ω)B(r, ω). (2.8)

This is the so-called Boys-Post representation of the constitutive relations in which
the induced fields are expressed in terms of the free fields [99]. There is another
representation, the Tellgen representation [99], which expresses (D, B) in terms of
(E, H):

D(r, ω) = ε T(r, ω)E(r, ω) + α T(r, ω)H(r, ω), (2.9)

B(r, ω) = β
T
(r, ω)E(r, ω) + µ

T
(r, ω)H(r, ω). (2.10)

The Tellgen representation will be the one used throughout, however they are
entirely equivalent descriptions and (all being well-behaved) are related by an
inversion. In this chapter we shall be concerned with non-magnetic materials i.e.,
µ(r, ω) = µ01 which are not bi-responsive (α(r, ω) = 0 = β(r, ω)). The response
of these materials will then be entirely determined by their permittivity tensors
ε(r, ω), or alternatively by their inverse permittivity, or impermeability, tensor
η(r, ω). We shall consider the tensor η(r, ω) as this neatly facilitates working with
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the transverse displacement field D, which will prove advantageous. In doing this
we have made a choice as to how to include chirality in the constitutive relations;
we have followed the approach used by Landau and Lifshitz [97]. In this approach
chirality is included by adding the simplest non-trivial non-local contribution to
the electric field E which is proportional to ∇× D. There are alternative ways to
include chirality through a bianisotropic response [99] however they can be related
with the approach of Landau and Lifshitz [97] thorough Faraday’s law (2.3). We
do not expect the conclusions of this or subsequent chapters to be dependent on
the way in which chirality is included in the constitutive relations. Additionally in
this chapter and the work which follows in chapters 3, 4 and 5 we shall consider
materials which are non-dispersive. As such in these subsequent chapters when we
consider frequency variation we are not strictly referring to a single material but
rather to an abstract material which at each wavelength considered has the allotted
properties. We shall now move to examining the form of the inverse permittivity
tensors of anisotropic optically active dielectrics.

2.2.1 Biaxial Faraday Effect Material

In the case of a transparent biaxial Faraday effect material the inverse permittivity
tensor is of Hermitian form, i.e. ηij = η∗ji [97]. In the absence of an external magnetic
field this tensor becomes real symmetric. In this instance there is a coordinate
system, known as the the principal dielectric axes, in which this symmetric tensor
is diagonal, with real distinct eigenvalues 1

εi
[98]. We shall consider the inverse

permittivity in this coordinate system initially and refer to this as the 123 coordinate
system henceforth. These optically biaxial dielectrics occur in crystal systems with
the lowest degree of symmetry; those of the orthorhombic, monoclinic and triclinic
varieties [13]. We now turn to the effect of introducing an external magnetic field.

Upon introduction of a static external magnetic field the permittivity tensor is
no longer diagonal, acquiring, to the leading order in the external field h, imaginary
off-diagonal components according to

(−η23, η13,−η12)
T = i f h (2.11)

where f is a general rank two tensor [97] and h is measured in Tesla. The next order
correction in the magnetic field is a real symmetric contribution to the off-diagonal
terms of the inverse permittivity tensor. This contribution is responsible for the
Cotton-Mouton effect. The Faraday effect occurs in many transparent materials and
causes a small discrepancy in the refractive indices experienced by left and right
circularly polarised light [97]. This discrepancy results in the material rotating the
direction of polarisation of linearly polarised light as it passes through a Faraday
effect material subjected to a magnetic field. The scale of this optical rotation
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is captured in a quantity called the Verdet constant. The Verdet constant gives
the rotation in radians per meter per Tesla. A typical value for this quantity is
V = 9.25 rad T−1 m−1 (for quartz at λ = 435.8 nm [100]). In a similar vein we now
introduce chiral materials.

2.2.2 Chiral Biaxial Material

Just like materials exhibiting the Faraday effect, chiral materials do not affect the
two circular polarisations of light in the same way. In chiral materials, however,
the asymmetry arises from intrinsic material properties, rather than the effect of an
external magnetic field [97]. For chiral materials the inverse permittivity tensor is
again Hermitian. As for the Faraday effect the chiral contributions appear on the
off-diagonal of the inverse permittivity tensor according to

(−η23, η13,−η12)
T = iG s (2.12)

where s is the unit propagation direction and G is the chirality tensor, which may be
taken to be real symmetric [97]. The equation (2.12) is for weak spatial dispersion, a
regime in which the chiral contributions to the permittivity tensor can be expanded
in powers of the unit propagation direction s. This expansion starts linearly in s with
each successive term smaller by a factor of a/λ, where a is the lattice spacing and λ

is the wavelength. We choose to omit the higher-order terms as at optical and longer
wavelengths the higher-order terms are considerably smaller in magnitude than the
leading term. If we were to have additionally considered metamaterial structures
it would be possible to have more complicated gyromagnetic tensors however we
have chosen to focus solely on dielectric crystals. The number of the six components
of G which are non-zero depends on the crystal system considered. In crystals which
possess a centre of symmetry all six of the components are zero. In optically biaxial
systems there are eight different possible crystal point groups. Of these eight point
groups only five lack a centre of symmetry and hence exhibit chirality. For each
of these five possible crystal point groups, there are different forms of the chirality
tensor G which are listed in table 2.1.

Name Schönflies Notation Crystal System Non-Zero Components of G
Pedial C1 Triclinic All non-zero

Sphenoidal C2 Monoclinic Gaa, Gbb, Gcc, Gac

Domatic Cs Monoclinic Gab, Gbc

Rhombic Disphenoidal D2 Orthorhombic Gaa, Gbb, Gcc

Rhombic Pyramidal C2v Orthorhombic Gab

TABLE 2.1: The non-zero components of the chirality tensor G for all
non-centrosymmetric biaxial crystals [101].
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The relationship between the non-zero chirality components in the standard
crystallographic basis abc and those in the principal dielectric basis 123 depends on
both the system of crystal considered and the material itself within that system.

For orthorhombic crystals the three principal axes coincide with the crystallo-
graphic axes in some permutation. The chirality tensor for orthorhombic crystals in
the principal axes basis is then

G
123

= P G
abc

PT (2.13)

where P is the appropriate 3× 3 permutation matrix that describes how the abc and
the 123 bases relate. The necessary permutation can be found by looking up the
considered material in the Handbook of Mineralogy [102]. In the case of rhombic
pyramidal structures (C2v) any of the permutations will result in a symmetric
chirality tensor with one of the off-diagonals terms being non-zero and all other
terms zero. For the case of rhombic disphenoidal structures (D2) the result of any
of the permutations will produce a diagonal chirality tensor matrix, with distinct
entries on the diagonal.

For monoclinic crystals one of the principal axes coincides with the b crystallo-
graphic axis while the other two have no fixed correspondence with the a and the c
crystallographic axes. In this instance the chirality tensor in the principal axes basis
is again related to that stated in table 2.1 by a material specific permutation. This
relationship is given by

G
123

= P G
abc

PT (2.14)

where P is the appropriate permutation matrix, which can again be determined
from the Handbook of Mineralogy [102]. For domatic crystal systems (Cs) any
of the permutations will result in a symmetric chirality tensor possessing two
distinct off-diagonal terms with zeroes on the diagonal. In the case of sphenoidal
crystals (C2) any permutation will produce a symmetric chirality tensor with three
distinct diagonal entries and one off-diagonal entry unrelated to any of those on the
diagonal.

In triclinic crystal systems there is no relationship between the crystallographic
axes and the principal dielectric axes. As such all components of the chirality tensor
in the principal dielectric basis are non-zero and have no relationship to each other.

In biaxial crystals it is rare that the precise values of all the components of the
chirality tensor are known. This is because the effect, in comparison to biaxiality, is
weak. Owing to this it is difficult to measure the strength of the chirality away from
an optic axis [101]. A typical scale for these components is set by the optical specific
rotation ρC, which is the angle in radians that the polarisation direction of linearly
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polarised light is rotated by per meter in travelling through a chiral medium. In
quartz, a uniaxial material, this quantity is ρC ' 840 rad m−1 (at λ0 = 400 nm) [100].
The quantity ρ is defined as ρC = π

λ0
∆n and this equation shall be used to set the

scale for the chirality tensor components in later chapters.

We note that it is entirely possible that a biaxial dielectric can exhibit both
the Faraday effect and chirality. Were this the case we would expect that, due
to linearity, these effects should be additive. In the work to follow we have not
however considered the possibility of the simultaneous presence of both. Thus from
this point on when we refer to biaxial Faraday effect materials it should be assumed
that we are referring to a biaxial material which is centrosymmetric and hence does
not exhibit chirality.

Now that the nature of the relationship between the applied and induced field
in each of these anisotropic optically active materials has been established we can
look at describing the propagation of light through them.

2.3 The Wave Equation as a 2× 2 Matrix Eigenvalue Problem

To examine the propagation of light through biaxial optically active materials we
shall initially work with a wave equation for the displacement field D. We will
follow the approach of Berry and Dennis [91] and of Jeffrey [98] where they express
the wave equation as a 2× 2 matrix eigenvalue problem. In this approach the matrix
describes the propagation direction and the material characteristics. As our work
will build on this approach we shall spend some time explicitly introducing how
this 2× 2 matrix eigenvalue problem emerges.

The decoupled wave equation is obtained as an extension to Maxwell’s equa-
tions. The wave equation follows upon taking the curl of Faraday’s law (2.3), using
Ampere’s law (2.4) to re-write the right hand side and expressing the electric field
E in terms of the displacement field D through the impermeability tensor η. The
resulting wave equation for the displacement field is

∇×∇× (ηD) = − 1
c2 ∂2

t D. (2.15)

If we are interested in plane-wave solutions of the wave equation of the form

exp{i(k0n(s)s · r−ωt)}d(s) (2.16)
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then the wave equation (2.15) becomes

− k2
0n2(s)

[
s× s× (ηd(s))

]
=

ω2

c2 d(s). (2.17)

Using the dispersion relation, the equation (2.17) can be re-written as an eigenvalue
problem for the inverse squared refractive indices. This eigenvalue problem takes
the form

−
[

s× s× (ηd(s))
]
=

1
n2(s)

d(s). (2.18)

It is worth noting that the operator −s× s× acting on a vector is a projector, which
picks out the part of the vector which is transverse to s. Henceforth we shall regard
the part of the left hand side of equation (2.18) which acts on the displacement field
d(s) as a 3× 3 matrix operator, denoted M:

M(s, η)D = λD. (2.19)

The form that M takes follows from the material considered; in particular from the
relevant constitutive relations. As such, for a biaxial material the matrix M is real
symmetric, while upon introduction of either form of optical activity considered in
section 2.2 the matrix M becomes complex Hermitian [91].

The matrix M is constrained by one of Maxwell’s equation (2.1). The transverse
nature of the displacement field d(s) (s · d(s) = 0) dictates that M must have a
zero eigenvalue. The other two eigenvalues correspond to the inverse squares of
the directionally dependent refractive indices of an anisotropic material. The zero
eigenvalue of M must have a corresponding eigenvector which is directed along
the propagation direction s considered. This information allows us to reduce the
equation (2.19) to a 2× 2 matrix eigenvalue problem.

To accomplish this reduction we shall change the basis of M such that one of the
coordinate axes points along the propagation direction s. This procedure is carried
out by writing the unit propagation direction s in spherical polar coordinates s =

(sin θ cos φ, sin θ sin φ, cos θ) and then implementing the transformation

M
Rθφ

= R M
xyz

R−1 (2.20)

where the transformation matrix R is given by

R =

 sin θ cos φ sin θ sin φ cos θ

cos θ cos φ cos θ sin φ − sin θ

− sin φ cos φ 0

 . (2.21)
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This transformation allows us to easily extract the part of the operator M which is
transverse to s. This transverse part is the 2× 2 matrix m:

m
θφ

=

(
mθθ mθφ

mφθ mφφ

)
. (2.22)

For later convenience we shall proceed to transform the basis of m (equation (2.22))
to a circular polar basis by affecting the transformation:

mRL = RC m
θφ

R−1
C . (2.23)

In this instance the transformation matrix RC is given by the equation

RC =
1√
2

(
1 −i
1 i

)
. (2.24)

As a final step we shall re-express s in Cartesian coordinates, arriving at a final equa-
tion of the form

mRL(s, η)dRL =
1

n2(s)
dRL. (2.25)

To study the intricacies of the resulting matrix m we shall decompose it into factors
proportional to the identity matrix and each of the three Pauli matrices σi

m(s, η) = A(s, η)1 + B(s, η)σz + C(s, η)σx + D(s, η)σy. (2.26)

When decomposed in this fashion the functions A, B, C and D are polynomials in
the unit wavevector direction s. These functions additionally depend linearly on the
components of the impermeability tensor η. The functions are

A(s, η) =
(s2

1s2
3 + s2

2)

2(s2
1 + s2

2)
η11 +

(s2
2s2

3 + s2
1)

2(s2
1 + s2

2)
η22 +

(s2
1 + s2

2)

2
η33, (2.27)

B(s, η) = i(s3η12 − s2η13 + s1η23), (2.28)

C(s, η) =
(s2

1s2
3 − s2

2)

2(s2
1 + s2

2)
η11 +

(s2
2s2

3 − s2
1)

2(s2
1 + s2

2)
η22 +

(s2
1 + s2

2)

2
η33, (2.29)

D(s, η) =
s1s2s3

(s2
1 + s2

2)
(η22 − η11). (2.30)

The off-diagonal terms of the impermeability tensor η, those responsible for optical
activity, only appear in the polynomial (2.28). For the two variants of optical activity
detailed in section 2.2 the resultant forms of polynomial (2.28) are

BF(s) = sT f h, (2.31)

BC(s) = sTGs. (2.32)
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2.4 Refractive Index Surfaces and Their Polarisation Struc-
ture

The refractive indices n±(s, η) which follow from the eigenvalues λ±(s, η) of the
matrix mRL are then

n±(s, η) =
1√

λ±(s, η)
=

1√
A(s, η)±

√
B(s, η)2 + C(s, η)2 + D(s, η)2

(2.33)

The refractive indices (2.33) can be visualised by plotting two surfaces whose
magnitude in a given direction is the refractive index for light propagating in that
direction. When done over all directions of the unit wavevector s this procedure
defines two closed surfaces in direction space. These plots are known as refractive
index surfaces and the two sheets are associated with the two polarisation states for
light propagating in that direction. There is a related construction, which is known
as the optical indicatrix or index ellipsoid, which also describes the two refractive
indices as well as the vibration direction of D over all directions s. We have chosen
to work exclusively with the refractive index surface rather than the index ellipsoid
in this thesis however it could be an interesting complimentary approach to instead
consider the index ellipsoid.

2.4.1 Refractive Index Surfaces of Biaxial Materials

In a biaxial material, that does not exhibit optical activity, the refractive index
surfaces are two ellipsoids. These ellipsoids intersect at four points in direction
space which are joined by two optic axes. Each of the four points represent a
direction in which the refractive indices are degenerate. These degeneracies shall
be the primary focus of the balance of this chapter and shall feature prominently in
chapters 3 and 4. We now discuss why these points are worthy of such attention.

The left plot of figure 2.1 shows a section of the refractive index surfaces of a
general homogeneous biaxial material. Throughout this thesis we shall be adopting
the convention that ε1 < ε2 < ε3 where εi is the i-th principal dielectric constant of
a biaxial material. With this convention the aforementioned degeneracies all appear
in the plane s2 = 0.

The accompanying plot on the right of figure 2.1 shows a close up of one of
these degeneracies, or conical intersections. We can see from this plot that the local
dispersion of this degeneracy is linear and as such this degeneracy is equivalent to
the celebrated Dirac points of condensed matter physics. This conical intersection
is in fact one of the earliest examples of a Dirac point having been discovered by
William Rowan Hamilton in Trinity College Dublin in 1832 [103]. The presence of
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FIGURE 2.1: On the left is a figure showing a section of the refractive
index surfaces of a biaxial material. The two surfaces represent, by
radius in a given direction, the magnitude of the refractive index for
light propagating in that direction. The black lines represent the two
optic axes which join pairs of the four conical intersections in the s2 =
0 plane. The figure on the right is a close up of one of these conical
intersections. In these plots the principal dielectric constants were
chosen to be (ε1, ε2, ε3) = (2.25, 2.5, 2.75). We shall use this set of
constants for the figures in the remainder of this chapter also.

this conical intersection is responsible for the phenomenon of conical refraction,
which was observed by Humphrey Lloyd shortly after [104].

Each of the eigenvalues of equation (2.25) (and hence each point on each surface
of the plots in figure 2.1) has an associated eigenvector d(s) describing the polarisa-
tion state of light travelling in a particular direction. In any chosen direction the two
polarisations of light are orthogonal to each other, owing to the Hermiticity of mRL.
The polarisation associated with each surface varies as the direction of propagation
is varied. We shall now study the polarisation structure of the refractive index
surfaces of a biaxial material. Initially we shall consider a situation where there is
no optical activity and then we shall examine the resulting polarisation structure
following its introduction.

For a biaxial material which lacks any optical activity, each of the two refrac-
tive index surfaces are linearly polarised. The direction of the linear polarisation of
each surface is dependent on the propagation direction s. To assess the totality of
directions of linear polarisation over each surface we can examine the ratio of the
components of the eigenvectors d(s) in a given direction. If we define

z±(s) =
d±R(s)
d±L(s)

(2.34)
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FIGURE 2.2: A view of each of the two index surfaces of a homoge-
neous biaxial material. The left plot is the outer index surface, i.e.
that of larger refractive index, while the right is the inner surface. The
surfaces are viewed from out along the positive s1 axis. Each surface
is coloured according to the argument of the ratio of the eigenvector
components ϕ where 1

2 ϕ represents the direction of the linear polari-
sation for light propagating in that direction. varphi is measured with
respect to the direction of the local polar unit vector.

to be this ratio then the direction of linear polarisation can be accessed by examining
the argument of this complex number ϕ±(s) = arg z±(s). The phase represents
twice the angle of linear polarisation. We can look at the polarisation behaviour by
examining this phase over each of the refractive index surfaces of a biaxial material.

Figure 2.2 looks at the two refractive index surfaces separately with each surface
coloured according to the phase ϕ(s). This figure is viewed from out along the
positive s1 axis. We see that the phase difference ∆ϕ between each of the surfaces in
any direction is π, reflecting the orthogonality of the two polarisation states.

Of greater interest than the orthogonality however is the behaviour of the direc-
tion of linear polarisation of each surface around each of the conical intersections.
We can see in figure 2.2 that the phase ϕ completes a full cycle from −π to π around
the degeneracy. This means that the direction of linear polarisation turns by π as
the degeneracy is encircled. A change of linear polarisation of π is equivalent to the
original polarisation state a half cycle further along. This rotation of the direction of
polarisation arises as these points are equivalent to the Dirac points introduced in
subsection 1.2.2 and have a topological index of 1

2 associated with them.

In figure 2.3 we look at a representation of the phase ϕ(s) of each refractive
index surfaces over all possible directions (θ, φ) of the unit wavevector. This figure
allows us to assess the properties of all of the conical intersections. In particular we
note that the sense of circulation of the phase ϕ around each of the degeneracies is
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FIGURE 2.3: The direction of the linear polarisation for light propa-
gating in a direction (θ, φ) through a biaxial material. The angle θ is
the polar angle measured from the 3 principal dielectric axis and the
angle φ is the azimuthal angle measured in the s3 = 0 plane from
the s1 direction. The left figure corresponds to the outermost refrac-
tive index surface and the right figure to the inner one. The plots
are coloured according to the argument of the ratio of the eigenvector
components ϕ where 1

2 ϕ represents the direction of the linear polari-
sation for light propagating in that direction.

the same. This reveals that the topological index of each of the degeneracies is 1
2 .

The topological index is an additive quantity and hence the total topological index
of each of the surfaces is 2. This is reflective of, and dictated by, the Poincaré-Hopf,
or "hairy-ball" theorem [90] which states that the total vorticity of a tangent vector
field on the surface of a sphere must be 2.

This analysis of the refractive index surfaces of biaxial materials should be
considered as the necessary groundwork towards the understanding of these
structures in the presence of optical activity. This is the case as, over most of the
index surfaces, the addition of optical activity can be viewed as a perturbation.

2.4.2 Refractive Index Surfaces of Biaxial Optically Active Materials

The introduction of optical activity provides a weak modulation to the refractive
index surfaces seen in subsection 2.4.1. The change in the refractive indices due
to either form of optical activity discussed in section 2.2 is comparatively small
in relation to biaxial anisotropy [97, 101]. This is not the case however along the
directions of the degenerate conical intersections of the biaxial material. In these
directions the addition of either form of optical activity, in a suitable manner, can lift
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the degeneracies [14, 105].

FIGURE 2.4: Figures showing sections of the index surfaces of a ho-
mogeneous biaxial material with two possible forms of optical activ-
ity. On the left we have considered the Faraday effect with a magnetic
field of 1 T along the s1 direction. On the right we have considered a
chiral material. The Faraday effect and chirality tensors were taken to
be f = 0.0113 T−1 and G = 0.0113.

In figure 2.4 we look at the refractive index surfaces of biaxial materials with
either form of optical activity. The left plot in figure 2.4 is the refractive index
surface of a biaxial Faraday effect material. In this figure we have taken the Faraday
effect tensor f = 0.01 13T−1 and a magnetic field h of 1 T along the s1 direction.
For the right plot in figure 2.4 we see the refractive index surface of a chiral biaxial
material. For this figure we have considered an isotropic chirality G = 0.01 13.
For each case in figure 2.4 we can see that there is now a small gap separating the
surfaces along each of the optic axes. In each instance the strength of the optical
activity is somewhat exaggerated in order to make the effect of the introduction
manifest in figure 2.4. Owing to the small deviations from that of a biaxial material
the introduction of the optical activity could be seen as of little importance however
an examination of the resulting polarisation structure will dispel such a conclusion.

Upon introduction of either form of optical activity the refractive index surfaces
are no longer linearly polarised for every direction as we saw was the case for biax-
ial materials in subsection 2.4.1. Generally the polarisation states of light are that of
elliptic polarisation. In the presence of optical activity the phase 1

2 ϕ(s) now deter-
mines the semi-major axis of the polarisation ellipse. There remains the possibility
of linearly polarised states in some directions. This occurs along directions s′ which
satisfy either, in the case of the Faraday effect s′T f h = 0, or in the case of chirality
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s′TGs′ = 0. Alternatively, these directions can be determined by looking for direc-
tions s which satisfy

|z±(s)| = 1. (2.35)

This condition is in-fact usually satisfied along lines in directional space known
as L-lines [90, 106]. The precise details of the optical activity that is introduced de-
termines whether these lines appear at all, and, if so, what paths in directional space
they follow. The L-lines (2.35) separate regions of left-handed elliptic polarisation
(|z±(s)| < 1) from regions of right handed elliptic polarisation (|z±(s)| > 1). For
light propagating along the directions of the previously degenerate conical inter-
sections the two polarisation states are now circularly polarised having previously
been ill-defined. These points are therefore known as C-points [90, 106]. We now
explore these concepts with reference to the two kinds of optical activity.

FIGURE 2.5: The polarisation structure for light propagating in a di-
rection (θ, φ) through a biaxial Faraday effect material. The magnetic
field is directed along the s3 axis. The left figure corresponds to the
outermost refractive index surface and the right figure to the inner
one. The plots are coloured according to the argument of the ratio
of the eigenvector components ϕ where 1

2 ϕ represents the direction
of the semi-major axis of the polarisation ellipse. The white contour
lines are lines of linear polarisation. The brown shaded regions rep-
resent areas where the elliptic polarisation is left-handed.

Figure 2.5 shows the polarisation structure of the refractive index surfaces of
a biaxial Faraday effect material. In this figure we have considered the magnetic
field along the s3 axis. For this orientation of the magnetic field we see that there
is an L-line for propagation directions in the s3 = 0 plane. This L-line separates
regions of different handed elliptical polarisation, with the brown shaded region
representing left-handed elliptical polarisation. The points where all the colours of
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ϕ meet are C-points with a handedness determined by the shading of the figure.
The orthogonality of the polarisation states of the two surfaces in a given direction
is now reflected by the semi-major axes of the polarisation ellipses differing by π

2 as
well as the two states having opposite handedness. Irrespective of the orientation
of the magnetic field the regions of each handedness of the polarisation states for
both refractive index surfaces will always be symmetric. This follows from the
effective h · s contribution of the Faraday effect. This enforces the condition that
each antipodal pair of degeneracies must have opposite handedness. We shall see
the implications of this condition when we later discuss the topological invariants
associated with these surfaces.

FIGURE 2.6: The polarisation structure for light propagating in a di-
rection (θ, φ) through a chiral biaxial material. We have considered
the pedial crystal point group. The left figure corresponds to the
outermost refractive index surface and the right figure to the inner
one. The plots are coloured according to the argument of the ratio
of the eigenvector components ϕ where 1

2 ϕ represents the direction
of the semi-major axis of the polarisation ellipse. The white contour
lines are lines of linear polarisation. The brown shaded regions rep-
resent areas where the elliptic polarisation is left-handed. The com-
ponents of the symmetric chirality tensor G were G11 = 0.45, G12 =
0.13, G13 = −0.6, G22 = 0.15, G23 = 0.18 and G33 = 0.3.

In figure 2.6 we study the polarisation structure of the refractive index surfaces
of a chiral biaxial material. In this instance we consider a triclinic crystal of the
pedial form. We have assigned random real numbers to each of the six components
of G which are given in the figure caption. We immediately note that for this form of
optical activity there is no restriction of equal regions of each polarisation handed-
ness on each surface, in contrast to what we saw for the Faraday effect. Besides this
difference the polarisation structures are not dissimilar, with each surface featuring
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C-points and L-Lines. As in figure 2.5 there are two C-points of each handedness,
however as previously mentioned there is no antipodal symmetry. There being
equal numbers of C-points of each handedness is, for chiral biaxial materials, not a
requisite as we shall see.

FIGURE 2.7: The polarisation structure for light propagating in a di-
rection (θ, φ) through a chiral biaxial material. We have considered
the rhombic disphenoidal crystal point group. The left figure corre-
sponds to the outermost refractive index surface and the right figure
to the inner one. The plots are coloured according to the argument
of the ratio of the eigenvector components ϕ where 1

2 ϕ represents the
direction of the semi-major axis of the polarisation ellipse. The white
contour lines are lines of linear polarisation. The brown shaded re-
gions represent areas where the elliptic polarisation is left-handed.

Figure 2.7 shows just this. In this figure we consider a chiral biaxial material,
with an orthorhombic crystal of the rhombic disphenoidal type. For the non-zero
components of the chirality tensor G we have chosen G11 = −2G22 = 1.5G33. We
can see that for each of the refractive index surfaces the four C-points have the same
handedness.

2.4.3 Topological Invariants of Refractive Index Surfaces

The handedness of the C-points has a critical bearing on a topological invariant
which is associated with each refractive index surface [89]. The appropriate topo-
logical invariant is the Chern number C which can be determined for each of these
surfaces by examination of the plots of the polarisation structures in subsection
2.4.2. According to equation (1.9) since the topological index of each of the C-points
is the same the Chern number is then completely determined by the handedness
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of each of the C-points. If all of the signs of the handedness at the C-points are the
same then the two surfaces have C = ±2, while if there are two C-points of each
handedness then C = 0 for each surface.

For the figures in subsection 2.4.2 we can use this recipe to determine the Chern
number associated with each of the refractive index surfaces. In the case of the
refractive index surfaces in figure 2.5 we see that there are two C-points of each
handedness, as such the Chern number C = 0. In fact, owing to the previously
mentioned antipodal anti-symmetry of the Faraday effect contribution to the polar-
isation structure of these surfaces, a non-zero Chern number will not be possible for
any field application direction. In chapters 3 and 4 we investigate two alternative
geometries for this type of material, those of a two dimensional photonic crystal
with two patterning arrangements, and see that non-zero Chern numbers for biaxial
Faraday effect materials can be achieved in these arrangements.

In the case of the refractive index surfaces of the chiral biaxial material studied in
subsection 2.4.2 there are less severe restrictions on the Chern number. In particular
in figures 2.6 and 2.7 we observe two configurations corresponding to different
values of this invariant. In figure 2.6 we observe that there are again two C-points
of each handedness and hence the Chern number is 0 for both surfaces. However in
figure 2.7 we are presented with a configuration that has each of the four C-points
of each surface having the same handedness and hence the Chern number of the
surfaces is C = ±2.

This survey of the polarisation structure of refractive index surfaces is comple-
mentary to that conducted by Gao et al. [87]. In this work we have considered
materials with biaxial anisotropy and one of two possible forms of optical activity
compared to the work of Gao et al. [87] where uniaxial hyperbolic materials with
isotropic chirality were considered. In each case Chern numbers were determined
for the refractive index surfaces of the anisotropic materials. As well as provid-
ing novel conclusions about the prospect of topological order in homogeneous,
anisotropic and optically active materials this work also serves as a primer for
corresponding studies of patterned materials in chapters 3 and 4.

2.5 The Paraxial Approximation to the Refractive Index Sur-
faces

We are also interested in the local behaviour of the dispersion around a single one of
the C-points of the refractive index surface. Appropriately describing this behaviour
will allow us to build theories of light travelling through periodic arrangements
of biaxial optically active materials in directions close to one of the C-points in
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subsequent chapters. Since we are interested in the structure of the refractive
index surfaces locally to just one of the conical intersections we can then discard
all non-pertinent parts of the polynomials eqs. (2.27) to (2.30). We do this in the
hope that what remains is more physically transparent and easier to work with.
This is the spirit of the paraxial approximation. In our case we shall consider the
expansion of eqs. (2.27) to (2.30) to second order around the direction of a conical
intersection. This expansion will be an extension of the work of Jeffrey [98] where
the polynomials eqs. (2.27) to (2.29) were expanded to first order and the final
polynomial (2.30) to zeroth order. To facilitate this expansion it will be useful to
introduce a new set of coordinates.

The direction of an optic axes of a biaxial material is in the plane s2 = 0 at an
angle θOA from the s3 direction such that

cos θOA =

√
β

α + β
(2.36)

where α and β are measures of spread of the principal dielectric constants given by
α = ε−1

1 − ε−1
2 and β = ε−1

2 − ε−1
3 . With this in mind we introduce a new set of

coordinates with the z direction along an optic axis direction s1

s2

s3

 =

 cos θOA 0 sin θOA

0 1 0
− sin θOA 0 cos θOA


 sx

sy

sz

 . (2.37)

The relationship between these two coordinate systems is visualised in figure 2.8.
The paraxial approximation then assumes that we are interested in highly directional
beams primarily travelling along the sz direction. This approximation of s to second
order in transverse wavevector p = 1√

ε2k0
(kx, ky) is then

(sx, sy, sz) ' (px, py, 1− 1
2
(p2

x + p2
y)). (2.38)

The paraxial approximation is then accomplished by re-writing eqs. (2.27) to (2.30)
using (2.37) and (2.38) and dropping any terms higher than second order in p. The
result of this procedure is the paraxial approximation to the polynomials:

A(p) =
1
ε2
− 2A

ε2
px +

1
2
(α− β)(p2

x + p2
y), (2.39)

C(p) = −2A
ε2

px +
1
2
(α− β)p2

x −
1
2
(α + 3β)p2

y, (2.40)

D(p) = −2A
ε2

py + (α + β)px py. (2.41)

In the above equations eqs. (2.39) to (2.41) A = ε2
2

√
αβ is the biaxial cone semi-

angle of the conical intersection. Depending on which form of optical activity is
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FIGURE 2.8: A plot showing the relationship between the natural ba-
sis of the dielectric tensor 123 and the xyz basis in which the z axis is
oriented along an optic axis. The two bases are related by a rotation
around the s2/sy axis.

being considered there are two possible forms that the paraxial approximation to
the polynomial (2.28) can adopt:

BF(p) = fxihi px + fyihi py + fzihi(1−
1
2
(p2

x + p2
y)), (2.42)

BC(p) = Gxx p2
x + 2Gxy px py + Gyy p2

y + 2Gxz px + 2Gyz py + Gzz(1−
1
2
(p2

x + p2
y))

2.

(2.43)

In equations (2.42) and (2.43) we are assuming summation over repeated indices.
These polynomials shall be integral to the following section where we derive a
Hamiltonian that evolves the displacement field along the optic axis direction.

2.6 The Paraxial Hamiltonian Propagator

We can derive a Hamiltonian for a Schrödinger-like equation that evolves the
displacement field along the optic axis direction i∂zd = Hd. In this instance z plays
the role of time t, and the displacement field d stands in for the quantum-mechanical
wave function ψ [107]. In this analogy we are considering a spinor Schrödinger
equation in order for the polarisation of light to be properly described. Thus H is an
operator in both spin (polarisation) and real space, with optical spin-orbit coupling
terms as we now elaborate.

To derive this Hamiltonian we begin with the dispersion relation re-written for
the propagation constant along the optic axis direction kz

kz = ±k0

√
n2
±(s)− k̃2

x − k̃2
y (2.44)
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where k̃ = k
k0

. In the equation (2.44) above the two ± signs are independent, i.e.
there are four possible kz propagation constants. The ± outside the square root
refers to solutions which propagate in either the positive or negative z direction
while the ± inside the square root refers to the two possible refractive indices of an
anisotropic material.

The two forward propagating kz solutions are the eigenvalues of the matrix H
that we seek. These eigenvalues depend on the direction of propagation s consid-
ered, as well as the frequency of light ω. To proceed further we must relate k̃ and s.
This relationship however is in general complicated. As we are considering highly
directional beams along the optic axis we shall make the assumption that k̃ and s
are related by the optic axis refractive index

√
ε2 according to k̃ =

√
ε2s. In the

absence of optical activity this approximation is justified so long as deviations from
the optic axis propagation are minor i.e. sx, sy << 1. Upon introduction of optical
activity the approximation remains valid as the strength of optical activity is weak
compared to the overall dispersion. This allows us to write the eigenvalues H± of
the Hamiltonian H in the paraxial regime as

H± = k0

√
n2
±(p)− ε2 p2

x − ε2 p2
y (2.45)

where the the paraxial approximation to the squared refractive indices is

n2
±(p) =

1
A(p)±

√
(B(p))2 + (C(p))2 + (D(p))2

. (2.46)

This equation can be re-written, through examination of eqs. (2.39) to (2.43), as

n2
±(p) =

ε2

(1 + µ±(p))
(2.47)

where µ±(p) = ε2(∆A(p) ±
√
(B(p))2 + (C(p))2 + (D(p))2) and ∆A(p) =

(A(p) − 1
ε2
). Going further we can expand the equation (2.47) for µ(p) << 1 to

obtain
n2
±(p) ' ε2(1− µ±(p) + µ2

±(p) + · · · ). (2.48)

Using equation (2.48) we can re-write the eigenvalues of the Hamiltonian H± and
then expand the square root to obtain

H± =
√

ε2k0

√
(1− µ±(p) + µ2

±(p) + · · · )− p2
x − p2

y, (2.49)

' k(1− 1
2

µ±(p) +
3
8

µ2
±(p)−

1
2

p2
x −

1
2

p2
y + · · · ). (2.50)

In the above equations we have introduced k =
√

ε2k0 as the wavevector along the
optic axis. The two eigenvalues H± give the paraxial Hamiltonian in its diagonal
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basis.

HD =

(
H+ 0
0 H−

)
. (2.51)

To obtain a general form of the Hamiltonian matrix H we must transform out of the
diagonal basis however. The necessary transformation matrix for achieving this fol-
lows from noting that the matrices H and m share a common eigenbasis. Therefore
the transformation matrix V can be expressed in terms of the paraxial polynomials
of m, eqs. (2.39) to (2.43), as:

V =

(
C(p)− iD(p) C(p)− iD(p)

−B(p) +
√

B(p)2 + C(p)2 + D(p)2 −B(p)−
√

B(p)2 + C(p)2 + D(p)2

)
.

(2.52)
The general form of H is then

H = V HD V−1, (2.53)

=
1
2

(
(H− + H+)1−

(H− − H+)√
B(p)2 + C(p)2 + D(p)2

(C(p), D(p), B(p)) · σ
)

. (2.54)

The Hamiltonian is then finally completely determined by working out the sum and
difference of the two eigenvalues (2.50). For the sum, which, when the pre-factor
is included, represents the polarisation averaged contribution to the propagation
constant kz for light travelling in the direction p, we have:

H− + H+ = k(2− 1
2
(µ+(p) + µ−(p)) +

3
8
(µ2

+(p) + µ2
−(p))− p2

x − p2
y),

= k(2− ε2(∆A(p)) +
3
4

ε2
2(∆A(p)2 + B(p)2 + C(p)2 + D(p)2)),

(2.55)

whereas for the difference of the two eigenvalues (2.50), which affects the polarisa-
tion distinguishing contributions to the propagation constant kz for light travelling
in a direction p, we have:

H− − H+ = k
(
− 1

2
(µ−(p)− µ+(p)) +

3
8
(µ2
−(p)− µ2

+(p))
)
,

= k
√

B(p)2 + C(p)2 + D(p)2
(
ε2 −

3
2

ε2
2∆A(p)

)
.

(2.56)

We can re-arrange equation (2.56) to reflect how it appears in equation (2.54) result-
ing in:

=⇒ H− − H+√
B(p)2 + C(p)2 + D(p)2

= k
(
ε2 −

3
2

ε2
2∆A(p)

)
. (2.57)

Using eqs. (2.55) to (2.57) we can express the Hamiltonian H generally. For all that
follows we shall be considering H to second order in p. The general form which this
Hamiltonian takes is

H = h0(p, η)1 + hx(p, η)σx + hy(p, η)σy + hz(p, η)σz (2.58)
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where h0, hx, , hy and hz are polynomials in the relative transverse wavevector p.
In the absence of either form of optical activity the Hamiltonian describes a purely
biaxial material and the polynomials are

h0,B(p, η) =− Apx +
1
4
[
2 + ε2(α− β)− 12A2]p2

x+

+
1
4
[
2 + ε2(α− β)− 6A2]p2

y, (2.59)

hx,B(p, η) =− Apx +
1
4
[
ε2(α− β)− 12A2]p2

x −
1
4

ε2(α + 3β)p2
y, (2.60)

hy,B(p, η) =− Apy +
1
2
[
ε2(α + β)− 6A2]px py, (2.61)

hz,B(p, η) =0. (2.62)

Upon addition of the Faraday effect the polynomials h0,B and hz,B of the pure biaxial
Hamiltonian become modified according to

h0,F =h0,B −
3
8

ε2
2

(
( fzihi fzjhj) + 2 fzihi( fxjhj px + fyjhj py) + 2 fxihi fyjhj px py+

+ ( fxihi fxjhj − fzihi fzjhj)p2
x + ( fyihi fyjhj − fzihi fzjhj)p2

y)

)
, (2.63)

hz,F =
1
2

ε2

(
fzihi +

(
fxihi + 3A fzihi

)
px + fyihi py + 3A fyihi px py

− 1
2
{

fzihi[1 +
3
2

ε2(α− β)]− 6A fxihi
}

p2
x −

1
2
{

fzihi[1 +
3
2

ε2(α− β)]
}

p2
y

)
,

(2.64)

where the repeated indices i, j are summed over. The tensor f and the magnetic
field h are expressed in the xyz coordinate system with the z axis oriented along the
optic axis. They are related to the corresponding ones in the principle axis basis by
f

xyz
= R f

123
RT and hxyz = Rh123. Upon addition of chirality the polynomials h0,B

and hz,B of the pure biaxial Hamiltonian become modified according to

h0,C =h0,B −
3
8

ε2
2

(
G2

zz + 4GxzGzz px + 4GyzGzz py + 4(GxyGzz + 2GxzGyz) px py+

+ 2
{

2G2
xz + Gzz[Gxx − Gzz]

}
)p2

x + 2
{

2Gyz + Gzz[Gyy − Gzz]
}

p2
y

)
, (2.65)

hz,C =
1
2

ε2

(
Gzz + (2Gxz + 3AGzz)px + 2Gyz py + (2Gxy + 6AGyz)px py+

+
{

Gxx + 6AGxz − Gzz[1 +
3
4

ε2(α− β)]
}

p2
x +

{
Gyy − Gzz[1 +

3
4

ε2(α− β)]
}

p2
y

)
,

(2.66)

where the tensor G is expressed in the xyz basis. It is related to the corresponding
one in the principal axis basis by G

xyz
= R G

123
RT.
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2.7 Conclusion

In this chapter we have examined the propagation of light through homogeneous
anisotropic optically active materials within several frameworks and at varying
degrees of generality. In particular, we considered dielectrics which are optically
biaxial and additionally exhibit either the Faraday effect or chirality.

This examination began by developing the wave equation as a 2 × 2 matrix
eigenvalue problem for the transverse displacement field. Within this framework
we explored the refractive index surfaces of biaxial optically active materials,
which characterise the retardation experienced by light of a particular polarisation
travelling in a given direction in these materials. These surfaces have an associated
polarisation texture, describing the natural vibrational state of the displacement
field in the plane transverse to the propagation direction. In the presence of either
form of optical activity, this natural vibrational state is generally that of elliptic
polarisation. We have seen that there are, however, two noteworthy possible
departures from this general state. These departures are directions in which the
polarisation state is either that of circular or linear polarisation. The former occur
in isolated directions in reciprocal space and are known as C-points. The C-points
originate from the polarisation degeneracies of pure biaxial materials. The latter
occur along lines in reciprocal space which are known as L-lines. L-lines are
contours along which the optical activity effects vanish.

In tandem, these polarisation features allow us to understand the assignation
of a value of a topological invariant to each of the refractive index surfaces. The
invariant in question is the Chern number. The values of the Chern number of the
refractive index surfaces can be read off from examination of the polarisation texture
of each of the surfaces. The realisation of a non-zero value of this invariant relies
on the topological index of each of the C-points combining rather than cancelling.
To achieve this there has to be an asymmetry between the number of left and right
circularly polarised C-points on each surface. Whether or not this occurs depends
on both the variant of optical activity considered and the precise details within each
variant. We saw that, for one of these optical activity variants, a non-zero Chern
number is not possible due to the Faraday effect contribution being an odd function
of the propagation direction. However, in the case of chiral biaxial materials, it is
possible to have topologically non-trivial index surfaces. As well as being novel
in and of themselves, these conclusions will be of interest for later comparative
analysis.

We are additionally interested in the local behaviour of the refractive index
around one of these C-points, rather than the global refractive index surfaces
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themselves. To this end we pursued a Hamiltonian which describes the evolu-
tion of the field in directions close to an optic axis. This derivation was achieved
within the framework of the paraxial approximation, an intrinsically local approach.

This Hamiltonian is a central result of this chapter and being to second order in
the transverse wavevector it is therefore an extension of that derived by Jeffrey [98].
The Hamiltonian derived by Jeffrey [98] has already proved a powerful tool, being
used to analyse the minutiae of the diffractive evolution of an incident field through
homogeneous anisotropic optically active media [105, 108, 109]. Our motivation
in extending the Hamiltonian of Jeffrey [98] shall become more transparent in the
following chapters.

In these chapters we adapt the derived Hamiltonian to describe the propagation
of light through periodic optical media, known as photonic crystals, which are com-
posed of biaxial optically active materials. In these arrangements the vector field is
defined on a torus rather than a sphere. In such a setting the Poincaré-Hopf theorem
dictates that the total topological index of the vector field on the torus is null as com-
pared to a total topological index of two on the sphere. This requirement therefore
dictates equal numbers of degeneracies of positive and negative topological index
on the torus of the Brillouin zone. The alternative consequence of the Poincaré-Hopf
theorem, dictated by geometry, will have interesting implications when we look at
the topological invariants of the iso-frequency surfaces of these materials. It is within
this interplay between the Hamiltonian derived in this chapter and the geometric en-
forcement of the periodicity that the motivation for the extended Hamiltonian will
become manifest, as we shall now explore.
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Chapter 3

Square Patterned Photonic Crystals

3.1 Introduction

In this chapter we study periodic optical materials known as photonic crystals.
These regular and repeating structures, which are periodic on the scale of the
wavelength, can be patterned in one, two or three dimensions [15]. In figure 3.1
we show an illustration of forms of photonic crystals with varying dimensions of
patterning. In these figures the different coloured blocks represent materials of
distinct refractive indices. In the case of 1D photonic crystals, the patterning is
restricted to repeating blocks along the patterning direction. For higher dimen-
sional photonic crystals more complex patterning geometries are possible. The
available patterning arrangements are linked to the possible Bravais lattices for that
dimension. In figure 3.1 each of the photonic crystals features a simple Bravais
lattice (linear, square and cubic) along with a two point basis specifying the place-
ment of the two different dielectrics within each fundamental block of the structures.

FIGURE 3.1: A cartoon showing the periodic dielectric function of one
(left), two (middle) and three (right) dimensional photonic crystals
(PhCs).

In any of the cases the dielectric function of the structure obeys the periodicity
requirement

ε(r + R) = ε(r), (3.1)
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where R is a translation by an integer number of fundamental blocks of the structure
[110]. These possible translations R can be expressed in terms of sums of the minimal
translations a as

R =
D

∑
i=1

niai, (3.2)

where ni ∈ Z, D is the number of dimensions of patterning and ai determines the
Bravais lattice geometry. In this chapter we will be concerned exclusively with 2D
photonic crystals which are patterned in the simplest square geometry. In particular,
we will consider photonic crystals composed primarily of anisotropic optically
active materials. Figure 3.2 below shows the entrance face of a square-patterned 2D
photonic crystal structure.

FIGURE 3.2: An illustration of a section of the entrance face of a
square-patterned 2D photonic crystal.

Just as for periodic electronic systems these photonic crystals possess electro-
magnetic dispersion relations ω(k) describing the totality of possible frequencies
and wavevectors at which light can travel through the material. Our focus in this
chapter, and in chapter 4, will be to determine the topological invariants associated
with the band-structures of 2D photonic crystals. In particular, we examine the
iso-frequency surfaces of these photonic crystals, which are constant frequency
slices of the full ω(k) dispersion relation. The iso-frequency surface is akin to
a Fermi surface of a solid, and is the fundamental construct for analysing the
refractive, reflective and diffractive properties of monochromatic light incident on
a photonic crystal [16]. In this context a non-zero Chern number of a particular
photonic crystal iso-frequency surface could indicate the presence of edge states for
which incident light follows the boundary of the 2D patterned plane.

Two-dimensional photonic crystals with topologically non-trivial band struc-
tures have been theorised [9, 10, 31, 111] and realised [32, 111]. These realisations
have commonly followed a conventional developmental route, set in scenarios
where the propagation direction and polarisation degrees of freedom straightfor-
wardly decouple, and are reliant on a specific patterning geometry so as to produce
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Dirac points in the photonic band-structure. The decoupling of the propagation
direction and polarisation degrees of freedom is by no means guaranteed, however,
and generally does not hold. For instance, when one considers the propagation
of light out of the periodic plane of a 2D photonic crystal, or light travelling in an
anisotropic material, the propagation direction and polarisation state are coupled.
Far from being a hindrance the optical spin-orbit coupling of anisotropic materials
provides an opportunity to potentially eschew the conventional route to topological
order in periodic optical systems. Rather than producing Dirac points in the band
structures of the photonic crystals by adopting a triangular or hexagonal patterning
we can harness the intrinsic polarisation singularities of homogeneous biaxial
dielectrics to produce degenerate photonic band-structures. If the iso-frequency
surfaces of photonic crystals composed of biaxial dielectrics possess degeneracies
we will then address whether optical activity has the potential to lift these degen-
eracies and produce a topologically non-trivial system. The central question to be
answered in this chapter is then whether it is possible to achieve optical topological
order by utilising the intrinsic optical spin-orbit coupling of anisotropic optically
active materials patterned in a square geometry?

To investigate this question we make use of the Hamiltonian eqs. (2.59) to (2.66)
describing the paraxial evolution of light through an anisotropic optically active ma-
terial. In section 3.2 we consider how to adapt this Hamiltonian to describe a square
photonic crystal. We are particularly interested in the resulting degeneracy struc-
ture of the adapted Hamiltonian. In section 3.3 we assess the number and loca-
tions of C-points of the adapted Hamiltonian and compare the predictions of the
model to numerical simulations of corresponding structures. From there we move
to determining the topological phase diagrams of the iso-frequency surfaces of these
photonic crystals. The photonic crystals we consider are composed of biaxial ma-
terials featuring one of two possible variants of optical activity. In section 3.4 we
consider the Faraday effect while in section 3.5 we consider chirality. In both cases
we compute the Chern number as the relevant material parameters are allowed to
vary, allowing us to develop a full appreciation of the complicated topological phase
diagrams. Finally we offer conclusions on the efficacy and merit of this approach in
section 3.6.

3.2 Square Photonic Crystal Geometry

In this section we discuss how the paraxial Hamiltonian eqs. (2.59) to (2.66) derived
in section 2.6 can be adapted to describe periodic media composed of anisotropic
gyrotropic materials. We will be concerned with periodic media featuring a square
patterning of the dielectric materials. The square patterning will be in the xy plane
and the structures will be invariant along the z direction. The characteristic period
in the xy plane is given by the lattice constant a and the geometry of the lattice is
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captured by the two primitive lattice vectors a1 and a2:

a1 = a(1, 0) , a2 = a(0, 1). (3.3)

The real space lattice structure of the photonic crystal has a corresponding direction
space lattice arrangement, from which follows the invariant translation vectors in
wavevector space. These reciprocal lattice vectors, b, are determined by solving
ai · bj = 2πδij. In the case of the square geometry (3.3), the corresponding reciprocal
lattice vectors are

b1 =
2π

a
(1, 0) , b2 =

2π

a
(0, 1). (3.4)

We are free to orient the biaxial optically active inclusions in any manner of our
choosing with regard to the xy patterning plane. The symmetries of the photonic
crystal derive from those of both the patterning arrangement and of the dielectric
structure of the material [112, 113]. In simple photonic crystals, composed of
isotropic materials and patterned appropriately, the symmetry of the structure is
effectively that of a square lattice. In the cases we choose to consider however this
is not the case and the set of symmetries of the structure depend on the orientation
of the anisotropic dielectric media [114]. In this chapter we choose to orient the
anisotropic dielectric materials with their optic axis normal to the patterned planes.
This choice is not necessary and therefore the freedom of orientation should be
considered a parameter which we have decided to fix. Since we are orienting the
optic axis, about which the paraxial approximation of section 2.6 was considered,
along the invariant direction of the photonic crystal structure it is natural that we
consider propagation primarily along this direction.

To realise the requisite periodic lattice model of the 2D photonic crystal structure
we need to determine the lattice generalisation of the paraxial Hamiltonian of sec-
tion 2.6. One way to achieve the lattice version of the Hamiltonian is to make the
replacements

pi =
ki

k
→ 1

ak
sin(kia) (3.5)

p2
i =

k2
i

k2 →
2

a2k2 [1− cos(kia)] (3.6)

to the Hamiltonian in section 2.6 [115], where in equation (3.6) i ∈ {x, y}. We shall
denote the resulting lattice Hamiltonian B

�
(k) which takes the form

B
�
(k) = b�0(k)1 + b�(k) · σ. (3.7)

The matrix B
�
(k) encodes the physics governing the propagation of light

through square photonic crystals composed of biaxial optically active materials.
This Hamiltonian matrix is the simplest lattice generalisation that both (i) reduces
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to the paraxial Hamiltonian under small angle approximations of the trigonometric
functions in equations (3.6) and (ii) is invariant under the addition of any integer
number of reciprocal lattice vectors. The eigenvalues of this Hamiltonian describe
the two polarisation-split bands of highest propagation constant kz for a square
photonic crystal composed of anisotropic optically active materials. These bands
are plotted in figure 3.3 for a biaxial photonic crystal lacking optical activity. The
parameters used in this figure were (ε1, ε2, ε3) = (2.25, 2.5, 2.75) and a

λ = 0.8. These
parameters correspond to a biaxial material with a cone-semi angle A = 2.88◦,
representing a biaxial material with quite strong birefringence. The parameters
used for figure 3.3 shall be considered the default parameters and will be used
throughout this chapter and chapters 4 and 5 unless otherwise stated. Since this
model does not specifically include the lower refractive index material of the
photonic crystal, we would expect it to perform best in situations where there is a
large fraction of biaxial optically active material in the unit cell. Additionally since
the higher refractive index materials act as a potential well for the electric field we
will choose to use a lower index isotropic material, such as air, as the secondary unit
cell material in more rigorous simulations of these materials. We should note that
the simple replacements in (3.6) owes much to the square geometry; we shall see
in chapter 4 that for alternative geometries the replacements are somewhat more
complicated.

The elementary area of reciprocal space for a periodic system is the first Brillouin
zone. For a square geometry with lattice spacing a the first Brillouin zone is also a
square. This square is centred on the origin of reciprocal space and has side 2π

a . The
ratio of the lattice constant a to the operating wavelength λ thus sets the region of
the index surfaces that are probed by the primary bands of the lattice Hamiltonian
B
�
(k). The higher this ratio the tighter a region of reciprocal space is explored in

the primary bands.

In figure 3.4 we show the evolution of the iso-frequency surfaces of a homoge-
neous biaxial material (top left panel) upon adding either optical activity (moving
from left panels to right panels in the figure) or periodicity (moving from top
panels to bottom panels). Upon introduction of periodicity, irrespective of the
lattice spacing to wavelength ratio, the resulting Hamiltonian will always inherit
the conical intersection of the homogeneous biaxial material. Additionally there
appear extra degeneracies towards the boundaries of the first Brillouin zone. The
mathematical origin of these additional degeneracies is similar to that of fermion
doubling [116] except in this case the extra conical intersections are an entirely
real physical consequence of the periodic electromagnetic setting. They are a
consequence of the periodic topology of the Brillouin zone, which requires the
vector field b�(k) to have zero net circulation in the absence of optical activity.
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FIGURE 3.3: The iso-frequency surfaces of a square-patterned pho-
tonic crystal composed of biaxial material. The plot is generated
from the lattice Hamiltonian model B

�
(k). The surfaces are plot-

ted over the first Brillouin zone and the parameters are (ε1, ε2, ε3) =
(2.25, 2.5, 2.75) for the principal dielectric constants and a lattice spac-
ing to wavelength ratio of a

λ = 0.8.

FIGURE 3.4: Illustration of the formation of topologically non-trivial
iso-frequency surfaces in square two-dimensional photonic crystals.
Each panel is a section of an iso-frequency surface for (a) a homoge-
neous biaxial dielectric, (b) a homogeneous biaxial dielectric with op-
tical activity, (c) a periodic biaxial dielectric and (d) a periodic biaxial
dielectric with optical activity. Each of these panels is centred on the
the wavevector corresponding to the conical singularity in (a). The
periodicity is taken to be in the plane perpendicular to this wavevec-
tor, forming a two-dimensional Brillouin zone (BZ).
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Upon the addition of optical activity, seen in the bottom right panel of figure 3.4,
the iso-frequency surfaces can become gapped generally. In this situation one can
assign a Chern number to each of these bands, characterising the winding number
of the vector field b�(k) over the Brillouin zone. The realisation of a non-zero
Chern number for a photonic crystal places different stipulations on the nature of
the optical activity compared to that of the homogeneous media investigated in
subsection 2.4.3. The stipulation to achieve a non-zero Chern number in this case
is that an odd number of L-lines separates C-points of different topological index.
We shall see that, in this geometry, both forms of optical activity can achieve this,
resulting in non-zero Chern numbers. This result is in contrary to what we saw for
the homogeneous materials in subsection 2.4.3. Furthermore we shall see that in
the case of chiral biaxial photonic crystals there is no restriction to even values of
the Chern number as for the homogeneous material. To reach these conclusions we
begin by determining the degeneracy structure of the lattice Hamiltonian B

�
(k).

3.3 Degeneracy Structure of Square Photonic Crystals

We now examine the degeneracy structure of the iso-frequency surfaces of square
photonic crystals. Initially, as in subsection 2.4.1, we focus on a situation where
there is no optical activity. We carry out a preliminary assessment of the degeneracy
structure through use of the lattice Hamiltonian B

�
(k) describing these structures.

This assessment will be concerned primarily with four factors: (i) the number of C-
points of the iso-frequency surfaces, (ii) their locations in the first Brillouin zone, (iii)
their local circulation and (iv) their motion in reciprocal space as the lattice spacing
to wavelength ratio is varied. We shall then compare the results obtained from the
lattice Hamiltonian to those from a frequency-domain plane-wave simulation of a
corresponding structure.

3.3.1 Degeneracy Structure from Lattice Hamiltonian

For the lattice Hamiltonian C-points are locations in reciprocal space k′ where
b�(k′) = 0. Since b�3(k) = 0 in all directions in the absence of optical activity we
need only focus on the zeroes of the functions b�1(k) and b�2(k). These zeroes
follow contours in the first Brillouin zone, with the intersections of these contours
representing C-point locations. We can visualise these locations graphically by
looking at appropriate plots of the vector field (b�1(k), b�2(k)).

Figure 3.5 shows two plots of the vector field (b�1(k), b�2(k)) along with
the contours representing the zeroes of each of its components over an enlarged
first Brillouin zone. Each of the two plots considers a different lattice spacing to
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FIGURE 3.5: Two plots showing the zero contour lines of the poly-
nomials b�1(k) (turquoise) and b�2(k) (green) over an enlarged area
containing the first Brillouin zone. Each plot considers a distinct lat-
tice spacing to wavelength ratio a

λ . In the left plot a
λ = 0.8 and in

the right plot a
λ = 2. In the absence of any gyromagnetic perturba-

tion the intersection of the zero contour lines represent C-points of
the iso-frequency bandstructure. The vector field (b�1(k), b�2(k)) is
overlaid in blue.

wavelength ratio. In the left figure a
λ = 0.8 and in the right figure a

λ = 2. In each
figure the intersection of the turquoise and green contour lines represent C-points
of the iso-frequency surfaces. We see that the number of C-points depends on the
lattice spacing to wavelength ratio; in the left plot there are two C-points in the
first Brillouin zone while in the right plot there are four. In addition to the C-point
at Γ, which is that of the original Hamiltonian of the homogeneous material, both
plots show an extra one just inside the −X boundary along the line ky = 0. In
the rightmost figure there are further C-points along the boundary line of the first
Brillouin zone ky = ±π

a . Since these extra C-points along the lines ky = π
a and

ky = −π
a are related by a reciprocal lattice vector we need only consider the pair

along one of these lines. Henceforth we shall count the pair of C-points along the
line ky = π

a . By studying the overlaid vector field we can assess the local circulation
of each of these C-points. On studying the vector field we note that the sense of
circulation is opposite for each pair of points along the lines ky = 0 and ky = π

a .
The Berry phase corresponding to each of these singularities is ±π, so that upon
introduction of optical activity the Chern number can be C ∈ {−1, 0, 1} for the left
plot or C ∈ {−2,−1, 0, 1, 2} in the right plot.

The appearance of the C-points along the high symmetry lines ky = 0 and ky = π
a

is of course no accident - and can be inferred from examination of b�2(k). We note
from figure 3.5 that the number and locations of the C-points is clearly dependent



3.3. Degeneracy Structure of Square Photonic Crystals 59

on the lattice spacing to wavelength ratio. This ratio essentially determines the
relative importance of the linear and quadratic contributions to the Hamiltonian
B
�
(k). To assess the frequency dependence of the C-points we shall study their

movement along the high symmetry lines as the lattice spacing to wavelength ratio
is varied.

FIGURE 3.6: Two density plots representing the splitting of the bands
of the iso-frequency surfaces. Each plot shows how the splitting of
the bands varies with the lattice spacing to wavelength ratio. Each of
these plots is along a high symmetry line of the first Brillouin zone.
The high symmetry lines are ky = 0 (left) and ky = π

a (right). Contour
lines representing C-points are superposed on each plot in red.

Figure 3.6 shows two density plots examining the splitting of the iso-frequency
surfaces along high symmetry lines in the first Brillouin zone as the lattice spacing
to wavelength ratio is varied. Each of the two density plots has overlaid red contour
lines showing conical intersections of the iso-frequency surfaces. In the left-hand
figure we consider the line ky = 0; along this line there are two C-points one
of which is fixed at Γ and the other which starts close to the −X boundary and
increasingly tends towards that boundary as the ratio is increased. In the right-hand
figure we observe that at low lattice spacing to wavelength ratio that there are no
C-points but above a critical a

λ an additional pair emerges.

The conical intersections of the iso-frequency surfaces are also affected by the
variation of the principal dielectric constants of the biaxial material. As the biaxial
cone semi-angle is increased the C-points tend to further displace from the zone
corners and faces along the high symmetry lines.

This set of either two or four C-points represents the degeneracy structure of
the iso-frequency surfaces following from the lattice Hamiltonian B

�
(k). In either

case there is an equal number of singularities of positive and negative topological
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index, this is the opposite of what was seen in subsection 2.4.1 where all conical
intersections had the same topological index. This difference is due to the differing
topology of the space of wavevector direction which is that of a sphere in the
homogeneous medium, and a torus in the periodic one. We shall now assess
whether the Hamiltonian theory is a reasonable qualitative descriptor of one of
these photonic crystals.

3.3.2 Comparison to Simulations of Square Photonic Crystal Structures

To test the validity of the lattice Hamiltonian B
�
(k) we shall compare it to the re-

sults of a realistic numerical bandstructure calculation using the frequency-domain
plane-wave method [117]. We focus on the number and locations of singularities in
the absence of optical activity as these are the crucial quantities to determining the
Chern number once optical activity is introduced. We specifically consider a biaxial
dielectric in which cylindrical air holes are drilled to form a square lattice.

FIGURE 3.7: Comparison of the locations of the C-points given by the
lattice Hamiltonian and a frequency-domain plane-wave simulation
as k is varied. In both cases C-points occur along the lines ky = 0 (left)
and ky = π

a (right). Solid lines represent kx locations of C-points from
the lattice Hamiltonian while the shading represents bounds on kx
for the C-points from the plane-wave simulations. The chosen shad-
ing bounds are such that the magnitude of the splitting of the two
most paraxial bands is less than a∆kz = 2π × e−6. The plane-wave
simulation has cylindrical air holes in the dielectric background. The
radius of each of the air holes considered is r = 0.15a.

In figure 3.7 we examine how the locations of the C-points are affected by
variation of the lattice spacing to wavelength ratio. The solid black contour lines
give the locations predicted by B

�
(k), while the shaded regions provide bounds on

the C-point locations from the numerical simulation. We see that the B
�
(k) gives
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a reasonable qualitative account of the numerical results. Each picture considers
the two previously mentioned high symmetry lines of the first Brillouin zone upon
which the C-points appear. The left panel of figure 3.7 is along the high symmetry
line ky = 0 which features two C-points in both approaches at all values of lattice
spacing to wavelength ratio considered. Both approaches have the zone centre
C-point and agree that the second one is adjacent to the −X boundary of the
Brillouin zone. The right panel of figure 3.7 shows the C-point positions along the
line ky = π

a . There are some deviations between the two approaches along this high
symmetry line, in particular, the numerics indicate two C-points at all lattice spacing
to wavelength ratios considered while the extra two only emerge above a critical
a
λ for the lattice Hamiltonian B

�
(k). We attribute this difference to the different

treatment of scattering in the two methods, and perhaps also to higher-order terms
neglected in the paraxial Hamiltonian of the homogeneous material. Figure 3.7
suggests that the theory represented by B

�
(k) is a reasonable qualitative descriptor

of the desired 2D photonic crystal structures, but to further confirm this we turn to
comparing iso-frequency surfaces generated from each approach.

Figure 3.8 shows two iso-frequency diagrams plotted following a path along
high symmetry lines in the first Brillouin zone. The top figure is that produced from
the Hamiltonian B

�
(k), and the bottom one the result of the numerical simulation.

These surfaces are compared at ka ' 4π such that we are in a regime towards
the top of the scale in figure 3.7, where each approach predicts four C-points.
We note the striking similarity between the surfaces generated by each approach,
in terms of their overall morphology as well as the number and locations of the
conical intersections of the surfaces. As expected from figure 3.7, we see that the
extra C-point along the ky = 0 line in each approach are slightly displaced from
each other. In the lattice Hamiltonian model the additional C-point along the
ky = 0 line is just inside the −X boundary, whereas in the numerical simulation
this C-point is further inward along the −XΓ line. We further note that the lattice
Hamiltonian generally underestimates the overall dispersion of the surfaces as well
as the polarisation splitting of the bands. A quantitative measure of the differences
of the two methods could have been calculated. However, from a topological point
of view, the important features of the iso-frequency surface are the number and
locations of the degeneracies. As such, a quantitative measure was not calculated.

Given the overall reasonable correspondence between the two approaches we
conclude that the Hamiltonian B

�
(k) is a qualitatively accurate descriptor of 2D

photonic crystals composed primarily of biaxial material. This conclusion is based
on the two approaches showing

1. Agreement on the number of C-points of the iso-frequency surfaces over most
lattice spacing to wavelength ratios.
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FIGURE 3.8: A comparison between the iso-frequency surfaces gen-
erated from the lattice Hamiltonian (top) and those generated from
a frequency domain plane-wave simulation (bottom). The iso-
frequency surfaces are plotted as a path along high-symmetry lines
of the first Brillouin zone is followed. The high symmetry points are
indicated in figure 3.3. These surfaces are compared at ka ' 4π.

2. Agreement on the pinning of those C-points to high symmetry lines of the first
Brillouin zone.

3. Approximate agreement on the locations of the C-points along those high sym-
metry lines.

Owing to this we argue that the topological phase diagrams of the two models
will be similar to each other. In the regime prior to the emergence of the extra
C-points in B

�
(k) the phase diagram of the numerical simulation will be richer than

that of the lattice model. Having established that B
�
(k) is an adequate qualitative

descriptor of these structures we now turn to the introduction of each form of optical
activity separately. These additions will allow us to examine the topological phase
diagrams of 2D photonic crystals composed of anisotropic optically active materials.
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3.4 Photonic Crystals Composed of Biaxial Faraday Effect
Materials

The first form of optical activity we shall consider is the Faraday effect. Upon
introduction of the non-zero magnetic field in a general direction the degeneracies
of the iso-frequency surfaces are lifted and the polarisation states of each of the
surfaces becomes generally elliptical. For some directions of the magnetic field
L-lines can appear in the first Brillouin zone. These L-lines always appear in such a
way that a translation identifying two sides of the Brillouin zone always crosses an
even number of L-lines, enforcing the requirement that the polarisation state of each
surface is the same under all reciprocal lattice translations. When L-lines appear in
the Brillouin zone they can, depending on the field application directions, result in
C-points of different index having different handedness. If this is the case then this
is an orientation of the magnetic field which can produce a non-zero Chern number.

3.4.1 Examination of Topological Phase Diagrams

FIGURE 3.9: Phase diagrams representing the Chern number, C, by
colour of a square patterned photonic crystal. The photonic crystal is
composed of biaxial Faraday effect material. The phase diagrams are
plotted in the space of the externally applied magnetic field direction
(θ, φ). The colours represent C = 0 (mid pink) and C = ±1 (dark or
light pink). The figure on the left is a wrapping of the figure on the
right onto a section of the surface of a sphere. The black line in the
left figure represents the optic axis direction of the biaxial material.

In figure 3.9 we see two plots showing the Chern number by colour of a square
patterned photonic crystal composed of biaxial Faraday effect material. The plots
are in the space of the direction of the externally applied magnetic field (θ, φ);
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where θ is measured from the optic axis direction of the homogeneous material,
i.e. θ = π

2 corresponds to applying the magnetic field in a plane perpendicular to
the optic axis direction. In figure 3.9 we see that non-zero Chern numbers (light
and dark pink) are achievable. These non-zero Chern numbers occur for a range
of field application directions close to perpendicular to the optic axis. In these
figures we have considered a lattice spacing to wavelength ratio a

λ = 0.8 for which
there are two C-points. The bounding contours of these non-zero Chern number
regions then represent the gap closing at each of these two lifted degeneracies.
The θ = π

2 contour corresponds to the gap closing at the Γ point with the contour
which weaves above and below the equator corresponding to the gap closure at the
C-point towards the face centre. In these figures we have assumed, without loss of
generality, that the Faraday effect tensor, which was introduced in subsection 2.2.1,
is isotropic ( f = f 1). Relaxation of this assumption will move around the features
seen in figure 3.9 without introducing any new structure.

The existence of a finite region between the two contour lines along which the
gaps of the individual C-points close and the Chern number is non-zero is by no
means guaranteed. To understand the origin of this finite region we shall examine
the Faraday effect contribution which is of the form

b�z(k) =
1
2

ε2 f |h|
(

cos θ +
(

sin θ cos φ + 3A cos θ
) 1

ak
sin akx + sin θ sin φ

1
ak

sin aky+

+ 3A sin θ sin φ
1

a2k2 sin akx sin aky −
1
2
{

cos θ[1 +
3
2

ε2(α− β)]+

− 6A sin θ cos φ
} 4

a2k2 sin2 akx

2
− 1

2
{

cos θ[1 +
3
2

ε2(α− β)]
} 4

a2k2 sin2 aky

2

)
.

(3.8)

In the case of the zone centre C-point equation (3.8) reduces to b�z = 1
2 ε2 f |h| cos θ,

which has a zero at θ = π
2 . This zero, where the band gap closes at the zone centre

and the Chern number changes, is therefore the equatorial contour in figure 3.9. The
other contour of figure 3.9 represents the solution of b�z = 0 for the other C-point.
In this case the equation takes the form

c1 cos θ + c2 sin θ cos φ = 0 (3.9)

for some constants c1 and c2. The simultaneous solutions of equation (3.9) and that
for the zone centre C-point represent field application directions for which the iso-
frequency surface is degenerate at both locations in the Brillouin zone. These special
field application directions occur for the antipodal pair (θ, φ) =

{
(π

2 , π
2 ), (

π
2 , 3π

2 )
}

and correspond to the pinch points in the right-hand phase diagram of figure 3.9
where the C = ±1 phases come into contact. As these two special directions are
antipodal there are an infinite family of geodesics connecting them. It is therefore
interesting to determine whether the two bounding contours of the phase diagram
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are members of this family of geodesics. As the zero contour of the zone centre C-
point is the θ = π

2 equatorial circle it is clearly a geodesic. For the other C-point we
can manipulate the zero contour equation (3.9) into the form

cot θ = − c2

c1
cos φ, (3.10)

which is the equation of a geodesic. The geodesic corresponding to the zero-contour
of the zone-centre C-point is the special case of equation (3.10) when c2 = 0. The
ratio c2/c1 determines how large the topologically non-trivial parameter regime is.
The motivation for extending the Hamiltonian of Jeffrey [98] can now be properly
appreciated; without the extension the equations for the zero contour lines of b�z(k)
at all of the C-points would be the same and hence there would be no topologically
non-trivial area in parameter space.

We now wish to examine the evolution of these phase diagrams as the param-
eters of the photonic crystal are varied. We will consider variation of both the
strength of biaxiality and the lattice spacing to wavelength ratio. For each of these
variations the shrinking or increasing of the topologically non-trivial phase can be
understood in the context of whether or not the variation increases the ratio c2/c1 in
the geodesic equation (3.10).

3.4.2 Variation of Topological Phase Diagrams with Degree of Biaxiality

The first parameter we consider the variation of is the degree of biaxiality. Initially
we shall examine four snapshots of the topological phase diagrams in the space
of the magnetic field application direction. Each of these snapshots considers a
different set of principal dielectric constants.

Figure 3.10 shows an array of topological phase diagrams representing the
Chern number by colour. In each case the biaxial cone semi-angle, A, is stated
above the plot. We see that the stronger the biaxiality the larger the region of
non-zero Chern numbers. This enlargement of the topologically non-trivial phase
results from the ratio c2/c1 of the geodesic equation (3.10) for the second C-point
becoming larger with increasing biaxiality. The magnetic field directions for which
the iso-frequency surfaces is degenerate at both C-point locations do not change
as the biaxiality does. As such, the location of the pinch-points in the topological
phase diagrams does not vary between the phase diagrams of figure 3.10.

Figure 3.11 examines the effect on the topological phase diagram of the con-
tinuous variation of two of the principal dielectric constants with the median one
held fixed. The black overlaid contours represent constant values of the biaxial
cone semi-angle in 2◦ increments from bottom to top of the figure. From this figure
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FIGURE 3.10: A panel of four phase diagrams representing the Chern
number by colour of square patterned photonic crystals. The pho-
tonic crystals are composed of biaxial Faraday effect material. For
each of the plots we consider a lattice spacing to wavelength ratio
of a

λ = 0.8. The degree of biaxiality is different in each diagram.
The principal dielectric constants (ε1, ε2, ε3) are (from left to right and
then top to bottom) (i) (2, 3, 4), (ii) (2, 2.5, 3), (iii) (2.25, 2.5, 2.75) and
(iv) (2.4, 2.5, 2.6).

we can see the size of the topologically non-trivial phase increases with increasing
strength of biaxiality. The boundary between the phases, for this set of parameters,
approximately follows the yellow α = 1.4β contour.
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FIGURE 3.11: The Chern number at field application direction
(θ, φ) = ( 127π

256 , π), of a square patterned photonic crystal. The pho-
tonic crystal is composed of biaxial Faraday effect material. The me-
dian principal dielectric constant is fixed at ε2 = 2.5 and the other two
principal refractive indices (ε1, ε3) are allowed to vary. The black con-
tours are curves along which the angle of the conical intersection, A,
is constant. The lowest of these contours represents a cone semi-angle
of A = 2◦. Each higher black contour is a further increase of 2◦. The
white contour represents α = β, while the yellow one is α = 1.45β.
The lattice spacing to wavelength ratio is a

λ = 0.8.

3.4.3 Variation of Topological Phase Diagrams with Lattice Spacing to
Wavelength Ratio

The other parameter we can vary is the lattice spacing to wavelength ratio. As
before we study four snapshots of the topological phase diagram in the space of the
magnetic field application direction. Each of these snapshots considers a different
lattice spacing to wavelength ratio.

Figure 3.12 shows an array of topological phase diagrams representing the
Chern number by colour. In each case the lattice spacing to wavelength ratio is
stated above the plot. We see that the higher this ratio the smaller the region
of non-zero Chern numbers. This diminishing of the topologically non-trivial
phase results from the ratio of c2/c1 in the geodesic equation 3.10 for the second
C-point decreasing with increasing lattice spacing to wavelength ratio. This occurs
because the iso-frequency surface dispersion becomes increasingly dominated by
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FIGURE 3.12: A panel of four phase diagrams representing the Chern
number by colour of square patterned photonic crystals. The pho-
tonic crystals are composed of biaxial Faraday effect material. Each
diagram in the panel is for a different lattice spacing to wavelength
ratio. In each case the lattice spacing to wavelength ratio is stated
above the diagram. The phase diagrams are plotted in the space of
the direction (θ, φ) of the externally applied magnetic field.

the lower-order terms as a
λ increases. Beyond a critical a

λ a second pair of C-points
emerge along the line ky = π

a . The two extra C-points have opposite signs of the
± 1

2 topological index so as to maintain the net zero topological index over the
Brillouin zone torus. The zero contour lines of b�z(k) at each of the new C-points
also represent geodesics of the form (3.10). As such, the topological phase diagram
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results from the interplay of four geodesics joining the antipodal magnetic field
directions. Although this emergence takes place for a

λ ' 1.3, we do not start to
properly see the effect of these extra C-points over the range plotted until the
bottom right phase diagram. The extra feature on the phase diagram is a thin region
over all φ which is well displaced from the θ = π

2 equator over much of this range.
The sign of the Chern number of the new feature is opposite to that produced by
the original two C-points at the same value of φ. This sign discrepancy results from
the sign of the ratio c2/c1 for each of the new geodesics being opposite to that of the
second C-point along the ky = 0 line.

FIGURE 3.13: A phase diagram representing the Chern number by
colour of a square patterned photonic crystal. The photonic crystal
is composed of biaxial Faraday effect material. This phase diagram
examines the effect of continuous variation of the lattice spacing to
wavelength ratio. The lattice spacing to wavelength ratio is plotted
against the magnetic field direction θ with φ = π held fixed.

Figure 3.13 examines the effect on the topological phase diagram of the contin-
uous variation of the lattice spacing to wavelength ratio. From this figure we can
see the size of the topologically non-trivial phase contracts with increasing a

λ . At
large a

λ we begin to see the effect of the extra two C-points on the topological phase
diagram. We note that this feature begins at lower a

λ than figure 3.13 suggests but is
cut off due to the range of θ considered in the figure.
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We have now developed a picture of the topological phase diagram of square
patterned photonic crystals composed of biaxial Faraday effect dielectrics. This
phase diagram depends on six parameters which together fix the locations of the
C-points and L-lines of the iso-frequency surfaces. The topological phase diagram is
therefore a complicated hypersurface in the space of these parameters, nonetheless
we have developed an understanding of it by examining representative slices.
The immediate conclusion, and one which differs from that of the corresponding
homogeneous material seen in subsection 2.4.3, is that one can achieve a non-zero
Chern number. This non-zero Chern number occurs when the magnetic field is
applied for a band of directions almost perpendicular to the optic axis direction.
Once the presence of a topologically non-trivial surface in this hyperspace has been
established we look at studying how the volume of that surface varies in different
directions in parameter space. This analysis has led us to conclude that, with regard
to maximising the size of the topologically non-trivial region, the biaxiality should
be as strong as possible and the lattice spacing to wavelength ratio as small as
possible.

3.4.4 Implications for Numerical Studies of Topological Invariants

All of the topological phase diagrams presented for biaxial Faraday effect photonic
crystals followed from analysis of the lattice Hamiltonian B

�
(k). However we

saw in subsection 3.3.2 that in the regime of low lattice spacing to wavelength
ratio, which has been considered for most of the phase diagrams, there are two
additional C-points in the numerical bandstructure calculations compared with the
predictions of the lattice Hamiltonian. This means that there would be four rather
than two zero contour lines of the Faraday effect contribution in the (θ, φ) space
which represent the band-gap closing at each of the four C-points. These extra
zero contours are likely to result in richer phase diagrams with an increase in the
topologically non-trivial parameter areas. For instance in the bottom right panel of
figure 3.12 we see a situation, at higher a

λ where the lattice Hamiltonian features
four C-points. Despite the higher lattice spacing to wavelength ratio meaning the
overall topologically non-trivial area is somewhat diminished, we see that there
is a richer structure to the phase diagram compared to those at lower a

λ . It is also
possible that the numerical study will display somewhat different structure in
the vicinity of the pinch-points of the topological phase diagrams from the lattice
Hamiltonian model owing to the inclusion of higher order terms and scattering
effects. For these reasons we argue that the topological phase diagram which would
be produced from numerical bandstructure calculations would be richer than that
obtained from the lattice Hamiltonian.
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3.5 Photonic Crystals Composed of Chiral Biaxial Materials

We now consider 2D photonic crystals composed of chiral biaxial materials. The
introduction of chirality has the potential to lift the degeneracies of the iso-frequency
surfaces. If this proves to be the case the iso-frequency surfaces can be assigned a
Chern number. Whether or not this invariant is non-zero depends on the parameters
of the photonic crystal. Depending on the form of the chirality there are between
five and ten parameters determining the Chern numbers of the iso-frequency
surfaces. We shall initially focus on the simpler forms of chirality, those of the
orthorhombic crystals, and then progress to those of increasing complexity.

Before looking at the different forms of chirality though it will be helpful to recall
the function b�z,

b�z(k) =
1
2

ε2γC

(
G̃zz +

1
ak

(2G̃xz + 3AG̃zz) sin kxa +
2
ak

G̃yz sin kya+

+
1

a2k2 (2G̃xy + 6AG̃yz) sin kxa sin kya +
4

a2k2

{
G̃xx + 6AG̃xz+

− G̃zz[1 +
3
4

ε2(α− β)]

}
sin2 kxa

2
+

4
a2k2

{
G̃yy − G̃zz[1+

+
3
4

ε2(α− β)]

}
sin2 kya

2

)
,

(3.11)

where the symmetric chirality tensor G has been re-expressed as G = γCG̃. The
pre-factor γC relates the overall scale of the gyromagnetic effect ρC to the effective
operating wavenumber through γC = 2ρC

ε2k . In the tensor G̃ each non-zero component
is allowed to vary from −1 to 1. The reason for this decomposition is that the Chern
number depends on the sign of b�z at the C-point locations which is determined by
the ratios of the components of G; the overall scale of b�z at these points is irrelevant
in this regard. The component

(
G̃xyz

)
ij in the optic axis coordinate system is related

to that in the principal axes coordinate system by
(
G̃xyz

)
ij = Rik

(
G̃123

)
kl R

T
lj. At

low lattice spacing to wavelength ratio there are only two C-points which both
feature along the line ky = 0. Along this line the function (3.11) only depends
on the components G̃xx, G̃xz and G̃zz which in turn are expressible in terms of
G̃11, G̃13 and G̃33 in combinations. At higher lattice spacing to wavelength ratio,
when the extra pair of C-points emerge along ky = π

a , the handedness of these
new C-points additionally depends on G̃22. As such, within the lattice Hamiltonian
model at least, the Chern number does not depend on the components G̃12 and G̃23.
This immediately reduces the parameter space to be explored to a maximum of
eight dimensions depending on the form of chirality considered.
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3.5.1 Forms of Chirality

We now move to examine whether each of the different types of chirality allows
non-zero Chern numbers. These conclusions shall be based on the lattice Hamilto-
nian B

�
(k) exclusively. We shall address the implications for numerical studies of

these structures later.

Rhombic Pyramidal

For rhombic pyramidal dielectrics there is one non-zero component of the sym-
metric chirality tensor G̃

abc
featuring on the off-diagonal. This tensor is related to

that in the principal axes frame G̃
123

by a permutation to appropriately match up
the crystallographic axes and the principal dielectric axes. Considering photonic
crystals formed from these materials, under any of the possible permutations of
axes, the resulting Chern number is zero. This zero Chern number is irrespective
of whether we are in a regime with two or four C-points. There being only one
non-zero component of G̃ simply does not give the flexibility to achieve different
signs of b�z at the different C-points.

Rhombic Disphenoidal

For rhombic disphenoidal structures the chirality tensor is diagonal with distinct
entries. Considering photonic crystals patterned out of rhombic disphenoidal ma-
terials, it seems difficult to achieve a non-zero Chern number for the iso-frequency
surfaces, at least within the lattice Hamiltonian model. This is the case irrespective
of whether we are in a regime with two or four C-points. In this instance despite
having three non-zero components of G̃ so that the sign of b�z can change, the zero
contours of the two C-points along the ky = 0 are practically identical as are those
for the two C-points along the ky = π

a line. This means that the signs of the C-points
of opposite index change simultaneously.

Domatic

For domatic materials the symmetric chirality tensor features two non-zero dis-
tinct entries on the off-diagonals. Considering photonic crystals patterned out of
domatic materials, it is not possible to achieve a non-zero Chern number for the
iso-frequency surfaces. The zero Chern number in this case is irrespective of both
whether we are in a regime with two or four C-points and which of the dielectric
axes correspond to the b crystallographic axis. Since G̃12 and G̃23 do not contribute
to equation (3.11) along the lines ky = 0 and ky = π

a we are again effectively in a
situation where only one component of G̃ is relevant. This case is then similar to
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that of chirality of rhombic pyramidal form with one component of G̃ lacking the
flexibility to achieve a non-zero Chern number.

Sphenoidal

For sphenoidal materials the symmetric chirality tensor features three distinct
entries on the diagonal as well as one off-diagonal entry. Considering photonic
crystals patterned out of sphenoidal materials, it is possible to achieve a non-zero
Chern number for the iso-frequency surfaces. This occurs in the case where the
2 dielectric axis corresponds to the b crystallographic axis. For the other possible
configurations the situation reduces to that of the rhombic disphenoidal materials
and the Chern number is zero.

Pedial

All the previous cases represent subsets of what can be seen in pedial crystal
structures. Owing to this the possibility of a non-zero Chern number for the
iso-frequency surfaces of square patterned pedial materials follows from that of the
sphenoidal structures.

3.5.2 Examination of Topological Phase Diagrams

Henceforth we will focus on dielectrics with either the sphenoidal or pedial point
groups. This choice follows from the lattice model predicting that photonic crystals
made of these type of dielectrics could exhibit a non-zero Chern number. In the
low lattice spacing to wavelength ratio regime, the sign of the handedness of each
of the C-points along the ky = 0 line is determined by the three chirality tensor
components G̃11, G̃33 and G̃13. With this in mind we can examine the Chern number
in the space of these three components.

Figure 3.14 plots the regions of non-zero Chern number in the space of the three
aforementioned chirality tensor components. We immediately see the possibility
of non-zero Chern number, which was theorised earlier, can be realised. This
realisation occurs in regions where the two components G̃11 and G̃33 have the same
sign as each other and a different sign to G̃13.

We shall now turn to assessing the variation of the phase diagrams as the other
parameters of the photonic crystal are changed. As in section 3.4 we consider the
variation of the principal dielectric constants and the lattice spacing to wavelength
ratio of the photonic crystal. To facilitate a more direct assessment of the effect of
the parameter variation we shall consider the green 2D planar slice of the parameter



74 Chapter 3. Square Patterned Photonic Crystals

FIGURE 3.14: A 3D phase diagram representing the regions of non-
zero Chern number by colour of a square patterned photonic crystal.
The photonic crystal is composed of chiral biaxial material. The form
of chirality is either that of a sphenoidal or pedial structure. In the
case of a sphenoidal material we have taken the b crystallographic
axis and the 2 dielectric axis to coincide. The darker (lighter) pink
region represents a Chern number C = 1 (C = −1). The region of
zero Chern number is left transparent. The plane G̃11 = G̃33 is shown
in green.

space shown in figure 3.14. The slice we consider is G̃11 = G̃33 ≡ G̃i which, although
artificial, is likely the easiest to examine due to the observations that followed from
the examination of figure 3.14 in the preceding paragraph. We additionally relabel
G̃13 ≡ G̃a. At higher lattice spacing to wavelength ratio, following the emergence of
the additional two C-points, the component G̃22 can also affect the Chern number.
In this regime we consider the slice G̃11 = G̃22 = G̃33 ≡ G̃i of the four dimensional
parameter space for analogous reasons.

3.5.3 Variation of Topological Phase Diagrams with Degree of Biaxiality

The first parameter we consider the variation of is the degree of biaxiality. Initially
we shall examine four snapshots of the topological phase diagrams in the space
of the isotropic chirality tensor components G̃i and anisotropic chirality tensor
components G̃a. Each of these snapshots considers a different set of principal
dielectric constants.
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FIGURE 3.15: A panel of four phase diagrams representing the Chern
number by colour of square patterned photonic crystals. Each pho-
tonic crystal considered is composed of chiral biaxial material of
sphenoidal or pedial type. The degree of biaxiality is different in
each diagram. The cone semi-angle of each diagram is stated above.
The principal dielectric constants (ε1, ε2, ε3) are (from left to right and
then top to bottom) (i) (2, 3, 4), (ii) (2, 2.5, 3), (iii) (2.25, 2.5, 2.75) and
(iv) (2.4, 2.5, 2.6).

Figure 3.15 shows an array of topological phase diagrams representing the
Chern number by colour. In each case the biaxial cone semi-angle is stated above
the plot. In each plot of figure 3.15, the two lines dividing the phase diagram
represent the zero contour lines of b�z(k) at each of the two C-points. Although
difficult to observe in figure 3.15, the stronger the biaxiality the larger the region of
non-zero Chern numbers. This enlargement of the topologically non-trivial phase
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results from the increased displacement of the C-point from the face centre of the
Brillouin zone. This variation of the phase diagram is however no where near
as pronounced as the corresponding variation for biaxial Faraday effect photonic
crystals in subsection 3.5.3. The comparative stability in this case follows from
the quadratic dependence of the B polynomial (2.32) on propagation direction for
chirality as compared to the linear dependence for the Faraday effect (2.31).

FIGURE 3.16: A phase diagram representing the Chern number by
colour of a square patterned photonic crystal. The photonic crystal
is composed of chiral biaxial material of sphenoidal or pedial type.
This phase diagram examines the effect of continuously varying the
degree of biaxiality. The median principal dielectric constant is fixed
at ε2 = 2.5 and the other two principal refractive indices (ε1, ε3) are
allowed to vary. The black contours are curves along which the biax-
ial cone semi-angle A is constant. The lowest of which has A = 2◦

and each subequent contour is 2◦ higher. The white contour repre-
sents the line α = β, the yellow contour represents α = 2.4β while
the green contour represents α = 0.4β. The isotropic and anisotropic
chiralities are (G̃i, G̃a) = (−0.5, 0.55).

Figure 3.16 examines the effect on the topological phase diagram of the continu-
ous variation of two of the principal dielectric constants with the median one held
fixed. The black overlaid contours represent constant values of the biaxial cone
semi-angle in 2◦ increments from bottom to top of the figure. From this figure we
can see, much more directly than in figure 3.15, that the size of the topologically
non-trivial phase increases with increasing strength of biaxiality. The boundary
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between the phases, for this set of parameters, approximately follows the contours
α = 2.4β (yellow) and α = 0.4β (green).

3.5.4 Variation of Topological Phase Diagrams with Lattice Spacing to
Wavelength Ratio

The other parameter we vary is the lattice spacing to wavelength ratio. As before we
study four snapshots of the topological phase diagram in the space of the isotropic
chirality contribution G̃i and the anisotropic chirality contribution G̃a. Each of these
snapshots considers a different lattice spacing to wavelength ratio.

Figure 3.17 shows an array of topological phase diagrams representing the
Chern number by colour. In each case the lattice spacing to wavelength ratio is
stated above the plot. We see that the higher this ratio the smaller the region of
non-zero Chern numbers. This diminishing of the topologically non-trivial phase
results from the C-points being pushed towards the boundary of the Brillouin zone.
This occurs because the iso-frequency surface dispersion becomes increasingly
dominated by the linear terms as a

λ increases. Beyond a critical a
λ a second pair

of C-points of opposite topological index emerge along the line ky = π
a . This

emergence takes place for a
λ ' 1.3. Above this value of a

λ there are therefore four
zero contour lines of b�z(k), one for each of the C-points. These extra C-points
therefore result in an extra feature in the topological phase diagrams. The extra
feature resulting from this emergence is a thin region nearly abutting the previous
topologically non-trivial area. The sign of the Chern number of the new feature is
opposite to that produced by the original two C-points at the same value of G̃i.

Figure 3.18 examines the effect on the topological phase diagram of the contin-
uous variation of the lattice spacing to wavelength ratio. From this figure we can
see the size of the topologically non-trivial phase contracts with increasing a

λ . For
a
λ & 1.3 we begin to see the effect of the extra two C-points on the topological phase
diagram.

A possible criticism of the analysis offered on the phase diagrams of 2D pho-
tonic crystals composed of chiral biaxial dielectrics is that of hyper-tailoring of
parameters. The chirality tensor G̃ cannot be externally varied, although if we were
to have considered metamaterials it may be possible to pre-engineer it. However,
we have chosen to focus solely on dielectric crystals. As such, when we plot the
phase diagrams in the preceding subsections we are not referring to a particular
chiral biaxial material over the whole plot but rather some hypothetical material
which possesses the properties of a single point on the diagram but is distinct to the
material represented by adjacent points. We have adopted this approach principally
due to the incomplete knowledge of the components of the chirality tensor G̃, where
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FIGURE 3.17: A panel of four phase diagrams representing the Chern
number by colour of square patterned photonic crystals. The pho-
tonic crystals are composed of chiral biaxial materials of sphenoidal
or pedial type. Each diagram in the panel is for a different lattice spac-
ing to wavelength ratio. In each case the lattice spacing to wavelength
ratio is stated above the diagram.

in many cases no more than one or two components are known, and to hopefully be
able to say something global regarding photonic crystals composed of these types
of materials. To mitigate the criticism of unrealistic tailoring of G̃ we have therefore
considered the fraction of non-zero Chern numbers obtained over many random
realisations of a pedial type chirality tensor.

Figure 3.19 looks at the fraction of topologically non-trivial photonic crystals of
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FIGURE 3.18: A phase diagram representing the Chern number by
colour of a square patterned photonic crystal. The photonic crystal is
composed of chiral biaxial material of sphenoidal or pedial type. The
phase diagram examines the effect of continuously varying the lattice
spacing to wavelength ratio of the photonic crystal. The strength of
the isotropic chirality is held fixed at G̃i = −0.5.

pedial materials with random chirality. In each of the 10000 realisations a random
number is assigned to each of the chirality components. The running topologically
non-trivial fraction is represented by the blue points with the one standard error
either way represented by the red points. The long-term average tends to around
8% of realisations having a non-zero Chern number, which although not a huge
proportion is still a significant fraction. This suggests that it should be possible
to find a suitable biaxial crystal with pedial type chirality in order to produce a
photonic crystal with a topological non-trivial iso-frequency surface.

We have now developed a picture of the topological phase diagram of square
patterned photonic crystals composed of chiral biaxial dielectrics. This phase
diagram can depend on up to eight parameters depending on the form of chiral-
ity considered. These parameters together fix the locations of the C-points and
L-lines of the iso-frequency surfaces. The topological phase diagram is therefore a
complicated hypersurface in the space of these parameters, nonetheless we have
developed an understanding of these surfaces for each possible form of chirality.
We discovered that, at least within the lattice Hamiltonian model, non-zero Chern
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FIGURE 3.19: The fraction of topologically non-trivial systems of
square photonic crystals composed of random chiral biaxial material
of sphenoidal or pedial type. In each realisation we have assigned a
random number ∈ (−1, 1) to each non-zero component of the sym-
metric gyromagnetic tensor G̃. The blue points give the running frac-
tion of topologically non-trivial systems while the red points indicate
this running fraction plus or minus one standard error. The dashed
black gridline gives the fraction after 10000 iterations.

numbers are only possible for dielectrics of the sphenoidal or pedial point groups.
In these two instances the phase diagrams are hypersurfaces which vary in eight
dimensions. To understand these surfaces we have examined representative 2D
and 3D slices of the full 8D parameter space. The appearance of non-zero Chern
number in this space occurs when the isotropic chirality contributions G̃i and the
anisotropic chirality contributions G̃a are close to equal in magnitude but differ in
sign. Once the presence of a topologically non-trivial surface in this hyperspace
has been established we look at studying how the volume of that surface varies
in different directions in parameter space. This analysis has led us to conclude
that, with regard to maximising the size of the topologically non-trivial region, the
biaxiality should be as strong as possible and the lattice spacing to wavelength ratio
as small as possible.

3.5.5 Implications for Numerical Studies of Topological Invariants

All of the topological phase diagrams presented for photonic crystals composed of
chiral biaxial materials followed from analysis of the lattice Hamiltonian B

�
(k).

However we saw in subsection 3.3.2 that in the regime of low lattice spacing to
wavelength ratio, which has been considered for most of the phase diagrams,
that there are two additional C-points in the numerical bandstructure calculations
compared to the predictions of the lattice Hamiltonian. The effect of these addi-
tional C-points could be two-fold; they are likely to create richer phase diagrams
for types of chirality that already allow non-zero Chern numbers and they could
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allow non-zero Chern numbers for types of chirality for which analysis of the
lattice Hamiltonian B�(k) concluded that topological order would be difficult or
impossible. Regarding the former, looking at figure 3.18 we see that following
the emergence of the additional C-points there is a richer phase diagram. We
therefore argue that the phase diagram of the numerical bandstructures will be
more complicated compared to those of the lattice Hamiltonian. In the latter case it
is possible that the numerical bandstructure calculations could show that non-zero
Chern numbers are realisable for biaxial photonic crystals using chirality of rhombic
disphenoidal form. This assessment is based on the lattice Hamiltonian showing
that b�z can change sign but that the zero contours of the C-points of opposite
topological index are not appreciably displaced from each other. If the numerical
calculations indicated that the zero contours became displaced then a non-zero
Chern number would result. It is unlikely that non-zero Chern numbers would be
possible for photonic crystals with either the rhombic pyramidal or domatic form of
chirality.

3.6 Conclusion

In this chapter we were interested in the topological invariants of the iso-frequency
surface of a square-patterned 2D photonic crystal composed of biaxial optically
active materials. Our focus was on the two most paraxial polarisation-split bands
of the iso-frequency surface, describing propagation largely perpendicular to the
periodic plane of the photonic crystal. To describe such a system we have adapted
the paraxial Hamiltonian eqs. (2.59) to (2.66) derived in section 2.6 to a square
lattice geometry in section 3.2. To assess the fidelity of this adaptation we have
compared the Hamiltonian to frequency-domain plane-wave simulations of corre-
sponding systems. The comparison showed that the adapted paraxial Hamiltonian
is a reasonable qualitative descriptor of these 2D photonic crystal structures. In
particular, the adapted Hamiltonian captures the aspects critical to the topological
characterisation of these systems, the presence and location of polarisation C-points
in the first Brillouin zone, over most of the parameter range.

Since the lattice Hamiltonian gives a reasonable qualitative account of the
singularity structure we can use it to determine the topological phase diagrams
upon introduction of optical activity. In section 3.4 we considered the effect of
optical activity due to the Faraday effect in a magnetic field. We found that,
contrary to the case of a homogeneous material, it is possible to achieve a non-zero
Chern number in certain parameter regimes. There are generally six parameters
governing the value of the Chern number: the magnetic field direction, the three
principal dielectric constants and the lattice spacing to wavelength ratio. To achieve
a non-zero Chern number the magnetic field should be applied in any of a band of
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directions, all of which are close to perpendicular to the optic axis direction. The
width of this band is governed by the other four parameters. A more strongly
biaxial material results in a wider band of directions as does a system with a lower
lattice spacing to wavelength ratio.

The other form of optical activity that we considered is chirality. The nature of
the chirality considered plays a decisive role in whether optical topological order is
achievable at all. With reference to the lattice Hamiltonian model, it is only possible
to achieve a non-zero Chern number with either dielectrics of sphenoidal or pedial
form. For photonic crystals composed of these types of dielectrics a topologically
non-trivial system is by no means guaranteed. Whether or not a non-zero Chern
number results depends on the interplay of eight parameters: the four relevant
components of the chirality tensor, the three principal dielectric constants and
the lattice spacing to wavelength ratio. To achieve a non-zero Chern number the
ratio of the diagonal components of the chirality tensor to each other should be
close to positive unity while the ratio of each of the three diagonals to the relevant
off-diagonal should be close to negative unity. When this is the case the range
of tolerance close to unity for a non-zero Chern number is increased for a more
strongly biaxial material and when the lattice spacing to wavelength ratio is lower.

In previous works on topologically non-trivial square patterned photonic crys-
tals [31, 32, 118–121], degeneracies of the photonic band structure were inherited
from the lattice symmetries rather than from the underlying dielectrics. These
previous works additionally explicitly considered transverse magnetic modes,
where the direction of propagation in the 2D Brillouin zone is decoupled from the
polarisation state. In contrast, in the work presented in this chapter, the use of
anisotropic dielectrics as well as the out-of-plane propagating geometry considered
mean that such decoupling of propagation direction and polarisation does not occur.

The work in this chapter has instead presented an alternative framework within
which to realise optical topological order. This framework is novel in that it does
not rely on a specific lattice geometry to achieve Dirac points, but rather exploits
the polarisation degeneracies of the index surfaces of anisotropic materials. We
have shown that the effective optical spin-orbit coupling present in anisotropic and
optically active materials allows topologically non-trivial iso-frequency surfaces
of photonic crystals to be realised. A square lattice geometry is one of the simpler
photonic crystal arrangements possible. It is likely that more complicated lattice
geometries can produce richer topological phase diagrams. In chapter 4 we explore
this possibility by examining the adaptation of the paraxial Hamiltonian eqs. (2.59)
to (2.66) to a triangular lattice geometry.
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Chapter 4

Triangularly Patterned Photonic
Crystals

4.1 Introduction

In this chapter we study 2D photonic crystals composed of anisotropic optically
active materials patterned in a triangular geometry. As in chapter 3 our primary
interest is in realising non-zero topological invariants for the iso-frequency surfaces
of these photonic crystals. As we are considering a periodic system we expect there
to be net zero circulation of the linear-polarisation vector field over the first Brillouin
zone, guaranteeing an equal number of singularities of each sign of topological in-
dex. This net-zero circulation is dictated by the underlying topology of the Brillouin
zone. The geometry, however, dictates the local behaviour of the vector field and
therefore will differ from the square geometry previously addressed. There may be
a different total number of C-points in the first Brillouin zone and they will certainly
occur at different locations in the first Brillouin zone. Correspondingly, the form of
optical activity considered will also adapt to the triangular geometry in a different
fashion to that seen for the square patterned case. In conjunction, these deviations
will result in topological phase diagrams that differ from those of square patterned
photonic crystals.

To assess these deviations we shall follow a similar procedure to that of chapter
3 by implementing the paraxial Hamiltonian derived in chapter 2 on a triangular
grid. The adaptation of the Hamiltonian to a triangular geometry shall be detailed
in section 4.2. The resulting Hamiltonian shall be analysed in section 4.3 with a
particular focus on the number and locations of C-points. We then compare the
predictions of the adapted Hamiltonian model to those of numerical simulations of
corresponding structures. From there we turn to determining the topological phase
diagrams of the iso-frequency surfaces of these triangular photonic crystals. The
photonic crystals which we consider are composed of biaxial dielectrics featuring
one of two separate types of optical activity. The forms of optical activity we
consider are, respectively, the Faraday effect in section 4.4 and chirality in section
4.5. For each of these types of optical activity we compute the Chern number as
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the relevant material parameters are allowed to vary. Through this approach we
develop a thorough appreciation of the complicated topological phase diagrams.
In section 4.6 we assess the geometry-enforced differences to the topological phase
diagrams that we determined for square patterned photonic crystals. Finally in
section 4.7 we offer conclusions and perspectives on the work presented in this
chapter.

4.2 Triangular Photonic Crystal Geometry

As in chapter 3 we wish to adapt the paraxial Hamiltonian derived in chapter 2
to describe photonic crystals of the desired patterning geometry. The patterning
geometry that we consider is that of a triangular lattice. The periodic triangularly
patterned systems will be composed of anisotropic gyromagnetic dielectrics. The
triangular patterning will be in the xy plane and the structures will be invariant
along the z direction. The characteristic period in the xy plane is given by the lattice
constant a and the triangular geometry of the lattice is captured by the two primitive
lattice vectors a1 and a2:

a1 = a(1, 0), a2 =
a
2
(1,
√

3). (4.1)

∞-∞

∞

-∞

FIGURE 4.1: An illustration showing a section of the entrance face of
a triangularly-patterned photonic crystal.

The geometry of the entrance face of the photonic crystal is illustrated in fig-
ure 4.1. The real space lattice depicted in this figure has a corresponding reciprocal
space lattice arrangement which follows from the invariant translation vectors in
wavevector space. These reciprocal lattice vectors b1 and b2 are

b1 =
2π

a
(1,− 1√

3
), b2 =

2π

a
(0,

2√
3
). (4.2)
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The primitive unit cell in reciprocal space is the first Brillouin zone. For a triangu-
larly patterned photonic crystal this first Brillouin zone is a hexagon. In figure 4.2
we display the Brillouin zone as well as the coordinates of its high symmetry points.
The labels for these high symmetry points that we shall adopt in this chapter are
also displayed.

FIGURE 4.2: Nearest neighbour directions of the reciprocal lattice.
The first Brillouin zone is the hexagon superposed in green. High
symmetry points of the first Brillouin zone are marked and labelled.

As in chapter 3 we choose to orient the anisotropic dielectric materials with
their optic axis along the z direction. Due to the anisotropy of the inclusions, the
symmetry of the structure will be less than that of the triangular lattice itself.

Now that we have established the geometry of the problem we seek to adapt
the Hamiltonian derived in chapter 2 to this geometry. We shall again seek a lat-
tice regularisation of the Hamiltonian. In this case the desired lattice regularised
Hamiltonian B

N
(k) is related to that of section 2.6 by the replacements [122, 123]

px =
kx

k
→ 2

3ak

(
sin(akx) +

1
2

{
sin
[ a

2
(kx +

√
3ky)

]
+ sin

[ a
2
(kx −

√
3ky)

]})
,

(4.3)

py =
ky

k
→ 1√

3ak

{
sin
[ a

2
(kx +

√
3ky)

]
− sin

[ a
2
(kx −

√
3ky)

]}
, (4.4)

p2
x =

k2
x

k2 →
2

a2k2 [1− cos(akx)] , (4.5)
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p2
y =

k2
y

k2 →−
2

3a2k2 [1− cos(akx)] +
4

3a2k2

({
1− cos

[ a
2
(kx +

√
3ky)

]}
+{

1− cos
[ a

2
(kx −

√
3ky)

]})
. (4.6)

The matrix B
N
(k) can be represented as

B
N
(k) = bN0(k)1 + bN(k) · σ. (4.7)

The matrix B
N
(k) governs the propagation of light through triangularly patterned

structures composed of biaxial optically active materials. This Hamiltonian matrix is
one of the simplest lattice generalisations that both (i) reduces to the original parax-
ial Hamiltonian under small angle approximation of the trigonometric functions
and (ii) is invariant under the addition of any integer number of reciprocal lattice
vectors (4.2). The eigenvalues of the Hamiltonian B

N
(k) gives the two polarisation-

split bands of highest propagation constant kz for a triangular patterned photonic
crystal composed of anisotropic gyromagnetic materials. In figure 4.3 we plot the
eigenvalues of the Hamiltonian B

N
(k) over the first Brillouin zone for a biaxial

photonic crystal lacking optical activity. The parameters used for this figure were
(ε1, ε2, ε3) = (2.25, 2.5, 2.75) and a lattice spacing to wavelength ratio of a

λ = 0.8 was
chosen. These parameters are used throughout this chapter unless otherwise stated.

Although difficult to ascertain from figure 4.3, the introduction of periodicity
has produced extra C-points in the iso-frequency band structures of the triangularly
patterned photonic crystals. We shall now move to investigating the presence and
locations of these C-points.

4.3 Degeneracy Structure of Triangular Photonic Crystals

We shall now examine the degeneracy structure of the iso-frequency surfaces of
triangularly patterned photonic crystals. Initially we shall do this in a situation
where there is no optical activity. Our first preliminary method of study is to use the
derived lattice Hamiltonian model B

N
(k) to assess the C-points of the iso-frequency

surfaces. This assessment will be primarily concerned with four factors (i) the num-
ber of C-points of the iso-frequency surfaces, (ii) their locations in the first Brillouin
zone, (iii) their local circulation and (iv) their flow in reciprocal space as the lattice
spacing to wavelength ratio is varied. We will then compare the predictions of the
lattice Hamiltonian model B

N
(k) to those from a frequency-domain plane-wave

simulation [117] of a corresponding structure.
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FIGURE 4.3: The iso-frequency surfaces of a triangularly-patterned
photonic crystal composed of biaxial material. The plot is generated
from the lattice Hamiltonian model. The surfaces are plotted over
the first Brillouin zone and the parameters used were (ε1, ε2, ε3) =
(2.25, 2.5, 2.75) for the principal dielectric constants and a lattice spac-
ing to wavelength ratio of a

λ = 0.8.

4.3.1 Degeneracy Structure from Lattice Hamiltonian

In the lattice Hamiltonian C-points are locations in reciprocal space k′ where
bN(k′) = 0. Since in the absence of optical activity bN3(k) = 0 we need only focus
on the zeroes of the functions bN1(k) and bN2(k). These zeroes follow contours in
the first Brillouin zone, with the intersections of these contours representing C-point
locations. We can visualise these locations graphically by looking at appropriate
plots of the vector field (bN1(k), bN2(k)) over the first Brillouin zone.

Figure 4.4 shows the vector field (bN1(k), bN2(k)) along with the contours
representing the zeroes of each of its components over an enlarged first Brillouin
zone. The intersection of the turquoise and green contour lines represent C-points of
the iso-frequency surfaces. We see that there are four C-points in the first Brillouin
zone for this set of parameters. In addition to the C-point at Γ, which is that of the
original Hamiltonian from section 2.6, there is an extra one along the ky = 0 line
near the K4 boundary. The further two C-points appear along the line kx = −π

a .
By studying the overlaid vector field we can assess the local circulation of each of
these C-points. On studying this vector field we note that there is a positive sense
of circulation around each pair of points along the lines ky = 0. Conversely there
is a negative sense of circulation for each of the C-points along the line kx = −π

a .
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FIGURE 4.4: The zero contour lines of the polynomials bN1(k)
(turquoise) and bN2(k) (green) over an enlarged area containing the
first Brillouin zone. In the absence of a gyromagnetic perturbation,
the intersection of the zero contour lines represent degeneracies of
the iso-frequency bandstructure. The vector field (bN1(k), bN2(k)) is
overlaid in blue.

The Berry flux corresponding to each of these singularities is ±π, therefore upon
introduction of optical activity the Chern number can be C ∈ {−2,−1, 0, 1, 2}.

As in the case of the square geometry the extra degeneracies occur, loosely
speaking, towards the face centres and zone corners of the Brillouin zone. The
topological indices are the same as that of the square geometry; positive for those
at the zone centre and towards the zone corners and negative for those towards
the face centres. The four C-points observed in figure 4.4 were for one particular
set of parameters. To understand the topological phase diagram upon introduction
of optical activity we need to understand the degeneracy structure in all relevant
parameter regimes. The zeroes of the bN2(k) component of the vector field occur
along the high-symmetry lines ky = 0, ± 2π√

3a
and kx = ±π

a for all sets of parameters.
The lines ky = − 2π√

3a
and ky = 2π√

3a
are related by a reciprocal lattice vector so

we need only consider the degeneracy structure along one of these lines. We
shall now examine the presence and flow of the degeneracies along each of these
high-symmetry lines as the lattice spacing to wavelength ratio is varied.

We can see from figure 4.5 above that there are at least four C-points at all ratios
of the lattice spacing to wavelength. These C-points occur in two pairs of two along
the high symmetry lines ky = 0 (top left) and kx = −π

a (top right). These four
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FIGURE 4.5: Three density plots representing the splitting of the
bands of the iso-frequency surfaces. Each plot shows how the split-
ting of the bands varies with the lattice spacing to wavelength ratio.
Each of these plots is along a high symmetry line of the first Brillouin
zone. The high symmetry lines are ky = 0 (top left), kx = −π

a (top
right) and ky = 2π√

3a
(bottom). Contours representing C-points are

superposed on each plot in red.

C-points are readily identifiable in figure 4.4. There is also an emergence of extra
degeneracies along the line ky = 2π√

3a
(bottom) at high lattice spacing to wavelength

ratio. We did not display the corresponding plot along the line kx = π
a as no

degeneracies appear along this line. To assess what the topological indices of the
emergent C-points are we can look at a plot of the vector field at a lattice spacing to
wavelength ratio following their emergence.

In figure 4.6 we can see there are now six C-points in the first Brillouin zone.
Looking at the vector field around each of the intersections along the line ky = 2π√

3a
allows us to determine the topological index of the extra degeneracies. The C-point
closer to the K3 zone corner has positive local circulation while the other one has
negative local circulation. A clear picture of the degeneracy structure of these
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FIGURE 4.6: The emergence of extra structure in the highly paraxial
regime. This extra structure is in the form of a pair of C-points along
the ky = 2π√

3a
line. The lattice spacing to wavelength ratio considered

is a/λ = 7.

triangular photonic crystal models has now been established. There are at most
six C-points over this set of parameters of the lattice Hamiltonian. This means
that the Chern number of this model is C ∈ {−3,−2,−1, 0, 1, 2, 3}. The ratio of
the maximum number of degeneracies for triangular patterned photonic crystals
compared to those of the square patterned crystals follows the ratio of the coordi-
nation number of the two lattices. We now turn to establishing whether this lattice
Hamiltonian model is a qualitatively accurate descriptor of triangularly patterned
photonic crystals.

4.3.2 Comparison to Simulations of Triangular Photonic Crystal Struc-
tures

To test the validity of the lattice Hamiltonian model B
N
(k) we shall compare its

predictions to a numerical bandstructure calculation, using the frequency-domain
plane-wave method [117]. We focus on the number and locations of degeneracies in
the absence of optical activity as these are the crucial quantity for determining the
Chern number once optical activity is introduced. We specifically consider a biaxial
dielectric in which cylindrical air holes have been drilled to form a triangular lattice
of the same form as in section 4.2.
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FIGURE 4.7: A comparison between the iso-frequency surfaces gen-
erated from the lattice Hamiltonian (top) and those generated from
a frequency domain plane-wave simulation (bottom) for a triangu-
lar geometry. The iso-frequency surfaces are plotted as a path along
high-symmetry lines of the first Brillouin zone is followed. These sur-
faces are compared at ka ' 3.1π. The plane-wave simulation has
cylindrical air holes in the dielectric background. The radius of the
air holes considered is r = 0.15a.

Figure 4.7 shows two iso-frequency surfaces plotted following a path along high
symmetry lines of the first Brillouin zone. The top plot is that produced from the
Hamiltonian B

N
(k), and the bottom plot is the result of the numerical simulation.

These surfaces are compared at ka ' 3.1π such that we are in a regime where the
Hamiltonian B

N
(k) predicts that there is four C-points in the first Brillouin zone.

Comparing the two plots we note the similarity in the overall morphology of the
bands between each approach. As was the case for the square photonic crystals, the
Hamiltonian approach underestimates the overall dispersion of the surfaces as well
as the polarisation splitting of the bands. Potentially more significantly, however,
is that the numerical simulation lacks the additional C-points along the high
symmetry lines where their presence was predicted by the Hamiltonian model. We
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therefore turn to examine the iso-frequency surfaces from the numerical simulation
over the entire Brillouin zone. This will allow us to determine whether the expected
C-points are completely absent or merely not confined to the high symmetry lines.

FIGURE 4.8: Two density plots showing the splitting of the two
most paraxial bands of the iso-frequency surface computed from a
frequency-domain plane-wave calculation. Each density plot consid-
ers a different frequency. The splittings are plotted over the hexag-
onal first Brillouin zone. The overlaid green points are the C-point
locations at that frequency from the parxial theory.

Figure 4.8 shows two density plots where the splitting of the bands of the
iso-frequency surfaces from the numerical simulations are represented. Each plot
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considers a different frequency; in the top plot we considered ka = 1.93854 × 2π

while in the bottom plot we choose ka = 1.48397 × 2π. For each frequency we
have marked the C-point locations predicted by the Hamiltonian B

N
(k) by green

points. In each instance we observe what appears to be four degeneracies over
the entire Brillouin zone. The numerical simulations feature one degeneracy at the
zone centre, one near the top/bottom edge of the Brillouin zone and two more
towards the M3 and M4 face centres. These two C-points close to the M3 and M4

face centres can be identified with those of the Hamiltonian which appeared along
the kx = −π

a line. The difference in the C-point location between the final C-point
of the Hamiltonian B

N
(k), which is close to K4, and that of the numerical solution,

which is close to the top/bottom edge of the Brillouin zone, appears substantial.
We however note that the point K4 is related to both K2 and K6 by reciprocal
lattice vectors so that the location difference is actually much less significant. The
numerical simulations clearly indicate that the C-points resist being pinned to high
symmetry lines contrary to what the lattice Hamiltonian B

N
(k) predicted. We

attribute this difference to the different treatment of scattering and the omission
of higher order terms in the paraxial Hamiltonian of section 2.6. Nevertheless the
model correctly predicts the number of C-points of the iso-frequency surfaces as
well as the approximate locations of these C-points. We therefore argue that the
Hamiltonian B

N
(k) will produce a similar topological phase diagram to that which

a numerical simulation would produce. Hence we shall turn to using B
N
(k) to

examine the topological phase diagram upon the introduction of one of two kinds
of optical activity.

4.4 Photonic Crystals Composed of Biaxial Faraday Effect
Materials

The first form of optical activity that we shall consider is the Faraday effect. Upon in-
troduction of a non-zero magnetic field in a general direction, the degeneracies of the
iso-frequency surfaces are lifted and the polarisation states of each surface become
generally elliptical. Without loss of generality we shall assume that the maximum
splitting due to the magnetic field occurs along the direction in which the field is
applied. Depending on the orientation of the magnetic field, L-lines can appear in
the first Brillouin zone. Due to periodicity these L-lines always appear in such a
way that any reciprocal lattice vector translation crosses an even number of L-lines.
These L-lines separate regions of one handedness of elliptical polarisation from re-
gions which have the opposite handedness. If the magnetic field is such that odd
number of L-lines separate C-points of different topological index then this is an ori-
entation of the magnetic field which can result in a non-zero Chern number [89] as
we now explore.
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4.4.1 Examination of Topological Phase Diagrams

FIGURE 4.9: Phase diagrams representing the Chern number by
colour of a triangularly patterned photonic crystal. The photonic
crystal is composed of biaxial Faraday effect material. The phase dia-
gram is plotted in the space of the external magnetic field application
direction (θ, φ). The colours represent C = 0 (mid pink) and C = ±1
(dark or light pink). The figure on the left is a wrapping of the fig-
ure on the right onto a section of the surface of a sphere. The black
line in the left figure represents the optic axis direction of the biaxial
material.

In figure 4.9 we see two plots showing the Chern number by colour of a trian-
gularly patterned photonic crystal composed of biaxial Faraday effect material. The
plots are in the space of the direction of the externally applied magnetic field (θ, φ);
where θ is measured from the optic axis direction of the homogeneous material,
i.e. θ = π

2 corresponds to applying the magnetic field in a plane perpendicular
to the optic axis direction. In figure 4.9 we have calculated the Chern number
using the method of Sticlet et al. [23]. We see that non-zero Chern numbers (light
and dark pink) are achievable. These non-zero Chern numbers occur for a range
of field application directions close to perpendicular to the optic axis. In these
figures we have considered a lattice spacing to wavelength ratio a

λ = 0.8, for which
there are four C-points. The bounding contours of these topological phases then
represent the gap closing at each of these four lifted degeneracies. Each of these
four contours are geodesics connecting the antipodal magnetic field application
directions (θ, φ) = (π

2 , π
2 ) and (θ, φ) = (π

2 , 3π
2 ). If the magnetic field is applied in

either of these directions the gap closes at all of the C-points. These geodesics are
each described by the equation (3.10) with suitable constants c1 and c2. The θ = π

2

geodesic corresponds to the gap closing at the Γ point, the inner geodesic contour
which weaves above and below the equator and separates the C = ±1 phases
corresponds to the gap closing at both the C-points along the line kx = −π

a simul-
taneously. The outer geodesic contour represents the gap closing at the C-point
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towards the K4 zone corner. In comparison to the corresponding phase diagrams for
square patterned photonic crystals (figure 3.9), there are several differences. Firstly,
the range of permissible angles for triangular patterning is much larger than in the
square patterned cases. Additionally the location of the non-zero regions have been
reflected across the θ = π

2 line and the sign of the Chern number has also changed.
We shall examine these differences in greater detail in section 4.6.

We now wish to examine the evolution of these phase diagrams as the param-
eters of the photonic crystal are varied. We will consider variation of both the
strength of biaxiality and the lattice spacing to wavelength ratio. For each of these
variations the shrinking or increasing of the topologically non-trivial phase can
be understood in the context of how the variation alters the ratio of c2/c1 in the
geodesic equation (3.10).

4.4.2 Variation of Topological Phase Diagrams with Degree of Biaxiality

The first parameter we consider the variation of is the degree of biaxiality. Initially
we shall examine four snapshots of the topological phase diagrams in the space
of the magnetic field application direction. Each of these snapshots considers a
different set of principal dielectric constants.

Figure 4.10 shows an array of topological phase diagrams representing the
Chern number by colour. In each case the biaxial cone semi-angle, A, is stated above
the plot. We see that the weaker the biaxiality the larger the region of non-zero
Chern numbers. This is the opposite trend to that which was seen for square
photonic crystals in figure 3.10 and is reflected by the decreasing magnitude of the
ratio c2/c1 in the geodesic equation (3.10) with increasing biaxiality. To further
assess this behaviour we shall now consider the effect on the phase diagram of the
continuous variation of the degree of biaxiality.

Figure 4.11 examines the effect on the topological phase diagram of the con-
tinuous variation of two of the principal dielectric constants with the median one
held fixed. The black overlaid contours represent constant values of the biaxial
cone semi-angle in 2◦ increments from bottom to top of the figure. From this figure
we can see the size of the topologically non-trivial phase exhibits a complicated
expansion and contraction behaviour with increasing strength of biaxiality.
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FIGURE 4.10: A panel of four phase diagrams representing the Chern
number by colour of triangularly patterned photonic crystals. The
photonic crystals are composed of biaxial Faraday effect material.
Each diagram is for a different degree of biaxiality. In each case
the biaxial cone semi-angle is stated above the diagram. The prin-
cipal dielectric constants (ε1, ε2, ε3) are (from left to right and then
top to bottom) (i) (2, 3, 4), (ii) (2, 2.5, 3), (iii) (2.25, 2.5, 2.75) and (iv)
(2.4, 2.5, 2.6).

4.4.3 Variation of Topological Phase Diagrams with Lattice Spacing to
Wavelength Ratio

The other parameter we can vary is the lattice spacing to wavelength ratio of the pho-
tonic crystal. As before we study four snapshots of the topological phase diagram
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FIGURE 4.11: The Chern number at magnetic field application direc-
tion (θ, φ) = ( 33π

64 , π) of a triangularly patterned photonic crystal.
The photonic crystal is composed of biaxial Faraday effect material.
The black contour lines are lines of constant cone semi-angle A. The
lowest of these contour lines is A = 2◦ and each higher one is 2◦

more. The white contour line is α = β.

in the space of the magnetic field application direction. Each of these snapshots con-
siders a different lattice spacing to wavelength ratio.

Figure 4.12 shows an array of topological phase diagrams representing the
Chern number by colour. In each case the lattice spacing to wavelength ratio is
stated above the plot. We see that the higher this ratio the smaller the region of
non-zero Chern numbers. This is the same trend as was seen for square patterned
photonic crystals. As in that case, the diminishing of the topologically non-trivial
phase results from the decreasing magnitude of the ratio of c2/c1 in the geodesic
equation for each of the C-points. This occurs because the iso-frequency surface
dispersion becomes increasingly dominated by the lower-order terms as a

λ increases.
Additionally we observe that as a

λ increases that a more equitable distribution of the
C = ±1 phases on each side of the θ = π

2 line results.

Figure 4.13 examines the effect on the topological phase diagram of the contin-
uous variation of the lattice spacing to wavelength ratio. From this figure we can
see the size of the topologically non-trivial phase contracts with increasing a

λ . We
additionally see that the area of the topologically non-trivial phase closer to the



98 Chapter 4. Triangularly Patterned Photonic Crystals

FIGURE 4.12: A panel of four phase diagrams representing the Chern
number by colour of triangularly patterned photonic crystals. The
photonic crystals are composed of biaxial Faraday effect material.
Each diagram is for a different lattice spacing to wavelength ratio.
In each case this ratio is stated above the diagram.

θ = π
2 equator contracts at a faster rate compared to that of the opposite sign.

We have now developed a detailed understanding of the topological phase
diagram of triangularly patterned photonic crystals composed of biaxial Faraday
effect dielectrics. This phase diagram depends on six parameters which together fix
the locations of the C-points and L-lines of the iso-frequency surfaces. The topo-
logical phase diagram is therefore a complicated hypersurface in the space of these
parameters, nonetheless we have developed an understanding of it by examining
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FIGURE 4.13: A phase diagram representing the Chern number by
colour of a triangularly patterned photonic crystal. The photonic
crystal is composed of biaxial Faraday effect material. The phase dia-
gram examines the effect of continuous variation of the lattice spacing
to wavelength ratio. The lattice spacing to wavelength ratio is plotted
against the magnetic field direction θ with φ = π held fixed.

representative slices. The immediate conclusion, and one which differs completely
from the result of the homogeneous material seen in subsection 2.4.3, is that one
can achieve a non-zero Chern number. This non-zero Chern number occurs when
the magnetic field is applied for a band of directions almost perpendicular to the
optic axis direction. Once the presence of a topologically non-trivial surface in this
hyperspace has been established, we study how the volume of that surface varies
in different directions in parameter space. This analysis has led us to conclude that,
with regard to maximising the size of the topologically non-trivial region, the lattice
spacing to wavelength ratio should be as small as possible. The overall area of the
topologically non-trivial parameter regimes are larger than that which was seen
for the corresponding square patterned systems. Additionally, the topologically
non-trivial areas of these triangularly patterned structures exhibited a complicated
behaviour as the strength of the biaxial constituents was varied.
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4.5 Photonic Crystals Composed of Chiral Biaxial Materials

We now consider chiral biaxial materials as the constituents of the triangularly
patterned structures. The introduction of chirality has the potential to lift the degen-
eracies of the iso-frequency surfaces. If this proves to be the case the iso-frequency
surfaces can be assigned a Chern number. Whether or not this invariant is non-zero
depends on the parameters of the photonic crystal. Depending on the form of the
chirality there are between five and ten parameters determining the Chern numbers
of the iso-frequency surfaces. We shall initially focus on the simpler forms of
chirality, those of the orthorhombic crystals, and then progress to those of increasing
complexity.

Before examining the different forms of chirality though it will be helpful to
determine which components of the chirality tensor are relevant to bNz at each of the
C-points. As in chapter 3 we shall decompose the symmetric chirality tensor G into
G = γCG̃. For the two C-points which feature along the line ky = 0 the only relevant
components are G̃11, G̃13 and G̃33. For the other two C-points, which appear along
the line kx = −π

a , the component G̃22 is also relevant in determining bNz. This
means that the parameter space to be explored is potentially up to eight dimensions
depending on the form of chirality. This corresponds with the square patterned
photonic crystal case where the parameter space was also eight dimensional.

4.5.1 Forms of Chirality

Rhombic Pyramidal

For rhombic pyramidal dielectrics there is one non-zero component of the sym-
metric chirality tensor G̃

abc
featuring on the off-diagonal. This tensor is related to

that in the principal axes frame G̃
123

by a permutation to appropriately match up
the crystallographic axes and the principal dielectric axes. Considering photonic
crystals formed from these materials, under any of the possible permutations of
axes, the resulting Chern number is zero. There being only one non-zero component
of G̃ simply does not give the flexibility to achieve different signs of bNz at the
different C-points.

Rhombic Disphenoidal

For rhombic disphenoidal structures the chirality tensor is diagonal with distinct
entries. Considering photonic crystals patterned out of rhombic disphenoidal
materials, it is possible to achieve a non-zero Chern number for the iso-frequency
surfaces. The three non-zero components of G̃, for this set of C-point locations
are sufficient to achieve a topologically non-trivial result. This contrasts with the



4.5. Photonic Crystals Composed of Chiral Biaxial Materials 101

corresponding result for the lattice Hamiltonian model of square patterned photonic
crystals.

Domatic

For domatic materials the symmetric chirality tensor features two non-zero dis-
tinct entries on the off-diagonals. Considering photonic crystals patterned out of
domatic materials, it is not possible to achieve a non-zero Chern number for the
iso-frequency surfaces. The zero Chern number in this case is irrespective of which
of the dielectric axes correspond to the b crystallographic axis. Since G̃12 and G̃23 do
not contribute to bNz along the line ky = 0 and kx = −π

a we are again effectively in
a situation where only one component of G̃ is relevant. This case is then similar to
that of chirality of the rhombic pyramidal form with one component of G̃ lacking
the flexibility to achieve a non-zero Chern number.

Sphenoidal

For sphenoidal materials the symmetric chirality tensor features three distinct
entries on the diagonal as well as one off-diagonal entry. Considering photonic
crystals patterned out of sphenoidal materials, it is possible to achieve a non-zero
Chern number for the iso-frequency surfaces. This is unsurprising as the possible
rhombic disphenoidal chirality tensors are a subset of the sphenoidal ones. As
such in the two instances where the 2 dielectric axis does not corresponds to the b
crystallographic axis the topological phase diagrams are the same as for the rhombic
dispehnoidal materials. For the other possible configuration, where the 2 dielectric
axis and the b crystallographic axis correspond, the topological phase diagram will
be richer than that of the rhombic disphenoidal as the effects of G̃13 need to be
considered.

Pedial

All the previous cases represent subsets of what can be seen in pedial crystal
structures. Owing to this the possibility of a non-zero Chern number for the
iso-frequency surfaces of triangularly patterned pedial materials follows from
those of the rhombic disphenoidal and sphenoidal cases. In fact within the lattice
Hamiltonian model the topological phase diagrams of the sphenoidal (in the latter
configuration) and pedial cases will be the same.

Beyond the lattice model we expect these predictions to be a conservative esti-
mate of the topological phase diagrams that are possible. As the C-point locations
from the numerical simulations resisted pinning to high symmetry lines it is likely
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that G̃12 and G̃23 would be relevant at at least some of the C-points. For this reason
we would expect some domatic crystals could have non-zero Chern numbers also.

4.5.2 Examination of Topological Phase Diagrams

FIGURE 4.14: A 3D phase diagram representing the regions of non-
zero Chern number by colour of a triangularly patterned photonic
crystal. The photonic crystal is composed of chiral biaxial material.
The form of chirality is either that of a sphenoidal or pedial structure.
In the case of a sphenoidal material we have taken the b crystallo-
graphic axis and the 2 dielectric axis to coinceide. The darker (lighter)
pink region represents a Chern number C = 1 (C = −1). The black
and grey regions represent C = ±2. The region of zero Chern number
is left transparent. We fix G̃22 = G̃11 for this plot. The plane G̃11 = G̃33
is shown in green.

Henceforth we will focus on dielectrics with either the sphenoidal or pedial
point groups. For the sphenoidal cases we consider that the 2 dielectric axis
corresponds with the b crystallographic axis. The handedness of the C-points is
determined by the four chirality tensor components G̃11, G̃22, G̃33 and G̃13. With
this in mind we can examine the Chern number in the space of three of these four
components. While doing this we shall fix the fourth component G̃22 to be the same
value as G̃11.

Figure 4.14 plots the regions of non-zero Chern number in the space of the
three aforementioned chirality tensor components. We immediately see that the
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possibility of a non-zero Chern number, which was theorised earlier, can be realised.
This realisation occurs in regions where the two components G̃11 and G̃33 have the
same sign as each other and a different sign to G̃13. The locations and shapes of the
topologically non-trivial parameter regimes is somewhat similar to that seen in the
square case in figure 3.14 although the division lines within this region are different
and in this case we also have regions of C = ±2 also.

We shall now turn to assessing the variation of the phase diagrams as the other
parameters of the photonic crystal are changed. As in section 4.4 we consider the
variation of the principal dielectric constants and the lattice spacing to wavelength
ratio of the photonic crystal. To facilitate a more direct assessment of the effect of
the parameter variation we shall consider the green 2D planar slice of the parameter
space shown in figure 4.14. The slice we consider is therefore G̃11 = G̃22 = G̃33 ≡ G̃i

which, although artificial, is likely the easiest to examine due to the observations
that followed from the examination of figure 4.14 in the preceding paragraph. We
additionally relabel G̃13 ≡ G̃a.

4.5.3 Variation of Topological Phase Diagrams with Degree of Biaxiality

The first parameter that we consider the variation of is the degree of biaxiality.
Initially we shall examine four snapshots of the topological phase diagrams in
the space of the isotropic chirality tensor components G̃i and anisotropic chirality
tensor components G̃a. Each of these snapshots considers a different set of principal
dielectric constants.

Figure 4.15 shows an array of topological phase diagrams representing the
Chern number by colour. In each case the biaxial cone semi-angle is stated above
the plot. Although difficult to observe in figure 4.15, the stronger the biaxiality the
larger the region of non-zero Chern numbers. This enlargement of the topologically
non-trivial phase results from the increased displacement of the C-points from the
face centres and zone corners of the Brillouin zone. This variation of the phase
diagram is no where near as complex as the variation for biaxial Faraday effect
photonic crystals in subsection 4.5.3. The comparative stability in this case follows
from the quadratic dependence of the B polynomial (2.43) on propagation direction
for chirality as compared to the linear dependence for the Faraday effect (2.42).

Figure 4.16 examines the effect on the topological phase diagram of the con-
tinuous variation of two of the principal dielectric constants with the median one
held fixed. The black overlaid contours represent constant values of the biaxial
cone semi-angle, increasing in 2◦ increments from bottom to top of the figure. From
this figure we can see, much more directly than in figure 4.15, that the size of the
topologically non-trivial phase increases with increasing strength of biaxiality. One
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FIGURE 4.15: A panel of four phase diagrams representing the Chern
number by colour of triangularly patterned photonic crystals. The
photonic crystals are composed of chiral biaxial material. Each dia-
gram is for a different degree of biaxiality. In each case the biaxial
cone semi-angle is stated above the diagram. The principal dielectric
constants (ε1, ε2, ε3) are (from left to right and then top to bottom) (i)
(2, 3, 4), (ii) (2, 2.5, 3), (iii) (2.25, 2.5, 2.75) and (iv) (2.4, 2.5, 2.6).

of the boundaries between the phases, for this set of parameters, approximately
follows the yellow α = 3.5β contour line.

4.5.4 Variation of Topological Phase Diagrams with Lattice Spacing to
Wavelength Ratio

The other parameter we vary is the lattice spacing to wavelength ratio. As before we
study four snapshots of the topological phase diagram in the space of the isotropic
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FIGURE 4.16: A phase diagram representing the Chern number by
colour of a triangularly patterned photonic crystal. The photonic
crystal is composed of chiral biaxial material of sphenoidal or pedial
type. This phase diagram examines the effect of continuously vary-
ing the degree of biaxiality. The median principal dielectric constant
is fixed at ε2 = 2.5 and the other two principal dielectric constants
(ε1, ε3) are allowed to vary. The black contour lines are lines of con-
stant cone semi-angle A. The lowest of these contour lines is A = 2◦

and each higher one is 2◦ more. The white contour line is α = β and
the yellow one is α = 3.5β. The isotropic and anisotropic chiralities
are (G̃i, G̃a) = (−0.5, 0.6).

chirality contribution G̃i and the anisotropic chirality contribution G̃a. Each of these
snapshots considers a different lattice spacing to wavelength ratio.

Figure 4.17 shows an array of topological phase diagrams representing the
Chern number by colour. In each case the lattice spacing to wavelength ratio is
stated above the plot. We see that the higher this ratio the smaller the region of
non-zero Chern numbers. This diminishing of the topologically non-trivial phase
results from the C-points being pushed towards the boundaries of the Brillouin
zone. This occurs because the iso-frequency surface dispersion becomes increas-
ingly dominated by the lower-order terms as a

λ increases.

Figure 4.18 examines the effect on the topological phase diagram of the
continuous variation of the lattice spacing to wavelength ratio. From this figure
we can see the size of the topologically non-trivial phase contracts with increasing a

λ .
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FIGURE 4.17: A panel of four phase diagrams representing the Chern
number by colour of triangularly patterned photonic crystals. The
photonic crystals are composed of chiral biaxial material. Each dia-
gram is for a different lattice spacing to wavelength ratio. In each case
this ratio is stated above the diagram.

We have now developed a detailed understanding of the topological phase
diagram of triangularly patterned photonic crystals composed of chiral biaxial
dielectrics. Within the lattice Hamiltonian model this phase diagram can depend
on up to eight parameters depending on the form of chirality considered. These
parameters together fix the locations of the C-points and L-lines of the iso-frequency
surfaces. The topological phase diagram is therefore a complicated hypersurface in
the space of these parameters. Nonetheless we have developed an understanding of
these surfaces for each possible form of chirality. We discovered that, at least within
the lattice model, non-zero Chern numbers are only possible for dielectrics of the
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FIGURE 4.18: A phase diagram representing the Chern number by
colour of a triangularly patterned photonic crystal. The photonic
crystal is composed of chiral biaxial material. The phase diagram ex-
amines the effect of continuously varying the lattice spacing to wave-
length ratio of the photonic crystal. The strength of the isotropic chi-
rality is held fixed at G̃i = −0.5.

rhombic dispenoidal, sphenoidal or pedial point groups. In the former instance the
phase diagrams are hypersurfaces which vary in seven dimensions. This is also the
case for two permutations of the sphenoidal point group structures. For the other
permutation of the sphenoidal point group structure and for pedial type structures
the phase diagrams depend on eight parameters. To understand these surfaces we
have examined representative 2D and 3D slices of the full 8D parameter space.
The appearance of non-zero Chern number in this space occurs when the isotropic
chirality contributions G̃i and the anisotropic chirality contributions G̃a are close
to equal in magnitude but differ in sign. Once the presence of a topologically
non-trivial surface in this hyperspace has been established, we study how the
volume of that surface varies in different directions in parameter space. This
analysis has led us to conclude that, with regard to maximising the size of the
topologically non-trivial region, the biaxiality should be as strong as possible and
the lattice spacing to wavelength ratio as small as possible. In comparison to square
patterned photonic crystals the realisation of non-zero Chern number regions for
rhombic disphenoidal structures is unique to the triangular geometry, at least within
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the lattice models. Additionally we saw that, for sphenoidal and pedial forms of
chirality, although the location and shape of the topologically non-trivial area was
somewhat similar to the square patterned cases, the boundaries within those areas
were different. In the triangular geometry there were C = ±2 regions which were
absent from the square patterned case. Beyond the lattice model it is likely the
chirality tensor components G̃12 and G̃23 would be relevant and hence that domatic
structures could also be topologically non-trivial, under the right conditions.

4.6 Comparison Between Square and Triangular Photonic
Crystals

We shall now investigate the differences between the topological phase diagrams
for triangularly patterned photonic crystals and those for square patterned pho-
tonic crystals in chapter 3. The deviations in the topological phase diagrams
between the two geometries are much more pronounced when biaxial Faraday
effect constituents are considered. The deviations for chiral biaxial materials are rel-
atively minor so we shall only examine those for the biaxial Faraday effect materials.

FIGURE 4.19: Comparison of the Chern numbers determined for two
different photonic crystal lattice geometries. The two geometries con-
sidered are square and triangular. In each case we consider biaxial
Faraday effect dielectrics as the photonic crystal constituents. The
comparison considers how the Chern number depends on the direc-
tion (θ, φ) in which the magnetic field is applied. The colour scheme
of the plot is given in the legend on the right.

In figure 4.19 we look at how the topologically ordered phases in the two ge-
ometries depend on the direction of the applied magnetic field. The Chern number
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in the two geometries, CS (square) and CT (triangular), is displayed according to the
legend of the figure. We can see that the topologically non-trivial regions for each of
the geometries do not overlap at all. At any angle φ we see that the phases for each
geometry occur on opposite sides of the θ = π

2 equator. Mathematically, this is due
to the ratios c2/c1 of the geodesic equations (3.10) for the C-points in each geometry
having opposite signs. To investigate the physical cause of this difference between
the two geometries we need to examine the two models more closely. In particular,
we can look at plots of the zero contour lines of the polynomials b�(k) and bN(k)
over the relevant Brillouin zones to assess the origin of the differences.

In figure 4.20 we can see the cause of the discrepancy between the Chern
numbers determined in the two geometries. The zero contour lines are broadly
similar in both geometries, particularly in the central regions of each Brillouin zone.
Closer to the zone boundaries we see how the geometry impacts the zero contour
lines. There are three principal factors which acting in combination with the zero
contours of b3(k) in each geometry explain the differences in Chern number. These
three factors are the swapped sign of the topological index of the C-point towards
the zone boundary along the ky = 0 line, the increased displacement of this C-point
from the boundary in the triangular geometry and the two extra C-points in the
triangular geometry. The swap in sign of topological index has occurred as, in
the triangular geometry, the C-point towards the boundary along the ky = 0 line
represents a zone corner C-point rather than a face centre C-point, which it is for the
square geometry.

It is interesting that the Faraday effect is much more sensitive than chirality
to these differences between the two geometries. This must be attributable to the
different ways in which the two forms of optical activity depend on the propagation
direction, which we saw in equations (2.42) and (2.43).

4.7 Conclusion

In this chapter we were interested in the topological invariants of the iso-frequency
surface of triangularly-patterned 2D photonic crystals composed of biaxial optically
active materials. Our focus was on the two most paraxial polarisation-split bands
of the iso-frequency surface describing propagation largely perpendicular to the
periodic plane of the photonic crystal. To describe such a system we have adapted
the paraxial Hamiltonian derived in section 2.6 to a triangular lattice geometry
in section 4.2. To assess the fidelity of this adaptation we have compared the
lattice Hamiltonian to frequency-domain plane-wave simulations of corresponding
systems. The comparison showed that the adapted Hamiltonian is a reasonable
qualitative descriptor of these 2D photonic crystal structures. In particular, the
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FIGURE 4.20: Four plots investigating the discrepancy in Chern num-
bers between the two geometries. The two geometries considered
were (top row): square and (bottom row): triangular. For both ge-
ometries the photonic crystals are composed of biaxial Faraday effect
materials. For both geometries the same two magnetic field applica-
tion directions were used. In the left figures (θ, φ) = ( 127π

256 , π) and in
the right figures (θ, φ) = ( 33π

64 , π).

adapted Hamiltonian captures the aspects most important to the topological
characterisation of these systems, the number of polarisation C-points and their
approximate locations in the first Brillouin zone.

Since the lattice Hamiltonian gives a reasonable qualitative account of the sin-
gularities in the iso-frequency surfaces we can use it to assess the topological phase
diagrams of the iso-frequency surfaces of 2D anisotropic photonic crystals upon
addition of optical activity. In section 4.4 we considered the addition of a Faraday
effect exploiting magnetic field. We found that it is possible to achieve a non-zero
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Chern number in certain parameter regimes. There are generally six parameters
governing the value of the Chern number: the magnetic field direction, the three
principal dielectric constants and the lattice spacing to wavelength ratio. To achieve
a non-zero Chern number the magnetic field should be applied in any of a band of
directions, all of which are close to perpendicular to the optic axis direction. The
width of this band is governed by the other four parameters. A system with a
lower lattice spacing to wavelength ratio has a wider band of directions. The width
of the band of directions exhibits a complex dependence on the strength of biaxiality.

The other form of optical activity that we considered is chirality. The nature of
the chirality considered plays a decisive role in whether optical topological order
is achievable at all. With reference to the lattice Hamiltonian model, it is only
possible to achieve a non-zero Chern number with either dielectrics of rhombic
disphenoidal, sphenoidal or pedial form. For photonic crystals composed of these
types of dielectrics a topologically non-trivial system is by no means guaranteed.
Whether or not a non-zero Chern number results depends on the interplay of either
seven or eight parameters: the three or four relevant components of the chirality
tensor, the three principal dielectric constants and the lattice spacing to wavelength
ratio. For the sphenoidal or pedial forms of chirality a non-zero Chern number is
achieved when the ratio of the diagonal components of the chirality tensor to each
other should be close to positive unity while the ratio of each of the three diagonals
to the relevant off-diagonal should be close to negative unity. When this is the case
the range of tolerance close to unity for a non-zero Chern number is increased for a
more strongly biaxial material and when the lattice spacing to wavelength ratio is
lower.

In previous works that have theorised and realised Chern insulators in tri-
nagularly patterned photonic crystals [9, 10, 33, 88], degeneracies of the photonic
band structure were inherited from the lattice symmetries rather than from the
underlying dielectrics. These previous works additionally explicitly considered
situations in which the propagation direction and polarisation state are de-coupled.
In contrast, the consideration of anisotropic dielectrics in this chapter means that
such a de-coupling does not occur.

The work presented in this chapter is therefore a parallel study to that presented
in chapter 3 where square patterned photonic crystals were considered. Each of
these approaches exploits the polarisation degeneracies of the index surfaces of
homogeneous anisotropic materials to realise topologically non-trivial systems. The
topological phase diagrams produced for the two geometries showed broad simi-
larities in the topologically non-trivial parameter regimes. The different geometry
caused only minor deviations in the size and small shifts in the locations of the
topologically non-trivial parameter regimes. This confirms that, as we expected, the
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dominant mechanism underpinning these topologically non-trivial iso-frequency
surfaces is the anisotropic optically active materials rather than any special type of
patterning. This suggests that the approach provides a general framework for the
realisation of topological order in photonic crystals.



113

Chapter 5

Edge Theories of Topologically
Non-Trivial Systems

5.1 Introduction

A possible physical manifestation of a non-zero topological invariant in a bulk
system is the appearance of edge states at its boundary [6]. These states can appear
when a topologically non-trivial system has an interface with a topologically trivial
one. The nature of the edge states depends on what type of non-zero invariant is
present [124]. In the case of a non-zero Chern number the edge states propagate
chirally around the boundary, either clockwise or anti-clockwise [27]. The origin
of the edge states states can be elucidated by imagining, rather than an abrupt
interface, a smooth interpolation between the two materials in the direction per-
pendicular to the boundary. In this scenario it is clear that, since away from the
boundary the value of the relevant topological invariant differs on each side, there
must be a degeneracy of the band structure, separating the two phases. The region
of the degeneracy of the band structure will then possess low-energy locally-bound
states. For an abrupt boundary the edge states will persist provided that the
scattering effects of the boundary do not mix the edge states with those of the bulk.
Whether or not this mixing happens depends on the nature of the band gap of the
system considered. These edge states, if they exist, are localised within a certain
characteristic distance of the boundary [125]. The characteristic distance in turn sets
a scale for the minimum system size in order to observe the edge states.

To assess whether edge states appear or not one has to study a finite geome-
try version of the bulk system Hamiltonian. Although there have been studies that
have examined edge states by studying terminations of continuum Hamiltonians
[126, 127] we will focus on terminating lattice theories. The introduction of a bound-
ary to these bulk lattice Hamiltonians breaks translation invariance in the direction
perpendicular to the wall. Owing to this, Bloch’s theorem no longer applies in the
direction perpendicular to the wall and consequently solutions which grow or de-
cay in that direction are allowed. The wavevector parallel to the boundary remains
a good quantum number, which characterises the solutions.



114 Chapter 5. Edge Theories of Topologically Non-Trivial Systems

In chapters 3 and 4 we examined anisotropic photonic crystals whose iso-
frequency surfaces can be described by a topologically non-trivial Hamiltonian.
This Hamiltonian models the paraxial evolution of light propagating primarily out
of the periodic plane of the photonic crystals. Edge states in this context would
therefore be solutions which travel chirally around the xy boundary of the photonic
crystal as they evolve along the z direction. In this chapter we will examine the
prospect of edge states for the anisotropic photonic crystals of chapters 3 and 4.

To address this prospect it will be helpful to first recognise the differences
between the theories of the preceding chapters and that of the idealised Chern
insulator of section 1.3 where edge states emerged in a straightforward manner. The
most immediate difference is that the idealised Chern insulator possesses a bulk
band-gap over the entire Brillouin zone (see figure 1.3) whereas the photonic crystal
models of chapters 3 and 4 do not (see figures 3.3 and 4.3). A second difference
between the idealised Chern insulator and the photonic topological insulators of
chapters 3 and 4 is that the latter have a lower degree of symmetry than the former.
In particular the theories of chapters 3 and 4, due to the anisotropy of the dielectric
materials, do not possess the π

4 and π
6 rotation symmetries of the respective lattices.

We need therefore to explore two questions; what implications do the lack of
a complete photonic band gap have on edge state formation, and, whether the
reduced symmetry of the photonic crystal makes the edge theories dependent on
the boundary orientation?

To explore the first question we must decide what manner of boundary condi-
tion to employ. In this work we shall employ two variants of boundary condition,
an open boundary condition and a boundary condition which explicitly includes a
description of the adjacent material. The open or hard wall boundary conditions
are a mathematically convenient set of boundary conditions. These boundary
conditions employ an infinite potential jump on the perimeter of the topologically
non-trivial material. The infinite potential step means that the field must vanish
on each boundary. An immediate consequence of the vanishing is that, for edge
state formation, two decay length scales are required for each edge [128]. The first
length scale is needed to make the field grow in the close vicinity of the wall and
the second to make the field decay as one penetrates further into the bulk [129]. The
question is then whether the two decay length scales are available to construct an
edge state solution.

Though mathematically convenient the hard wall boundary conditions are not
always realistic. In reality the field will not vanish on the boundary and will instead
extend into the adjacent material. Owing to this it may be desirable to include
a description of the adjacent topologically trivial material. The inclusion of the
adjacent material in describing the whole system may circumvent the need for two
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decay length scales for each edge which was required for the hard wall boundary
conditions. As the field is finite on the boundary between the two materials we may
only require a single decay length scale. This is perhaps suggested by the 1D Jackiw
Rebbi model [130], which is a continuum model comprising Dirac fermions in each
half-space separated by a boundary at the origin. The masses of the fermions are
taken to differ in sign and magnitude. Each half space does not properly define an
integer Chern number as there is not a proper lattice regularisation. Nevertheless,
the interface between the two half-spaces can be regarded as one across which the
Chern number changes by |∆C| = 1. There is therefore a solution bound to the
interface between the two materials. This solution interestingly exhibits exponential
decay with a single exponent in each material. On this basis we will explore whether
a two-dimensional model featuring an interface between lattice systems of differing
Chern number requires four decaying length scales to form edge states or if two are
sufficient.

In this chapter we employ either a hard-wall boundary condition or one which
includes the adjacent material. In each instance we investigate when edge state for-
mation occurs, and for the second form of boundary condition, how many decaying
length scales are required. The question of the number of available decaying length
scales is related to the bulk band structure. In particular, the morphology of the
bands and not just their topological invariants is relevant [131]. We therefore seek
to understand edge state appearance through the analysis of bulk band structures.
For a hard wall geometry this requires exclusive study of the band structure of the
topologically non-trivial material, whereas when we include the adjacent material
we must also consider its band structure.

FIGURE 5.1: Two cartoons illustrating possible terminations to a
structure one can consider in order to examine edge features. On the
left we consider a system which is finite in x and infinite in y while
on the right we have the converse.

As well as the form of the boundary conditions employed the orientation
of the boundary can also affect the existence and characteristics of edge states
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[132]. For a square lattice the two most natural terminations, which we shall
consider throughout this chapter, are shown in figure 5.1. In this figure we consider
introducing walls perpendicular to either of the two directions of patterning of
the two-dimensional bulk material. The resulting Hamiltonian in each of these
geometries, when diagonalised, need not produce corresponding edge theories. As
the photonic crystal models of chapters 3 and 4 did not possess the symmetry of
their respective lattices we shall explore whether and how this reduced symmetry
manifests in the edge theories produced under each termination.

To this end we begin this work in section 5.2 by studying the formation of
edge states for topologically non-trivial system using a hard-wall boundary con-
dition. We do this by studying an adapted Chern insulator model. This study
will help us understand how the bulk band structure affects both the available
decay length scales and the possible termination orientations for edge state for-
mation. In particular we shall study the fate of the edge states as the bulk band
gap is closed. In section 5.3 we study the same adapted Chern insulator put into
contact with a topologically trivial insulator. The trivial insulator we consider is a
version of the Chern insulator but in a topologically trivial parameter regime. This
allows us to study, for the compound system, whether the conditions necessary
for edge state formation differ from those of the hard wall boundary conditions
and in what ways. In section 5.4 we use some of our insights from section 5.2 to
study the edge theories of the topologically non-trivial bulk systems of chapters
3 and 4. Finally in section 5.5 we offer some conclusions on the results of this chapter.

5.2 Topological Edge State Formation in a Hard Wall Geom-
etry

To study the role of the boundary conditions on edge state formation for topologi-
cally non-trivial systems which lack a complete band gap we shall study an amended
version of the Chern insulator model introduced in section 1.3. The amended ver-
sion we consider is

H =
(
αx(1− cos kx) + αy(1− cos ky)

)
1+

+ (sin kx, sin ky, 2 + m− cos kx − cos ky) · σ. (5.1)

The additional terms are those multiplying the identity matrix in equation
(5.1). These terms will allow us to remove the complete bulk band gap in certain
directions in k-space. As these additional terms are proportional to the identity
matrix they do not affect the eigenvectors of the Hamiltonian. Consequently, since
the additions do not affect the eigenvectors, the topological phase diagram is the
same as in section 1.3. Throughout this section we shall work in the topologically
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non-trivial regime m = −1 in which the Chern number C = −1. We saw in section
1.3 that when the additional terms are absent there is a complete bulk band gap.
We also saw that when this bulk system is considered in a finite geometry with
hard-wall boundary conditions that edge states are present. These edge states are
reasonably extended in the wavevector parallel to the boundary and cross at k‖ = 0.
In real space the edge states are well-localised in the direction perpendicular to the
boundary. In this section we investigate the fate of these edge states as the complete
bulk band gap vanishes.

With this in mind we study a finite geometry version of the Hamiltonian (5.1).
We suppose that there is a termination of the structure in the y direction. This ter-
mination is similar to the right-hand illustration in figure 5.1 and leaves N sites in y
between the two boundaries. The introduction of the terminations requires Fourier
transforming the ky terms in equation (5.1) back to real space, resulting in the de-
sired finite geometry matrix. This matrix is a 2N× 2N matrix which couples the two
spin states on each y site to their nearest neighbours in the positive and negative y
direction. The matrix can be thought of as a tri-diagonal one with each element itself
a 2× 2 block. There are therefore three non-zero distinct 2× 2 blocks that feature
on the tri-diagonals. One block describes the on-site Hamiltonian, which is on the
main-diagonal, while the other two blocks describe the hopping up and down the
chain which feature on the off-diagonals. The on-site block takes the form

M =

(
(αx + 1)(1− cos kx) + αy sin kx

sin kx (αx − 1)(1− cos kx) + αy

)
. (5.2)

One of the inter-site hopping blocks is

T =

(
− 1

2 (αy + 1) − 1
2

1
2 − 1

2 (αy − 1).

)
. (5.3)

The third block is the inter-site block that hops in the other direction and is the
Hermitian conjugate of (5.3). For a given number of sites N and having chosen αx

and αy the finite geometry band structure can then be determined by finding the
eigenvalues of this large matrix as functions of kx.

Rather than solving the eigenvalue equation for a given choice of parameters we
will attempt to make some general conclusions about how the solutions depend on
the parameters. To this end we note that, away from the ends of the chain, there
is the same equation for each two-line block considered. This set of simultaneous
equations is of the form

T +ψn−1(kx) +Mψn(kx) + T ψn+1(kx) = Eψn(kx), (5.4)

where ψn(kx) is a spinor on site n. As we are interested in the prospect of solutions



118 Chapter 5. Edge Theories of Topologically Non-Trivial Systems

which grow or decay from site to site we shall propose a solution ψn = λnφ. Insert-
ing a solution of this form, dividing by λn and re-arranging produces the equation[

T + + λ(M− E1) + λ2T
]
φ = 0. (5.5)

Non-trivial solutions of the equation (5.5) follow from requiring that the determi-
nant of the matrix within the square brackets vanishes. Solving the determinant
equation in turn leads to, for a chosen set of parameters (kx, αx, αy), a quartic equa-
tion in λ. The quantity λ is the eigenvalue of the discrete translation operator along
y. As such, it describes whether, and to what degree, solutions can grow or decay
from site to site. If |λ| = 1 then only the phase of ψ changes between sites and not
its amplitude. When |λ| 6= 1 growing and decaying solutions are allowed. Those
with |λ| > 1 grow as n increases while those with |λ| < 1 decay with increasing n.
Although the determinant equation is a quartic in λ the solutions actually come in
two reciprocal pairs [132]. This reciprocity of solutions represents the reciprocity
of hopping in opposite directions along the chain. When all four of the |λ| differ
from unity edge states can be constructed. As discussed in section 5.1, for hard wall
boundary conditions each edge requires two non-unity |λ| to construct an edge
state. On the top edge, where n = N, we require the two |λ| > 1 solutions while on
the bottom edge we require the two |λ| < 1 solutions. This method therefore allows
us to examine how the band structure parameters (kx, αx, αy) impact the possibility
of edge states.

In figure 5.2 we plot the absolute value of each of the four solutions for λ as
a function of energy for three different sets of parameters. In each plot we have
considered the solutions of the discriminant equation (5.5) for kx = 0 as this is the
value of the wavevector at which the edge states cross when αx = 0 = αy. In each
of the plots we consider αx = 0.25. For each plot we consider a distinct value of
αy; in the top left plot we consider αy = 0.25, in the top right plot αy = 0.8 while
in the bottom plot αy = 1.1. In each plot we mark the |λ| = 1 line with a dashed
black horizontal gridline. Additionally in each of the three plots we mark the
minimum and maximum energies of each band of the bulk band structure along the
line kx = 0. The extreme energies of the lower band are marked by green vertical
gridlines while those of the upper band are represented by brown vertical gridlines.
The area between these gridlines, which represents the extent of the bulk bands, is
shaded accordingly.

In each of the plots we see that over the shaded energy intervals there are two
|λ| = 1 solutions. These |λ| = 1 solutions are the bulk band structure solutions;
those for which the amplitude of the solutions do not change from site to site along
y. As the energy considered passes outside the extremes of the bulk band structure
the values of |λ| depart from unity in a way that maintains the reciprocity. In the
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FIGURE 5.2: Absolute value of λ for three different values of the pa-
rameter αy: αy = 0.25 (top left), αy = 0.8 (top right) and αy = 1.1
(bottom). In each case αx = 0.25. The horizontal gridline is the line
|λ| = 1 and the the vertical gridlines are the minimum and maximum
of the upper (brown) and lower (green) bands of the bulk band struc-
ture along the line kx = 0. The area between the extreme values for
each band is shaded in the corresponding colour.

top plots of figure 5.2 the shaded energy intervals of each band are non-overlapping
representing a complete band-gap along the line kx = 0. In this band-gap there are
four |λ| 6= 1 solutions in both cases. Between the top left and top right plots of
figure 5.2 we see that the width of the band-gap has decreased as αy has increased
between the top left and top right plot. In the lower plot of figure 5.2 the shaded
energy intervals are now partially overlapping and the bulk band gap along kx = 0
has disappeared. As the band-gap has disappeared we have also lost any energy
interval between the energy extent of the bulk band structure for which there are
four |λ| 6= 1 solutions. We therefore conclude that the regions for which at least two
|λ| = 1 solutions exist correspond to the energy intervals of the bands of the bulk
band structure. Consequently, when the bulk band structure lacks a complete band
gap along the kx considered there are never four |λ| 6= 1 solutions within those
energy intervals.

How do these conclusions relate to the presence of edge states, and, if present,
their characteristics? To address this question we shall move from the general to
the specific by diagonalising the matrix from which the equation (5.4) followed. We
diagonalise this matrix for each set of αx and αy considered in figure 5.2 at a desired
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resolution in kx and for a sufficient number of sites along y. This will enable us to
relate the eigenvalues of the discrete translation operator with the edge states and
their properties.

FIGURE 5.3: A grid of plots showing the bulk band structure (top
row) and the corresponding finite geometry band structure (bottom
row) under three different sets of parameters. In the left column αy =
0.25, in the central column αy = 0.8 and in the right column αy = 1.1.
In all cases αx = 0.25. For the finite geometry band structures we
consider 25 sites along the y direction.

In figure 5.3 we show a grid of plots depicting the bulk band structures (top
row) and the corresponding finite geometry band structures (bottom row) for three
different sets of parameters. Each column considers a separate set of parameters
which are the same as were chosen for figure 5.2. In all of the figures αx = 0.25.
In the leftmost column we consider αy = 0.25, in the central column αy = 0.8 and
in the rightmost column αy = 1.1. In each instance we have considered a finite
system with 25 sites along the y direction. In the two columns with the lowest αy

values we can see solutions resembling edge states crossing the gap between the
two groups of mini-bands of each finite geometry band structure. In the αy = 1.1
finite geometry band structure the gap has disappeared and hence the question of
edge states is more ambiguous. To illuminate this question we can examine the
eigenvectors resulting from the diagonalisation of the finite geometry matrices.

In figure 5.4 we examine a grid showing plots of the spin-summed density of the
eigenvectors of the supposed edge states from figure 5.3. Each column considers
the same parameters as those of figure 5.3. The top row shows the edge state which
should exist on the top edge and the bottom row shows the corresponding plots
for the bottom edge. In the two cases with the lowest αy we see well-localised
edge states as expected. In the αy = 0.8 case we observe that there is less density
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FIGURE 5.4: A grid of plots showing the spin-summed densities of
the eigenvectors corresponding to the central eigenvalues in figure 5.3
under three different sets of parameters. In the left column αy = 0.25,
in the central column αy = 0.8 and in the right column αy = 1.1. In all
cases αx = 0.25. We consider 25 sites along the y direction in all cases.

overall on the outermost sites compared to the almost perfectly localised αy = 0.25
case. In the rightmost column where αy = 1.1 there are no edge state like features
observable over any of the extent in wavevector space where these features existed
in the other αy cases. The absence of edge features could be attributable to not
having considered a large enough system or examining the wrong mini-bands or
both. However since this disappearance corresponds with the closing of the bulk
band gap we contend that the transition from four to two non-unity eigenvalues of
the discrete translation operator has stymied edge state formation completely. In
regard to this perspective it does not matter how large a system one considers as the
boundary conditions are incompatible with edge state formation. This perspective
is supported by the work of Mao and Kuramoto [133]. Mao and Kuramoto [133]
examined an alternative Chern insulator model and reached the same conclusion
that the edge states disappear at all wavevectors as the band gap closes. So if it is
the boundary conditions that are frustrating the edge state formation is it possible
to realise edge states by considering either terminating the bulk structure along a
different direction or a completely different set of boundary conditions entirely?

The preceding results suggest that the relevant property is the presence of a
band gap in the wavevector direction perpendicular to the boundary at the value
of the wavevector parallel to the boundary where edge states would be expected to
cross. The presence of such a band gap assures four non-unity absolute values of
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the discrete translation operator which in turn allows the formation of edge states
in a hard wall geometry. We can consider terminating the structure in a different
direction so as to achieve these four non-unity |λ|. In the cases where αx and αy

differ we look at terminating the bulk structure in the x direction rather than the y
direction previously considered. As the additional terms in the Hamiltonian (5.1)
are the only ones which introduce asymmetry in the dispersion along the kx and ky

we can, rather than terminating along the x direction, simply interchange αx and αy.

FIGURE 5.5: Absolute value of λ for two different values of the pa-
rameter αx: αx = 0.8 (left) and αx = 1.1 (right). In each case αy = 0.25
The horizontal gridline is the line |λ| = 1 and the the vertical grid-
lines are the minimum and maximum of the upper (brown) and lower
(green) bands of the bulk band structure along the line kx = 0. The
area between the extreme values for each band is shaded in the corre-
sponding colour.

First of all, in figure 5.5, we focus on the absolute value of the eigenvalues
of the discrete translation operator. In each case we fix αy = 0.25; in the left
plot we have chosen αx = 0.8 while in the right plot αx = 1.1. We see that in
each instance the energy extents of the bands of the bulk band structures are
non-overlapping and hence there are four non-unity |λ| in the energy region
between the two bands. In fact the two plots are the same as the |λ| only depend
on the band structure in the direction perpendicular to the interface. Hence since
αy is the same in each instance the two plots are the same. This suggests that we
should expect edge states to be present in both instances as we shall now investigate.

In figure 5.6 we show a grid of plots depicting the bulk band structures (top row)
and the corresponding finite geometry band structures (bottom row) for the two
sets of parameters considered in figure 5.5. In each instance we see clear evidence of
edge states in the finite geometry band structures as expected from the examination
of figure 5.5.

In figure 5.7 we examine the spin-summed density of the eigenvectors for
each of the mini-bands in red in figure 5.6. In each instance we see that there
are well-localised edge states on the top and bottom edges, and that these figures
differ from the corresponding plots of figure 5.4 where the other termination was



5.2. Topological Edge State Formation in a Hard Wall Geometry 123

FIGURE 5.6: A grid of plots showing the bulk band structure (top
row) and finite geometry band structure (bottom row) under two dif-
ferent sets of parameters. In the left column αx = 0.8 and in the right
column αx = 1.1. In all cases αy = 0.25. For the finite geometry band
structures we consider 25 sites along the y direction.

FIGURE 5.7: A grid of plots showing the spin-summed densities of
the eigenvectors corresponding to the central eigenvalues in figure
5.6 under two different sets of parameters. In the left column αx =
0.8 and in the right column αx = 1.1. In both cases αy = 0.25. We
consider 25 sites along the y direction in both cases.

considered. We therefore conclude that in cases where the bulk band structure is
not symmetric under π

2 rotations different edge theories are produced when the
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system is terminated along the different patterning directions. A consequence of
this conclusion is that when the band structure lacks a complete band gap it may
still be possible to achieve partial edge states by a judicious termination. This occurs
if the bulk structure is terminated in a direction for which there is a band gap in k⊥
to the interface along the k‖ line at which the edge states would be expected to cross.

There is of course no requirement to terminate these structure along one of the
directions of patterning of the underlying lattice. In the instance of an arbitrary
termination, not along either direction of patterning, we expect the same general
conclusion.

In section 5.4 we use the methods of analysis and the insights from this section
to assess the possibility of full or partial edge states for a topologically non-trivial
photonic crystal theory from chapter 3.

5.3 Topological Edge State Formation in Geometry Which In-
cludes Abutting Material

We will now consider an alternative boundary condition. This alternative formu-
lation will explicitly include an adjacent topologically trivial material. As in the
previous section we wish to examine the fate of the edge states as the complete
band-gap of the topologically non-trivial material is lost. We are particularly
interested in establishing whether the edge states persist and if so whether their
survival can be attributed to the requirement of, in this situation, fewer non-unity
absolute value eigenvalues of the discrete translation operator.

The adjacent material we consider is of a similar form to the material in section
5.2 in that it will also be described by the Hamiltonian (5.1). For the adjacent
material we shall fix m = 1 so that the Chern number C = 0. Additionally we
shall fix αx and αy at the same values as in the topologically non-trivial material.
To describe hopping across the interface between the two materials we shall make
the approximation of using the matrix (5.3). To justify this approximation we note
that the only difference that we are considering between the two materials is in
the chosen values of m which does not feature at all in the intra-material hopping
matrices.

There are two possible methods of performing the finite geometry calculations
with both materials included. These two possibilities are either having a single
interface between the two materials with hard walls at the other edges or having
two interfaces between the materials. Figure 5.8 illustrates these two possibilities
along with the hard wall boundary condition of section 5.2. In this section we shall
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FIGURE 5.8: Three types of boundary condition employed in sections
5.2 and 5.3. In each case the lighter pink material is topologically non-
trivial with a Chern number C = −1 while the darker pink material is
topologically trivial with a Chern number C = 0. The leftmost illus-
tration represents the hard-wall boundary condition while the central
and rightmost illustrations represents two variants of boundary con-
dition which include the adjacent material. In the central illustration
we consider an interface between the two materials but with hard
walls at the other ends of the materials. In the rightmost illustration
we consider two interfaces between the two materials.

employ both the central and rightmost geometries of figure 5.8.

In either of the two geometries that include both materials we shall consider
a compound system comprising 30 sites evenly shared between each material. In
both cases we fix (αx, αy) = (0.25, 1.1). In this parameter regime in the hard wall
geometry the bulk band gap had closed along the line kx = 0. As was shown in
figure 5.4, this implies there are no edge states when the structure is terminated in
the y direction. For each of the geometries considered in this section we shall use
the same orientation, with the terminations and/or interfaces perpendicular to the
y axis.

In figure 5.9 we look at the spin-summed eigenvectors of the two central
eigenvalues (top and bottom rows) of the finite geometry calculations for each
of the two geometries considered (left and right columns). We see that for each
geometry some of the edge state density persists by the interface between the two
materials, just inside the topologically non-trivial material. The geometry that
features the hard wall boundary lacks this edge feature completely on that edge. As
such, we can clearly see that the interface between the two materials is responsible
for the survival of edge features. We shall now examine how this survival can be
understood in the context of the two bulk materials.

Figure 5.10 shows the absolute value of the discrete translation operator λ for
the parameters used in producing figure 5.9. For this figure we consider solving
the determinant equation (5.5) at kx = π/5 which is part of the region in which the
edge state appeared in figure 5.9. In this figure we see that the extents of the energy
bands are non-overlapping and hence there is a band-gap for these parameters.
The edge state persisting is therefore not attributable to one only requiring two
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FIGURE 5.9: A grid of plots showing the spin-summed densities of
the eigenvectors corresponding to the central eigenvalues for two dif-
ferent geometries. In the left column we consider the central geome-
try of figure 5.8 while in the right column we consider the rightmost
geometry of that figure. In each case we consider 30 sites along y
which are evenly distributed between the two materials. The material
in the first 15 sites is the topologically trivial material with m = 1. The
green lines in each case represent interfaces between the two materi-
als. For the figures in the right column there is an interface between
the 30th site and the 1st site. In both cases (αx, αy) = (0.25, 1.1).

FIGURE 5.10: Absolute value of the eigenvalue λ of the dis-
crete translation operator along y for the parameters (αx, αy, kx) =
(0.25, 1.1, π/5).

non-unity |λ| in this geometry but rather that the edge states persist over the range
of the wavevector that supports four non-unity |λ|. Owing to this we would expect
that if we increase αy further that the edge states will disappear entirely once this
range of wavevectors ceases to exist.
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FIGURE 5.11: The top figure shows the absolute value of the
eigenvalue λ of the discrete translation along y at the parameters
(αx, αy, kx) = (0.25, 1.2, π/5). The bottom figures show the corre-
sponding spin-summed densities of the eigenvectors associated with
the central two eigenvalues. In each case we consider 30 sites along
y which are evenly distributed between the two materials. The mate-
rial in the first 15 sites is the topologically trivial material with m = 1.
The green lines in each case represent interfaces between the two ma-
terials.

Figure 5.11 shows exactly this. Here we consider αy = 1.2 and see in the top plot
that this adjustment leads to the reduction of the number of non unity |λ| from four
to two. Consequently when we look at the spin-summed eigenvectors of the central
two eigenvalues in the lower figures we see that the edge features have disappeared
completely.

We therefore conclude that boundary conditions which include the adjacent ma-
terial may allow the edge states to persist beyond the closing of the bulk band gap
over some wavevector ranges. These wavevector ranges are those for which there
are still four non-unity |λ|. As the overall curvature of the bands in k⊥ increases
these wavevector ranges shrink and eventually disappear completely. This is in con-
trast to the hard wall boundary condition where we saw a binary present/absent
transition of the edge states once the gap closed along the line k‖ = 0. So the in-
clusion of a sharp interface between the topologically non-trivial material and its
topologically trivial neighbour does allow a comparatively modest extension of the
parameter range for the observation of edge features but is still incompatible with
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edge state formation beyond a certain threshold. The underlying mechanism that al-
lows this dichotomy between the edge features for each of the boundary conditions
considered remains an open question.

5.4 Appearance of Edge States in Photonic Crystal Models

In this section we shall seek to utilise the understanding we developed in section 5.2
regarding edge state formation in a hard wall geometry to one of the topologically
non-trivial photonic models presented in chapter 3. We learned that the appearance
of full or partial edge states is linked to the existence of four non-unity absolute
value eigenvalues of the discrete translation operator in the direction perpendicular
to the wall. The existence of such non-unity eigenvalues is in turn related to the
band-gaps of the bulk band structure. We shall therefore study the iso-frequency
band structure of the chiral biaxial photonic crystals of section 3.5 in order to
determine the conditions necessary for full or partial edge states.

In section 3.5 we saw that the iso-frequency surfaces of square photonic crystals
composed of chiral biaxial materials could be topologically non-trivial. In these
systems, at least within the model studied, a non-zero Chern number can result
when the chirality is of either sphenoidal or pedial form. For chirality of these
two types the ratios of the non-zero components of the chirality tensor must be
within given ranges to achieve a non-zero Chern number. The overall scale of
the components did not, however, matter for determining the topological phase
and only affected the size of the topologically non-trivial gap. The strength of the
chirality, however, exerts significant agency over whether complete or partial band
gaps are achievable and hence whether edge states are possible.

The strength of optical activity is captured by a quantity known as the optical
specific rotation which we introduced in chapter 2. This quantity can be related
to the components of the symmetric chirality tensor. In chapter 3 we chose to
decompose the chirality tensor G into two parts: a matrix G̃ with each non-zero
entry allowed to vary between −1 and 1 and an overall multiplier γC related to the
optical specific rotation ρC. In that chapter it was the matrix G̃ that determined the
topological phase while, in this chapter, it will be the multiplier γC which deter-
mines the prospects for edge state formation. In chapter 2 we saw that the relation
between the optical specific rotation and the chirality tensor components involved
a conversion of the optical activity strength from being measured per meter to
being measured per wavelength. This conversion will, for the first time, introduce
a dependence on the operating wavelength of the photonic crystal individually
rather than on the ratio of the lattice spacing to the operating wavelength. We need
therefore to consider the possibility of edge states not only as depending on the
strength of optical activity but also on the operating wavelength of the photonic
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crystal.

FIGURE 5.12: Three region plots examining the magnitude of the
eigenvalues of the translation operator perpendicularly to the bound-
ary. Each region plot considers a distinct value of the lattice spacing
a of the structure. The lattice spacing considered are a = 1 × 10−4

m (left), a = 5 × 10−4 m (middle) and a = 1 × 10−3 m (right). In
each case the lattice spacing to wavelength ratio a/λ = 4/5. The
white regions are those in which there are four non-unity magni-
tude eigenvalues of the translation operator. The marked points in
the middle and right plots are at ((G̃a − G̃′a)/δ, ρC) = (0.5, 1680) and
((G̃a − G̃′a)/δ, ρC) = (0.5, 840) respectively.

In figure 5.12 we display three plots examining the areas which support four
non-unity absolute value eigenvalues of the discrete translation operator along the
y-direction. Each plot considers a photonic crystal with a distinct lattice spacing
and operating wavelength such that their ratio is constant at a

λ = 0.8. In the left plot
we consider a lattice spacing a = 100µm, in the central plot a = 500µm while in the
right plot a = 1mm. On the vertical axis of the plots is the optical specific rotation
ρC while on the horizontal axis is a transformed coordinate related to the anisotropic
chirality G̃a introduced in section 3.5. The transformed coordinate runs from 0 to 1
which are the endpoints of the topologically non-trivial parameter regime at G̃i = 1.
As such, the whole plot area corresponds to a C = −1 configuration. In line with the
findings of section 5.2, in each case the value of kx, i.e. k‖, was chosen by examining
where the edge states cross when the terms proportional to the identity matrix have
been omitted. For the lattice Hamiltonian B

�
(k), kz is the analogue of the energy in

section 5.2. The previously determined value of kx allows us to determine the value
of kz at which to solve the determinant equation for the eigenvalues of the discrete
translation operator. In particular, the value of kz is set as b�0(kx, 0). In the plots
of figure 5.12 the white regions are those which support four non-unity absolute
value λ while the red regions do not, and instead support either two or zero. From
figure 5.12 we see that there are areas which have four decay length scales in the
a = 500µm and a = 1 mm cases. We should therefore expect that edge states should
exist for these parameters when a termination along y is introduced provided a
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sufficiently large system is considered.

FIGURE 5.13: Bulk (left) and finite geometry (right) band structures of
a photonic crystal composed of chiral biaxial material. The geometry
considered is that of the right plot of figure 5.1, a boundary in the y
direction. For this geometry we have considered 100 sites between the
two walls. The parameters considered are such that both the Chern
number is non-zero and there are four non-unity eigenvalues of the
translation operator.

We now turn to examine the band structure of one of these photonic crystals
in a region where there are four non-unity eigenvalues of the discrete translation
operator. We shall consider the parameters indicated by the blue dot in the
rightmost plot of figure 5.12. For these parameters we plot the bulk and finite
geometry band structure in figure 5.13. The diagonalisation performed to produce
the finite geometry band structure considered 100 sites in the y direction. In the
finite geometry plot we see features (in red) which have an immediate and obvious
resemblance to edge states. These appear to be similar to those of the bottom right
plot of figure 5.6 in the sense that the states persist despite the lack of a complete
band-gap in the wavevector parallel to the wall kx. To verify the appraisal that these
are indeed edge states we can examine the eigenvectors corresponding to these two
red mini-bands. This will also allow us to establish the decay length of the edge
states if that is indeed what they are.

In figure 5.14 we show two density plots of the polarisation-summed squared
magnitude of the eigenvectors corresponding to the red mini-bands of figure 5.13.
We see that these mini-bands do indeed represent edge states; in each case the
maximum density is on the outermost sites and is centred around the wavevector at
which the red mini-bands cross. These edge states are reasonably well localised to
the boundary.

We must still confirm that these edge states are indeed topological. It is
possible that they are instead a serendipitous appearance, unrelated to the bulk
topological invariants, which has been enabled by the presence of four decay
length scales. As the edge states cross each other in figure 5.13 it would suggest



5.4. Appearance of Edge States in Photonic Crystal Models 131

FIGURE 5.14: A density plot looking at the polarisation-summed
squared magnitude of two of the normalised eigenvectors resulting
from the diagonalisation which produced figure 5.13. The two eigen-
vectors considered are those mini-bands coloured in red in figure
5.13.

that they are topological. To definitively rule out the alternative explanation we
shall consider a diagonalisation of one of these photonic crystals in a topologically
trivial regime where four decay length scales exist. In particular we choose a point,
(G̃a, ρC) = (−0.9, 1100), just off the right hand side of the plot area of the right plot
of figure 5.12. At these parameters there are four decay length scales and the Chern
number C = 0.

FIGURE 5.15: Bulk (left) and finite geometry (right) band structures
of a square patterned photonic crystal composed of chiral biaxial ma-
terials. The parameters are chosen such that both the Chern number
C = 0 and there are four decay length scales available. The finite
geometry calculation considered 100 sites along the y direction.

In figure 5.15 we examine the bulk and finite geometry band structures of the
topologically trivial photonic crystal discussed in the previous paragraph. We
see that there are features in red which depart from the bulk band structure and
therefore resemble edge states. Unlike as in figure 5.13 these edge states do not
cross. This is a reflection of the now trivial Chern number. Hence we conclude that
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the edge states of figure 5.13 were indeed topological in nature.

We can see in figure 5.13 that although there are edge states they are only partial
ones as there is no complete band gap in kx. This is indicative of a general trend - it is
difficult to find parameter regimes where simultaneously a complete bulk band gap
exists and the Chern number is non-zero. In the investigations we have carried out
we have yet to come across such regions. This is largely attributable to the weakness
of the polarisation splitting in comparison to the overall dispersion. To readily
achieve complete band gaps requires both exceedingly strongly biaxial materials
as well as artificially large optical activity. In this section we assumed that the
specific rotation is a static quantity when, in reality, it exhibits chromatic behaviour,
meaning that the values of rotation considered for figure 5.12 are unnaturally
large. This would therefore make the fabrication of a photonic crystal with these
properties a difficult prospect. There are, however, many possible optimisations
that could be made to this type of scheme, for instance the model through which we
conducted much of this analysis did not include the lower refractive index material
at all. As such, there are possible optimisations involving varying any of the lattice
spacing to wavelength ratio, the type of lower index material, the geometric profile
of these inclusions or the filling factor of the inclusions individually, or all of these
factors in combination [134–139]. Additionally we only considered the orientation
of these photonic crystals where an optic axis lay along the invariant direction of the
structure. The consideration of other orientations of the optic axes may ameliorate
the question of band gaps, making them more readily achievable [134, 135]. In
these alternative orientations, it is certain that the degeneracy structure would be
different and hence the topological phase diagrams would be different also. We
speculate that there are parameter regimes that show a greater prospect of partial or
complete band gaps. Determining if and where they overlap with the topologically
non-trivial parameter regimes should be the pertinent thing to consider from the
offset if adopting systems of this type. This question is, however, beyond what
we have considered in this thesis and represents a possible future direction of
exploration.

This analysis could equally have considered any of the other three theories of
topologically non-trivial photonic crystals developed in chapter 3 and 4. We would
expect that had this been done the results would have been largely similar.

5.5 Conclusion

In this chapter we have studied the bulk-boundary correspondence of topologically
non-trivial materials. The nature of this correspondence in each material needs to
be independently investigated. In systems that have a complete bulk band-gap,
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the corresponding edge theory emerges in a straightforward fashion for myriad
boundary conditions. In materials that lack such a complete gap, however, the
situation is somewhat more complicated. In these cases the boundary conditions
can allow only partial edge states or frustrate edge state appearance entirely.
Regarding the former, these partial edge state solutions are localised in one of the
directions but extended in the perpendicular direction. The appearance of edge
states is therefore dependent on the orientation of the termination considered.

In section 5.2 we investigated the importance of the termination orientation as
well as the presence or absence of a complete bulk band-gap on edge state formation
in the case of a hard wall boundary condition. To do this, we considered an adapted
Chern insulator model with parameters that can close the bulk band-gap in either
the x or y directions without altering the topological phase. By using a transfer-
matrix type approach we discovered that, as the band-gap closed along the line at
which the edge states previously crossed, there is a present/absent transition of the
edge states over the entire relevant wavevector range. When, instead, the bulk band
gap closes in the perpendicular direction, we see that the edge states persist. This
means that partial edge states are possible when a complete bulk band-gap is absent.

We then, in section 5.3, considered an alternative geometry - one that includes
the adjacent topologically trivial material explicitly. The adjacent material we
considered was a Chern insulator of a similar form to that of the preceding section
but in a topologically trivial parameter regime. In this geometry we observed that
the abrupt present/absent transition of the edge states was replaced by a continuous
shrinkage of their wavevector extent and their eventual complete disappearance as
the overall curvature was increased.

In section 5.4 we used the insights from section 5.2 to examine the prospect of
edge states for the bulk photonic crystal models of chapters 3 and 4. As a represen-
tative case we considered the square patterned photonic crystals composed of chiral
biaxial materials with a hard wall boundary. For these systems, the strength of the
optical activity is the critical determiner of whether partial or complete band-gaps
exist. Consequently, the strength of the optical specific rotation determines whether
edge states are possible in this geometry. We found that in some parameter regimes
partial edge states are possible. By examining the corresponding finite geometry
band structures, as well as the polarisation-summed eigenvector densities, we
verified the existence of these predicted edge states. We further confirmed that
these edge states are topological in nature by comparison with the finite geometry
band structure and eigenvectors in the topologically trivial regime. These partial
edge states exist in parameter regimes representing artificially large optical activity
such that producing a photonic crystal with the necessary properties would be
challenging. Nevertheless, there are myriad possible optimisations to the design of
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these optical systems which could reduce the need for such large optical activity
somewhat.
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Chapter 6

Magneto Exciton Polaritons in Bulk
Semiconductors

6.1 Introduction

In this chapter we are interested in the topological features of the solutions to the
wave equation, for light propagating through a bulk semiconductor in a magnetic
field. In these semiconductors the electronic band structure features a set of valence
bands energetically separated from a set of conduction bands. The electronic band
structure dictates the dielectric behaviour of the semiconductor which around the
band edge is heavily frequency dependent [92].

The zero temperature electronic ground state of a semiconductor can be envis-
aged as an arrangement of electrons completely filling a set of valence bands leaving
the conduction bands completely unoccupied. This ground state configuration
can be optically excited resulting in the transfer of a valence band electron to the
conduction band [140]. The resulting state differs from the ground state by the
presence of the excited electron in the conduction band and the absence of the
electron in the valence band. This electronic absence in the valence band can be
viewed as a hole possessing the opposite properties (charge, spin, etc.) to those of
the missing electron. The viewpoint of conduction band electrons and valence band
holes enables one to think of the ground state of the semiconductor as being one
with no particles and the first excited state as featuring one of each [141]. These are
however not free particles but rather emergent excitations of multi-particle electron
systems [18]. These excitations have some similar properties to the corresponding
free particle, but in other ways show significant deviance.

This view of the electronic ground state and the first excited state of semicon-
ductors allows a perspective on the dielectric behaviour. The electronic contribution
to the dielectric behaviour arises from transitions between one arrangement of
electrons and another. In this picture the frequency difference between the in-
dividual electrons in each configuration determines the frequency at which that
transition contributes to the dielectric function [142]. Following this logic we would
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expect that the dielectric function will have an abrupt feature at the frequency
corresponding to the onset of transitions, i.e. the band gap frequency. Although
this description is useful as an introductory tool, the near band-edge dielectric
behaviour of real semiconductors is more complex [18]. In particular, in the first
excited state described above, the conduction electron and valence hole interact with
each other via the Coulomb force as well as an exchange interaction [141], and more
complex correlation effects. The Coulomb force allows the formation of a bound
state known as an exciton. The exciton has a series of bound energy levels below the
conduction band edge. Above the conduction band edge the conduction electron
and valence hole are unbound but nonetheless interacting [93]. The bound exciton
states and the unbound Coulomb interacting conduction electron and valence hole,
rather than the free electrons and holes, are what determine the optical response of
realistic semiconductors.

FIGURE 6.1: Illustration showing the real space unit cell composition
of a zincblende lattice structure. The different coloured inclusions
represent atoms of two distinct species.

The dielectric behaviour close to the band edge will be dominated by exciton
effects, but how do we determine the nature of the excitons and how their coupling
to light emerges? To do this we must return to the electronic band structure
of the semiconductor. For this chapter we focus on direct band-gap zincblende
semiconductors. The zincblende structure, shown in figure 6.1, consists of two
inter-penetrating face centred cubic lattices of two distinct atomic species. The
two species are typically group III and group V elements or group II and group
VI elements. For either type of constituent pair, the valence band structure of the
semiconductor is similar. The valence bands of these systems are made from p-like
atomic orbitals with orbital angular momentum l = 1 [143]. When the orbital
motion is coupled to the electronic spin, as occurs in semiconductors, the total
angular momentum states J = L + S result. In this instance there are j = 3

2 and
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j = 1
2 states [142]. The spin-orbit interaction of the semiconductor differentiates

between the two J states typically displacing the j = 1
2 downward in energy [144].

The valence bands with j = 3
2 are themselves split for non-zero k according to the

projection of J along k. The bands with jz = 3
2 are termed the heavy hole valence

bands and those with jz = 1
2 are known as the light hole bands due to their differing

inverse curvatures. The conduction band k = 0 state is composed of s-type atomic
orbitals with l = 0. The total angular momentum of the conduction band states
including spin is thus σ = 1

2 . Figure 6.2 shows an illustration of the band structure
of the semiconductors which we consider.

FIGURE 6.2: An illustration of the typical form of electronic band
structure of a zincblende semiconductor. The bands are labelled on
the right by their total angular momentum and z-projection |j, jz〉.
The labelling of each band at the centre correspond to the transfor-
mation properties of the k = 0 wavefunctions.

To describe the excitons formed in a semiconductor possessing a band structure
similar to that seen in figure 6.2, we must take proper account of the degeneracy and
anisotropy of the valence bands. We must also consider the strength of the Coulomb
interaction between the electron and hole. In this regard there are two extreme
situations; the tightly-bound exciton case where the electron and hole are separated
by at most a few unit cells and the weakly-bound exciton case where the electron
and hole are separated by many unit cells [18]. In the latter case the Coulomb
interaction is screened by the dielectric constant which, due to the averaging over
many cells, can be approximated by its static value [141]. In this chapter we shall be
concerned with weakly-bound excitons. The framework within which to describe
the weakly-bound excitons is the effective mass approximation. This approach
leads to a two-particle Schrödinger type equation in which the kinetic energy terms
are appropriate to the band structure of the semiconductor including anisotropy
and degeneracy. The exchange interaction of the electrons and holes can also be
included within this framework. Furthermore it is possible to include magnetic
fields through a minimal coupling substitution. The solution of this two-particle
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equation for the exciton energies and wavefunction allows the optical response of
magneto-excitons in bulk semiconductors to be determined.

The solutions of the wave equation close to the electron hole pair resonances
of the dielectric function are known as polaritons [17]. These polaritons are
superpositions of photons and excitons which form from the strong light-matter
coupling in semiconductors. The coupling of the light and matter modifies the
individual dispersions of the photon and exciton as shown in figure 6.3 [17]. In
this figure we have considered an idealised isotropic semiconductor with a single
conduction and valence band. In such a semiconductor the exciton spectrum is
that of an hydrogen atom and the optical response is known [145, 146]. As the
anisotropy and degeneracy of the valence bands of a realistic semiconductor are
included, the polariton dispersion will become more complex. The introduction
of a magnetic field further complicates things, resulting in a still richer polariton
dispersion relation. The examination of these magneto-exciton-polariton dispersion
relations are the ultimate goal of this chapter.

FIGURE 6.3: An illustration of the dispersion relation of a polariton
resulting from the coupling of light to excitons in a semiconductor.
The exciton (green) and photon (orange) dispersions anti-cross result-
ing in a lower and upper polariton branch (LPB and UPB).

To calculate these magneto-exciton-polariton dispersion relations we must go
through a couple of preliminary stages. The first stage is to calculate the exciton
spectrum in bulk semiconductors subjected to a magnetic field. In section 6.2 we
calculate the exciton ground state of direct band-gap zincblende semiconductors
using the Hamiltonian derived in Cho et al. [147]. This effective Hamiltonian
includes the electron-hole exchange interaction, the static magnetic field, and the
degeneracy and anisotropy of the valence bands. The next stage, which we carry
out in section 6.3, is to derive the contribution of the exciton ground state to the
dielectric susceptibility. We derive the optical response within linear response
theory, resulting in an anisotropic and multiply-resonant dielectric function. In
section 6.4 we explore the polariton solutions of the wave equation for this kind
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of dielectric function. Initially we focus on setting up the polariton equation in
subsection 6.4.1 where we introduce a 2 × 2 matrix approach for determining
the transverse-polariton solutions. In subsections 6.4.2 and 6.4.3 we solve the
polariton equation in the absence and presence of dissipation, respectively. In each
situation we examine the polarisation structure of the polaritons with a particular
focus on the degeneracies of the polariton dispersion relation. Finally, in section
6.5, we offer conclusions on the magneto-exciton-polaritons in bulk semiconductors.

6.2 Effective Mass Equations for Electron-Hole Pairs in Bulk
Semiconductors

6.2.1 Setting up the Effective Mass Equations

The description of the loosely-bound exciton states in bulk semiconductors gen-
erally follows from the solution of a set of coupled differential equations known
as the effective mass equations [141]. These equations are a form of two-particle
Schrödinger equation describing conduction electrons and valence holes. The
Hamiltonian which gives rise to excitons includes two types of contributions: the
kinetic energy of the electrons and holes and the potential energy describing the
interaction between them (and possibly also the interactions of the electron and
hole with external fields). Luttinger and Kohn [148] showed how the effective mass
equations for holes in semiconductors with degenerate spin-orbit coupled valence
bands subjected to a magnetic field could be deduced. A similar approach has been
utilised to determine the corresponding equations for excitons resulting from the
Coulomb interaction between electrons and holes [149].

We are interested in determining the exciton ground state through the effective
mass equations for valence band holes with Γ8 symmetry and conduction band elec-
trons with Γ6 symmetry. The four-fold and two-fold degeneracies of the respec-
tive bands can be treated using the effective angular momentum operators J and σ
through the method of Luttinger [150]. The J operators act only on the valence band

states with jz = ± 3
2 ,± 1

2 , while the σ operator acts only on the conduction band
states with σz = ± 1

2 . In each of these subspaces an arbitrary matrix can be expressed
in terms of sums of independent matrices formed from J and σ respectively. In the
case of the valence holes the independent matrices are

14, J
x
, J

y
, J

z
, J2

x
, J2

y
, {J

x
, J

y
}, {J

y
, J

z
} , {J

z
, J

x
}, {(J2

y
− J2

z
), J

x
},

{(J2
z
− J2

x
), J

y
}, {(J2

x
− J2

y
), J

z
}, J3

x
, J3

y
, J3

z
, J

x
J

y
J

z
+ J

z
J

y
J

x
,

(6.1)



140 Chapter 6. Magneto Exciton Polaritons in Bulk Semiconductors

where {A, B} = (A B + B A)/2. For the conduction electrons the independent
matrices are

12, σx, σy, σz. (6.2)

The independent matrices of the overall 8 × 8 exciton Hamiltonian are the direct
products of the independent matrices of the hole and electron subspaces (6.1) and
(6.2). The allowed terms in the exciton Hamiltonian are those products of powers
of k with the matrix products that in combination have the appropriate symmetries
of the Zincblende structures [151, 152]. When these combinations have been deter-
mined the system of equations describing the relative electron hole motion can be
written generally as

2

∑
c′=1

4

∑
v′=1

[
He

cc′(−i∇e)⊗ δvv′ − δcc′ ⊗ Hh
vv′(−i∇h)−

e2

4πε0ε|r|δcc′ ⊗ δvv′ + Hexch

]
︸ ︷︷ ︸

H

×

× Fc′v′(r) = EFcv(r).

(6.3)

In the above equation Fcv(r) is the real space envelope function of the electron-hole
pair, He is the Hamiltonian governing the kinetic energy contributions of the con-
duction electrons, Hh is the Hamiltonian governing the kinetic energy contributions
of the holes and Hexch is the electron-hole exchange. The third term is the Coulomb
interaction between the electrons and holes. In this term r = re − rh is the separation
of the electron and hole and ε is the static dielectric constant, taking account of the
screening due to the electronic and lattice polarisation. Individually the electron,
hole and exchange Hamiltonians He, Hh and Hexch are [152]

He
cc′(−i∇e) =He

cc′(ke) = He
cc′(k) =

h̄2k2

2mm∗e
12, (6.4)

−Hh
vv′(−i∇h) =− Hh
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h̄2
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x
, J

y
}+ kykz{J
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}+ kzkx{J

z
, J

x
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)

,

(6.5)

Hexch =∆01 + ∆1(σ · J) + ∆2(σ · J3). (6.6)

In equations (6.4) and (6.5), the penultimate equality comes from the consideration
of vertical transitions to excitons with wave vector K = ke + kh ' 0 [140]. The
set of parameters (m∗e , γ1, γ2, γ3) represent the conduction band effective mass
and the three Luttinger parameters respectively [150]. They are typically set from
experimental values and describe the curvature of the conduction and valence
bands as well as the anisotropy of the valence bands of the semiconductor in
question. The parameters (∆0, ∆1, ∆2) describe the overall energy shift due to the
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exchange interaction, the isotropic exchange shift and the anisotropic exchange
shift. In the above equation we have omitted the small k-linear terms in the valence
Hamiltonian Hh. This omission is justified in work by Baldereschi and Lipari [153].
The system of equations for the envelope functions Fcv(r) describe the excitons
formed in bulk semiconductors with realistic valence bands.

The effect of an external magnetic field B on the relative electron hole motion in
a semiconductor can be included by the addition of the new invariant forms which
result from combinations of B, k and the products of the matrices (6.1) and (6.2).
Together these additional contributions describe the Zeeman effect of the conduction
electrons and valence holes as well as the orbital diamagnetism. The inclusions of
both of these effects can be achieved by the replacements [154]

He(k)→ He(k + eA) + g∗B · σ (6.7)

and
Hh(−k)→ Hh(−k + eA) + κB · J + qB · J3 (6.8)

in the original Hamiltonians He and Hh. In the equations (6.7) and (6.8) above A is
the vector potential of the external field. The inclusion of a magnetic field has intro-
duced an additional three parameters (g∗, κ, q) to the electron-hole relative motion
Hamiltonian. These new parameters describe the effective magnetic moment of the
conduction electrons, the effective magnetic moment of the valence holes and the
anisotropic g-factor of the valence holes respectively [150]. Solution of the set of
equations (6.3) with the replacements (6.7) and (6.8) therefore determines the energy
spectrum of well-separated electron-hole pairs in bulk semiconductors subjected to
a magnetic field. The solution of these equations is not however a straightforward
proposition, as we now discuss.

6.2.2 Solving the Effective Mass Equations

The solution of the exciton effective mass equations is not in general possible and
instead one must resort to approximate methods. One of these approximate meth-
ods is to use a variational approach [155], in which the ground state energy of the
system is minimised within a class of trial solutions [156–159]. Another method is
to adopt a perturbation theory approach [153, 160–163]. This approach is tractable
as the exciton effective mass equations are sufficiently close to that of a hydrogen
atom with modified mass and dielectric constant. The “hydrogen atom” in this in-
stance is formed from the Coulomb binding between the conduction electrons and
the isotropic part of the valence hole H0 = ( p2

2µ0
− e2

4πε0ε|r| )18. The reduced mass µ0

of the electron and hole is
1
µ0

=
1
m

(
1

m∗e
+ γ1

)
(6.9)
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and hence the exciton Rydberg energy and exciton Bohr radius are

R0 =
µ0e4

32πε0εh̄2 , a0 =
4πε0εh̄2

e2µ0
. (6.10)

The unperturbed 1s exciton ground state is eightfold degenerate at energy
E = Eg − R0, where Eg is the band-gap energy. The usage of the effective mass
formalism can be self-consistently justified by comparing a0 to the lattice constant a
of the material considered. If a0 >> a then the average separation of the electron
and hole is many lattice sites and the effective mass equation framework was
warranted.

In the absence of a magnetic field the remaining part of the exciton Hamiltonian
H − H0 features the d-like operators Hd (i.e. those which when expressed in terms
of spherical harmonics exclusively feature terms with l = 2 [153]) as well as the
exchange interaction Hexch. The introduction of a magnetic field introduces addi-
tional perturbative parts, Hl and Hq, which are linear and quardatic in the mag-
netic field. In first order degenerate perturbation theory Hl , Hq and Hexch give
non-vanishing contributions [162, 163]. To second order, the nd hydrogenic states
contribute through Hd, Hl and Hq as well as the ns states through Hq [154]. The
work of Cho et al. [147] showed that an effective Hamiltonian describing the 1s exci-
ton ground state could be derived using this perturbative approach. The 1s exciton
Hamiltonian takes the form

H =EB18 + ∆̃1σ · J + ∆̃2σ · J3 + g̃cµBB · σ ⊗ 14 − 2µB12 ⊗
[
κ̃B · J + q̃B · J3]

+
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)2 1
µ0
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[
c1B214 + c2(B · J)2 + c3(BxBy{J

x
, J

y
}+ ByBz{J

y
, J

z
}

+ BzBx{J
z
, J

x
})
] (6.11)

The coefficients in (6.11) are expressible in terms of the material parameters of the
Hamiltonian eqs. (6.4) to (6.8):

EB = Eg − R0 + ∆0 − b1, (6.12)

∆̃1 = ∆1, (6.13)

∆̃2 = ∆2, (6.14)

g̃c = g, (6.15)

κ̃ = κ − d− 13
6

d(τ − 1), (6.16)

q̃ = q +
2
3

d(τ − 1), (6.17)

c1 = 1− ν− 5
4

δ′, (6.18)
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c2 = δ′, (6.19)

c3 = 2δ′
(

1
τ
− 1
)

. (6.20)

In the equation (6.12) the b1 addition to EB comes from the second order degenerate
perturbation theory contribution of H2

d. The additions in κ̃, equation (6.16), and q̃,
equation (6.17), arise from the second order HdHl perturbation. The extra terms in

equation (6.18) arise from the second order contributions of H2
l and HdHq with the

former also contributing to equations (6.19) and (6.20). The parameters (b1, d, τ, ν, δ′)

are related to the Luttinger parameters by:
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R0a4
0
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(6.21)

The constants S1, M, N and W come from dimensionless sums over intermediate
states and are given by:

S1 = 0.2246,

M = 0.281,

N = 0.469,

W = 0.719.

(6.22)

The derived Hamiltonian (6.11) is valid in the low magnetic field region. This region
is defined by the condition that the exciton Rydberg R0 and the cyclotron energy h̄ωc

satisfy [154]

γ ≡ 1
2

h̄ωc

R0
=

eh̄|B|
2µ0R0

≤ 0.4. (6.23)

The condition (6.23) distinguishes the regime γ ≤ 0.4 where we can think of
the Zeeman splitting of hydrogenic excitons from the regime γ >> 1 where the
Coulomb interaction is a perturbation on the electron and hole Landau levels. We
shall henceforth focus on the regime γ ≤ 0.4 where perturbation theory is applicable.

At zero magnetic field, and assuming ∆2 = 0, the eigenstates of the Hamiltonian
(6.11) are those of total angular momentum I = J + σ. These states diagonalise the
∆1 exchange interaction and result in an exciton spectrum where the i = 2 states are
five-fold degenerate and the i = 1 states are three-fold degenerate.
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The effect of the magnetic field, barring any hyper-tailored sets of parameters, is
to lift the degeneracies of the exciton ground state. As this degeneracy is lifted, the
magnetic field contribution competes with the exchange interaction to determine
the nature of the solutions of equation (6.11). At zero field the states are eigenstates
of i and iz, while as the magnetic field increases the states tend increasingly towards
being eigenstates of jz and σz. As the boundary of the perturbative regime is reached
(γ = 0.4) the latter description is the more relevant way of thinking of the exciton
solutions.

The energy ordering of the excitons upon introduction of a magnetic field is par-
ticular to each semiconductor. To describe the exciton ground state in any material
we need data on the previously mentioned semiconductor parameters. We have
chosen to make use of the data provided by Winkler [164], which is reproduced in
table 6.1 below for convenience. The exchange parameters ∆1 were taken from Fu et
al. [165], where in the cases for which the authors had not calculated the isotropic
exchange parameter we have used their interpolation formula.

Material GaAs InSb InAs InP CdTe ZnSe

Eg eV 1.519 0.237 0.418 1.423 1.606 2.82

P eVÅ 10.493 9.641 9.197 8.85 9.496 10.628

Q eVÅ 8.165 8.13 8.331 7.216 7.873 9.845

m∗ 0.0665 0.0139 0.0229 0.0803 0.09 0.16

g∗ −0.44 −51.56 −14.9 1.26 −1.77 1.06

γ1 6.85 37.1 20.4 4.95 5.3 4.3

γ2 2.1 16.5 8.3 1.65 1.7 1.14

γ3 2.9 17.7 9.1 2.35 2. 1.84

κ 1.2 15.6 7.6 0.97 0.61 0.2

q 0.01 0.39 0.39 0. 0.04 0.

∆1 µeV −9.61 0 −0.29 −18.5 −23.02 −117.82

εb 12.5 16.8 11.8 12.1 9.7 8.7

TABLE 6.1: Material parameters of direct band gap semiconductors
considered in this work. The data is taken from Winkler [164] and Fu
et al. [165].

In addition to the parameters in table 6.1, we will consider ∆0 = 0 and ∆2 = 0
throughout. The former simplification amounts to omitting an overall uniform
energy shift, while the latter is a comparably small effect. The data in table 6.1
allows us to describe the exciton species in each of the semiconductors considered
by diagonalising the Hamiltonian (6.11). Before this, however, we shall examine the
basic derived exciton descriptors for each semiconductor from this set of data. This
will allow us to examine the justification of an effective mass treatment for each
semiconductor.
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Material GaAs InSb InAs InP CdTe ZnSe

R0 meV 4.061 0.391 1.001 5.108 8.124 15.507

a0 nm 14.285 102.73 49.233 11.358 8.745 5.075
a0
a 25.269 158.559 81.267 19.353 13.488 8.967

Bmax T 1.286 0.025 0.108 2.035 3.432 10.191

TABLE 6.2: Derived exciton parameters of direct band gap semicon-
ductors considered in this work.

Table 6.2 gives the exciton Rydberg energy R0, the exciton Bohr radius a0, the
ratio of the Bohr radius a0 to the lattice constant a and the magnetic field Bmax such
that γ = 0.4 for each of the semiconductors of table 6.1. We see that in each case the
effective mass formalism is justified, the case of ZnSe is the most marginal but still
has an average separation of ' 9 lattice constants. The maximum allowed magnetic
field depends linearly on the exciton Rydberg energy, as such those with the largest
binding energy have the largest allowed magnetic field. The extreme values of the
magnetic field Bmax for each semiconductor such that the perturbative approach is
still valid are the points at which there will be maximum splitting of the electron
hole pairs, within this framework at least. We now examine the dependence of the
exciton ground state on the magnetic field.

Figure 6.4 shows the splitting of exciton ground state of bulk semiconductors
as a magnetic field is introduced. Each panel of figure 6.4 considers one of the six
semiconductors from table 6.1. Each panel considers a magnetic field along the
z-axis and is plotted over the range Bz ∈ [0, Bmax]. In each figure, the exciton is
labelled and coloured according to the polarisation of light that excites that exciton.
Strictly speaking we have coloured the excitons on the basis of their character at
Bz = Bmax as at zero magnetic field only the three i = 1 excitons couple to light
[152]. At Bz = Bmax the excitons are effectively electron hole pairs and hence
six of them are optically active. The basis for the individual colourings will be
addressed in the section to come. By considering each panel we see that there is
generally no particular pattern to the energy ordering of the excitons between each
semiconductor.

Our interest is in establishing the optical response of these magneto-excitons
with a view to examining the behaviour of the polaritons that propagate in these
bulk magnetically biased semiconductors. In examining the optical response due to
excitons, the nomenclature of hydrogenic states is typically adopted. The allowed
optical transitions are to the s-like excitonic states. In most cases it is difficult to
see excitonic features in the optical response for n ≥ 2 as the hydrogen-like levels
become closer spaced and rapidly approach the band edge [140]. Additionally, as
the principal quantum number n increases the optical transition strengths of each of
the exciton levels decreases roughly like n−3 [17]. In conjunction, the closer spaced
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(A) InSb (B) InAs

(C) GaAs (D) InP

(E) CdTe (F) ZnSe

FIGURE 6.4: Dependence of the 1s exciton binding energy on mag-
netic field for the six direct band-gap zincblende semiconductors in
table 6.1. In each case the material is labelled underneath the plot.
The 1s exciton energies are plotted in the range of magnetic fields for
which Bz ≤ Bmax (see table 6.2). The excitons are coloured according
to the polarisation of light to which they couple which are given at the
right border of each plot. The excitons coloured in black are optically
dark.

exciton levels and the weaker transition strengths mean that the n = 1 exciton levels
give the most important contribution to the optical response below the band edge.
This is of course an idealisation, in which the exciton energy levels are perfectly
hydrogenic, however given that the departures of the magneto-excitons from the
hydrogenic solutions are small, the perturbed 1s exciton ground state remain the
dominant contribution to the optical response.
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6.3 Optical Response of Bulk Magneto-Excitons

We now turn to assessing how the 1s magneto-exciton ground state couples to
light. We are particularly interested in how the polarisation structure of the allowed
optical transitions emerges. Our goal for this section is therefore to derive the
dielectric function of general magnetically-biased zincblende semiconductors close
to their conduction band edge. We expect the dielectric function to be anisotropic
and heavily frequency dependent close to the electron-hole pair resonances.

To achieve this goal we shall use the framework of independent particle linear
response theory to express the optical susceptibility due to transitions between the
semiconductor ground state |0〉 and the one exciton state which is expressed as

X =
2

∑
c=1

4

∑
v=1

∑
ke,kh

Ac,v(ke, kh)ψc,ke(re)ψv,kh(rh)

=
8

∑
q=1

Xq(re, rh).

(6.24)

In equation (6.24) above, ψc and ψv are respectively the Bloch functions of the
allotted conduction band and valence band. Ac,v is the wavevector space envelope
function, which is the Fourier transform of the solution of the effective mass equation
Fc,v. Xq is the q-th excitonic state where q ∈ [1, 4] corresponds to all c = 1 parts and
q ∈ [5, 8] to all possible c = 2 parts. The optical susceptibility is calculated by taking
matrix elements of the electric dipole operator, er, between the crystal ground state
and the exciton states [166]. The matrix elements of the dipole operator are then
weighted by an energy denominator, which specifies the position of the relevant
electron hole pair resonances. The susceptibility is

ε0χij = e2 ∑
Xq

[ 〈Xq|ri|0〉〈0|rj|Xq〉
E + (EXq − E0) + iΓXq0

−
〈Xq|rj|0〉〈0|ri|Xq〉

E− (EXq − E0) + iΓXq0

]
. (6.25)

In the equation for the optical susceptibility, the ΓXq0 which appear in the denomina-
tors, represent the effect of dissipative processes which broaden a particular electron
hole pair resonance. In equation (6.25) E0 represents the energy of the maximum
of the valence bands which we shall choose as our zero energy henceforth. The
difficulty in determining the susceptibility is then exclusively the evaluation of the
position matrix elements in equation (6.25). To achieve this evaluation we express
the position matrix elements in terms of the corresponding momentum matrix el-
ements, which are known. This is accomplished by taking matrix elements of the
relation [142]

[H0, r] =
ih̄
m
π (6.26)

between the crystal ground state and the one exciton state. In the relation (6.26)
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above π differs from p by additional terms from relativistic effects and external
fields. Provided that the magnetic field splitting of the valence and conduction
bands are small compared with the band gap, which is the case for all magnetic
field strengths considered, the additional terms are small and can be neglected [140].
Re-expressing for the position matrix elements establishes the desired relationship

〈0|r|Xq〉 =
−ih̄

mEXq

〈0|p|Xq〉. (6.27)

Equation (6.27) allows us to express the susceptibility (6.25) as

ε0χij =
e2h̄2

m2 ∑
q

1
(EXq − E0)2

[ 〈Xq|pi|0〉〈0|pj|Xq〉
E + EXq + iΓXq0

−
〈Xq|pj|0〉〈0|pi|Xq〉

E− EXq + iΓXq0

]
. (6.28)

Given that, at the maximum allowed field strength, the excitons are exceedingly
close to being electron-hole pairs from a single pair of valence and conduction bands,
we will make the approximation of treating them as such. This approximation al-
lows a more direct computation of the dielectric behaviour. To maintain the validity
of this approximation we shall therefore fix the magnetic field at its maximum al-
lowed value. The susceptibility is then determined by evaluating the momentum
matrix elements between the crystal ground state and each possible pair of excited
electron hole pairs. These eight matrix elements can be calculated by exploiting the
atomic s and p-like symmetries of the k = 0 Bloch wavefunctions. This allows us
to write each of the matrix elements in terms of the Kane parameter P of the chosen
semiconductor and the hydrogenic 1s exciton real space envelope function Fq [18,
140, 167]
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FIGURE 6.5: Optical transition structure between the crystal ground
state and the eight possible first excited states for B ‖ z. These
eight possible excited states consist of every possible pair of the two
types of conduction electrons and four types of valence holes. Six of
these eight transitions are optically allowed and are represented by
coloured arrows. The colour of these arrows represents the neces-
sary polarisation of light to induce this transition and the associated
electron-hole pair is indicated in parentheses.

The real space envelope factors Fq can be approximated by the unperturbed hydro-
genic result

|Fq(0)|2 '
1

πa3
0
∀ q. (6.30)

If one wished to go beyond this approximation one would have to account for the
small mixing in of d states from the perturbations. This would likely introduce a
dependence of the oscillator strengths on the exchange interaction as in the work
of Ekardt et al. [168], and possibly also on the magnetic field, as is the case for
quantum well excitons in microcavities [169, 170]. Neglecting the mixing in of
d-states will marginally change the oscillator strengths of each of the transitions
but not materially affect the results of the susceptibility calculation. If one wished
to include the mixing, the perturbed wavefunctions are available in the work of
Świerkowski [171]. Focusing on the vector structure of the momentum matrix
elements (6.29), the polarisation structure of the allowed transitions can be read off.
Figure 6.5 exemplifies this optical transition structure.

By examining the non-zero momentum matrix elements of (6.29), we see that
the optically allowed transitions are those for which there is either zero or one
unit change in the angular momentum along the z direction. The two disallowed
transitions, those for which the matrix element is zero, correspond to cases where
the change in angular momentum is two units. These cases are consequently
known as dark excitons. In figure 6.5 we see the structure of the optically allowed
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transitions. Each of the optically allowed transitions, indicated by an arrow, is
coloured according to the corresponding change in angular momentum along the
z direction. The blue and red transitions correspond to changes of plus and minus
one unit respectively, while the green transitions correspond to an unchanged
angular momentum along z. This means that the blue transitions are induced by
left circularly polarised light for k ‖ ẑ, represented by the notation σ+, the red
transitions by right circularly polarised light for k ‖ ẑ, represented by σ− and the
green transitions by light which is linearly polarised along ẑ, represented by Z.

Finally using equations (6.29), the susceptibility (6.28) can be re-written as a sum
over poles in the form

χ(ω) =
8

∑
q=1

[ Aq

h̄ω + (EXq − E0) + iΓq
−

A∗q
h̄ω− (EXq − E0) + iΓq

]
. (6.31)

Each pole of equation (6.31) is weighted by the appropriate oscillator strength matrix
Aq. The matrix structure of these Aq enforce the optical selection rules. The dielectric
function of the semiconductor close to these resonance can then be written as

ε(ω) = εb13 + χ(ω). (6.32)

The background dielectric εb in the above equation (6.32) accounts for all the
other charged components of the semiconductor which oscillate in response to the
applied electric field.

The preceding analysis suggests that the natural basis for the dielectric function,
that in which it is diagonal, is the LRZ basis, rather than the XYZ one. This trans-
formation can be enacted by the matrix S according to:

εLRZ = S εXYZS+ (6.33)

where the matrix S is given by

S =


1√
2
− i√

2
0

1√
2

i√
2

0

0 0 1

 . (6.34)

The transformation (6.33) does indeed diagonalise the dielectric tensor. The goal
of this section, to determine the dielectric function close to the 1s magneto-exciton
resonances, is now complete. We shall now turn to examining the result of this
derivation. Henceforth we shall focus on the case of GaAs, although the results of
this section apply to any of the semiconductors considered in table 6.1. We expect
that, although the fine details of the dielectric behaviour of each semiconductor will
be different, the functions will be qualitatively similar. Owing to this narrowing our
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focus to exclusively consider GaAs should not necessarily narrow the scope of the
observations that shall be made.

(A) εL, Γ = 0.01R0 (B) εL, Γ = 0.05R0

(C) εR, Γ = 0.01R0 (D) εR, Γ = 0.05R0

(E) εZ, Γ = 0.01R0 (F) εZ, Γ = 0.05R0

FIGURE 6.6: Frequency dependence of the three non-zero compo-
nents of the dielectric tensor of GaAs arising from the transitions to
1s exciton states. The three components are εL (top row), εR (mid-
dle row) and εZ (bottom row). Each column represents a different
strength of damping Γ of each of the poles. The left column is for a
damping Γ = 0.01R0 and the right considers Γ = 0.05R0.

Figure 6.6 shows the frequency dependence of the real and imaginary parts of
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the dielectric function in the LRZ basis. Each of these plots considers a frequency
interval close to the relevant resonances, i.e. just below the band-gap frequency.
Frequency is measured relative to the band gap frequency ωg and in units of the ex-
citon Rydberg frequency ωR0 . Each column of figure 6.6 considers a distinct constant
damping common to each of the resonances. The left column considers a damping
Γ = 0.01R0 while the right column considers a damping of Γ = 0.05R0. Each row
considers a different component of the dielectric function. The top row shows the εL

component of the dielectric function, the middle row shows the εR component and
the bottom row shows the εZ component. Each of these plots can be understood
in terms of a Lorentz oscillator model susceptibility, except in this case there are
two resonances. It is easy to see these two resonances for each of the components
and the relative oscillator strengths of each of the transitions. In particular, we can
see the asymmetry of the oscillator strengths for the two transitions involved in εL

and for the two transitions relevant to εR. Each of the poles contributing to εZ have
similar oscillator strength. We further note that, as expected, the dielectric function
is anisotropic, resulting from the differing frequencies of each of the six pertinent
resonances.

The derivation of the dielectric function of magnetically biased bulk semi-
conductors is not the primary result of the chapter but rather a transitional one.
We intend to use the derived dielectric functions to assess the magneto-exciton-
polaritons of bulk semiconductors. The anisotropy and multi-resonant nature of the
dielectric function promises richly structured polariton dispersion relations which
we shall now investigate.

6.4 Magneto-Exciton Polaritons

In this section we focus on utilising the dielectric function derived in section 6.3 to
determine and analyse the dispersion relation of bulk magneto-exciton-polaritons.
This will first involve, in subsection 6.4.1, looking for plane-wave solutions of the
wave equation when considering the anisotropic and multi-resonant dielectric
functions of bulk magnetically biased semiconductors. This is facilitated by in-
troducing a 2 × 2 matrix equation formalism which will better accommodate the
determination of the transverse polariton solutions.

The matrix equation framework will then be used repeatedly, to examine the
polariton dispersion relations in many different regimes. We will search for these po-
lariton solutions in the frequency interval between ω ∈ [ωg− 1.15ωR0 , ωg− 0.75ωR0 ]

which contains all of the perturbed 1s electron hole pairs and is thus the relevant
range for examining polariton effects. In subsection 6.4.2 we conduct this search
in the situation where there are no dissipative effects included in the dielectric
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function, whereas in subsection 6.4.3 we solve the polariton dispersion equation in
a situation where there is a non-zero and variable amount of dissipation. In either
situation we focus on the anisotropy of the magneto-exciton-polariton-dispersion
as well as the degenerate features present therein.

6.4.1 Setting up and Solving the Magneto-Exciton Polariton Equation

In a simple cubic semiconductor the dielectric function ε(ω) is isotropic, and ex-
hibits a single resonance in a frequency window around the exciton Rydberg energy.
Looking for plane-wave solutions to the wave equation for this material, a scalar
equation emerges: c2k2

ω2 = ε(ω). This equation gives the polariton dispersion rela-
tion which is isotropic, two-branched and polarisation degenerate. However, when
the dielectric function is anisotropic, the vector wave-equation has to be addressed
instead. The plane-wave solutions of the wave equation in this case result in the
following equation to be solved for the polariton dispersion relation:

− k× k× E =
ω2

c2 ε(ω)E. (6.35)

This is the vector generalisation of the equation
( c2k2

ω2 = ε(ω)
)
, giving the polariton

dispersion relation, and applies to semiconductors with anisotropic dielectric
functions. The equation (6.35) is similar to equation (2.17) in chapter 2 except in
this case the equation is formulated in terms of the electric field E rather than the
displacement field D.

Our objective is therefore to solve the equation (6.35) for the allowed (k, ω) of
the polaritons. There are two forms of solutions to equation (6.35): longitudinal
solutions with k ‖ E and transverse solutions with k ⊥ E. The frequencies of the
longitudinal polaritons satisfy k̂Tε(ω)k̂ = 0 for a given propagation direction k̂. To
obtain the transverse polariton solutions we can simplify equation (6.35) by taking
matrix elements with every combination of two unit vectors orthogonal to k̂. We
shall take these two unit vectors k̂θ and k̂φ as

k̂θ = (cos θ cos φ, cos θ sin φ,− sin θ)T,

k̂φ = (− sin φ, cos φ, 0)T.
(6.36)

This procedure eliminates the longitudinal polariton solutions producing a 2 × 2
matrix problem for the transverse polariton solutions

k212E⊥ =

[
ω2

c2 εb12 +
ω2

c2

 k̂T
θ χ(ω)k̂θ k̂T

θ χ(ω)k̂φ

k̂T
φ χ(ω)k̂θ k̂T

φ χ(ω)k̂φ

]E⊥. (6.37)
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The non-identity part of the matrix equation (6.37) contains information regard-
ing the polarisation structure of the exciton-polaritons. This matrix can be re-written
as follows:

χ̃(ω) =

 k̂T
θ χ(ω)k̂θ k̂T

θ χ(ω)k̂φ

k̂T
φ χ(ω)k̂θ k̂T

φ χ(ω)k̂φ

 ,

≡
8

∑
q=1

[ Ãq

h̄ω + (EXq − E0) + iΓ
−

Ã∗q
h̄ω− (EXq − E0) + iΓ

]
.

(6.38)

In equation (6.38), we have introduced the directionally dependent oscillator
strength matrices Ãq

Ãq =

(
Aq;11 cos2 θ + Aq;33 sin2 θ −iAq;11 cos θ

iAq;11 cos θ Aq;11

)
. (6.39)

It should be noted that these Ãq matrices do not depend on φ at all. This is to be
expected as the only privileged direction in the problem is the direction of the mag-
netic field along the z-axis (θ = 0). Non-trivial transverse solutions to the polariton
equation in a specified direction (θ, φ) are obtained by finding the (k, ω) which solve
the equation

det
[(

1− c2k2

ω2εb

)
1 +

1
εb

8

∑
q=1

[ Ãq

h̄ω + (EXq − E0) + iΓ
−

Ã∗q
h̄ω− (EXq − E0) + iΓ

]]
= 0.

(6.40)
The combination of the form of equation (6.40) with that of the matrices (6.39)
imposes an additional symmetry between the solutions at θ and those at π − θ. The
combination of this symmetry with the φ independence of the matrices (6.39) means
that all the unique solutions of the polariton equation can be found in the interval
θ ∈ [0, π

2 ].

To solve equation (6.40) there are two possible approaches: either 1) solve for
k at a specified ω or 2) solve for ω at a specified k. Of the two approaches the
former is preferable as it results in a fourth order polynomial in k to be solved (in
fact a quadratic in k2) rather than (in a low symmetry direction) a sixteenth order
polynomial in ω. The order of these polynomials in either k or ω is not arbitrary;
it reflects either the two allowed polarisation states ⊥ to k̂ (for positive k) or the
maximum number of allowed polariton branches for ω.
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The solution of the determinant equation (6.40) for the transverse polariton dis-
persion relation is now our focus. To examine these solutions we shall use a combi-
nation of two approaches. The first approach shall be to examine plots of the polari-
ton dispersion relations. These plots can be produced by solving equation (6.40) for k
at a sufficient resolution in the frequency interval ω ∈ [ωg − 1.15ωR0 , ωg − 0.75ωR0 ].
The second approach is to characterise the possible solutions that are to be expected
by algebraic analysis of equation (6.40). To conduct this analysis we note that for any
specified ω we are solving an equation of the form

a(θ, ω, Γ)k4 + b(θ, ω, Γ)k2 + c(θ, ω, Γ) = 0, (6.41)

which as previously mentioned is a quadratic in k2. As such, we can analyse the
nature of the solutions by studying the discriminant

∆(θ, ω, Γ) = b(θ, ω, Γ)2 − 4a(θ, ω, Γ)c(θ, ω, Γ). (6.42)

Note that the discriminant has dimensions of [∆] = m4, so a typical scale for the
discriminant would be ∆ '

(
10−7)4 m4 = 10−28 m4. These two approaches shall

be used to study the polariton dispersion relation, in the aforementioned frequency
interval, for all unique θ and under varying levels of dissipation Γ.

6.4.2 Magneto-Exciton Polariton Dispersion Relation in Absence of Res-
onance Damping

The first solutions of the determinant equation (6.40) that we seek are when there
is no dissipation considered in the dielectric function, i.e. when Γ = 0. To develop
our expectations of what type of polariton solutions are possible in this regime we
shall first study the discriminant ∆(θ, ω, 0). In the situation of no dissipation the
coefficients a(θ, ω, 0), b(θ, ω, 0) and c(θ, ω, 0) are all real. Since the coefficients of
the quartic equation (6.41) are all real this means that the discriminant is real. Addi-
tionally, over the parameter regime θ ∈ [0, π

2 ] and ω ∈ [ωg − 1.15ωR0 , ωg − 0.75ωR0 ]

the coefficients are such that the discriminant is non-negative. This means that
the solutions for k2 are either real positive or real negative. The solutions for k are
therefore either entirely real or imaginary but not generally complex. Of the four
solutions for k we shall restrict ourselves to the two of those which have either
positive real or positive imaginary part.

Analysis of the discriminant also allows us to scrutinize the polariton dispersion
relation for degeneracies. The degeneracies are points where two polaritons have a
common (k, ω). These special points in the dispersion relation can be determined
by solving ∆(θ, ω, 0) = 0.
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FIGURE 6.7: A density plot of log10

(
∆(θ,ω,0)
10−28 m4

)
as a function of the

frequency ω and the polar angle θ. The black points are those at which
the discriminant ∆ = 0.

In figure 6.7 we examine the discriminant over relevant intervals of (θ, ω). Solu-
tions of the degeneracy equation, indicated by black points, could only be found for
two distinct values of θ, θ = 0, corresponding to propagation in the Faraday geom-
etry where (k ‖ B) and θ = π

2 , corresponding to propagation in the Voigt geometry
where (k ⊥ B). In both cases there are two degeneracies. For propagation perpen-
dicular to the magnetic field, the degeneracies are extended ring degeneracies owing
to the φ invariance of the solutions of equation (6.40). Analysis of the discriminant
can not however tell us anything further about these degeneracies, in order to further
characterise them we now turn to examining plots of the polariton dispersion rela-
tions. The degeneracies are features in the four dimensional space (k, ω) so they can
not be directly visualised, however, studying them in the three dimensional space
(kx, kz, ω) shall be sufficient owing to the aforementioned φ invariance. We shall
make extensive use of this type of three dimensional visualisation of the polariton
dispersion relation, as well as studying two dimensional plots of the magnitude of
k versus ω in a specified direction (θ, 0). In combination these figure variants will
allow us to study the degeneracies of the polariton dispersion relation.

Magneto-Exciton Polariton Dispersion for k̂ ‖ B

We shall now move to visually assessing the dispersion relation of bulk magneto-
exciton-polaritons. We shall begin by examining the dispersion relation for
propagation along the magnetic field direction. Considering light incident along
the direction (θ = 0, φ = 0), we can see from equations (6.29) and (6.39) that the two
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excitons which couple to z-polarised light, x3 and x6, will both have zero oscillator
strength. We hence expect that the order of the equation (6.40) in ω to reduce by
four leaving a twelfth order polynomial having six positive frequency solutions.

FIGURE 6.8: Transverse polariton dispersion relation of bulk GaAs
for light propagating parallel to the magnetic field direction ẑ, i.e.
(θ, φ) = (0, 0). In this figure we have considered no damping of any
of the excitonic resonances, i.e. Γq = 0 ∀q. The branches of the po-
lariton dispersion relation are coloured according to their polarisa-
tion with the colouring scheme provided in the colour triangle in the
lower left of the figure.

Figure 6.8 shows the magneto-exciton polariton dispersion for light propagating
along the z-direction. The branches of the dispersion relation are coloured according
to their polarisation (see inset colour triangle in figure). In this arrangement the
polarisation states are left (blue) and right (red) circularly polarised in the x − y
plane. There are three branches for each of these polarisations. Well below the
lowest electronic resonances the lower polariton branch for each polarisation
increases in a linear fashion. As the lower branches approach the relevant resonance
(x7 for right circularly polarised light and x5 for left circularly polarised light) the
dispersion starts to flatten out and asymptote horizontally. As these resonances are
approached the splitting of the branches increases significantly. Between the first
and the second electronic resonance for each polarisation, there is an intermediate
polariton branch. This intermediate branch starts as purely imaginary k, i.e. a
decaying state, before becoming purely real and oscillatory as ω increases. Above
the second electronic resonance for each polarisation there is an upper polariton
branch. The upper polariton branch starts as a decaying solution before becoming
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oscillatory. The upper branches then start to curve upwards and recover the linear
photonic dispersion. Our primary interest is in the degeneracies in these polariton
dispersion relation which we shall now discuss.

FIGURE 6.9: Polariton dispersion relation of bulk GaAs for k̂ ‖ ẑ as
in figure 6.8 with the degeneracies encircled and numbered.

In figure 6.9 we have reproduced figure 6.8 with the noteworthy features
encircled and numbered to facilitate referencing. It is clear to see that the features
1 and 6 are the previously mentioned degeneracies of the dispersion relation,
where the left and right circularly polarised polaritons cross. These are the two
degeneracies predicted in figure 6.7. The features 2− 5 represent the intersections
between each of the left and right circularly polarised polaritons and the two
Z-polarised longitudinal polaritons at the x3 and x6 exciton resonances. Away from
θ = 0 the oscillator strength of the Z electron-hole transitions becomes non-zero,
and the longitudinal polaritons become transverse solutions that exhibit dispersion.
The Hopfield coefficients [172], which give the content of each of the excitons
and each polarisation of light in the polariton branch, indicate that the exciton
constituency of the relevant polariton branches locally mix in a way that suggests
these intersections are topological. We will now pay individual attention to each of
the features numbered 1− 6, in particular we will assess whether these degeneracies
are isolated or extended by looking at the polariton solutions at nearby θ.

In figure 6.10 we study the local dispersion of feature 1 in figure 6.9. The local
dispersion is examined in the ky = 0 hyper-plane. Each of the surfaces is coloured
according to the polarisation of the solution at that configuration in parameter
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FIGURE 6.10: Local dispersion around the first feature of figure 6.9.
We consider the dispersion in the ky = 0 plane.

space. Feature 1 is the first polarisation degeneracy of the θ = 0 polariton dispersion
relation. As expected from the discriminant analysis this is an isolated degeneracy.
We now turn to assess the local splitting of the two branches. From figure 6.8
we have seen that in the kx = ky = 0 plane the intersection of the two polariton
branches is linear. By examining figure 6.10 it appears that the splitting of the
branches in kx is quadratic.

FIGURE 6.11: Local dispersion in transverse direction kx through the
first feature of figure 6.9.

Figure 6.11 examines the local dispersion in kx of the two polariton branches rel-
evant to feature 1 of figure 6.9. In the figure 6.11 we fix the kz component of the
wavevector at that of the lower frequency intersection in the θ = 0 polariton disper-
sion relation. In this figure we again see only evidence for a quadratic intersection of
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the polariton branches in kx (and hence also in ky). We can not definitively rule out
the possibility that sufficiently close to the degeneracy there may be a predominantly
linear dispersion in kx. Our analysis has however not generated such behaviour so,
to the best of our knowledge, we conclude that this feature is an isolated degeneracy
of mixed dispersion. The degeneracy is therefore a generalisation of a Weyl point,
with linear splitting of the branches in the kx = ky = 0 plane and quadratic splitting
in kx and ky. Since the dispersion has to have a φ symmetry, the simplest low energy
behaviour of this degeneracy would be of the form

∝ a1(k2
xσx + k2

yσy) + b1(kz − k(I)
z )σz, (6.43)

where k(I)
z is the intersection point of the two polariton dispersions. Topologically,

this degeneracy is distinct from that of a Weyl point and, correspondingly, the local
polarisation behaviour is different. The topological charge of this degeneracy can
be calculated using the approach given in the appendix of an article by Chang and
Yang [173]. In this case the topological charge is zero. We now move on to the next
features highlighted in figure 6.9.

(A) Feature 2 (B) Feature 3

(C) Feature 4 (D) Feature 5

FIGURE 6.12: Local dispersion around each of features 2− 5 in the
k̂ ‖ ẑ polariton dispersion relation. In each case we have considered
the ky = 0 plane and have coloured the surfaces according to the
polarisation.

In figure 6.12 we have studied features 2 − 5 of figure 6.9. Each of these four
features is centred, in frequency, around the frequency of either of the Z-polarised
electron hole pairs. The top row of figure 6.12 is centred around the frequency of
the x6 resonance while the bottom row is centred around the frequency of the x3
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resonance. Each of the four plots comprising figure 6.12 features a two-sheeted
surface constricting to an isolated common point at the centred frequency. These
isolated common degeneracies are Weyl points with a linear splitting of the surfaces
in all directions. These Weyl points have a topological charge of ±1 and appear
in positive and negative topological charge pairs. The cause of these points is the
emergence of two extra transverse polariton branches away from the kx = ky = 0
plane. When off z-axis propagation is considered, the oscillator strength of the Z
polarised transitions become non-zero and consequently extra transverse polariton
branches emerge. Locally to each of these Weyl points there is a mixing of the
exciton content of each branch with Z excitons being mixed with the L or R excitons
of each branch.

FIGURE 6.13: Local dispersion around the sixth feature of figure 6.9.
We consider the dispersion in the ky = 0 plane.

In figure 6.13 we study the final feature of the θ = 0 polariton dispersion
relation; feature 6 of figure 6.9. Similar to feature 1, feature 6 is a degeneracy of
the L and R polariton branches. The discriminant analysis indicated that this is an
isolated degeneracy. As for feature 1 we are interested in the local splitting of the
sheets of this surface in all directions. From figure 6.8 it is evident that the splitting
in the kx = ky = 0 direction is linear. Figure 6.13 suggests that the splitting in the
other directions is quadratic.

Figure 6.14 allows us to better assess the dispersion of this polarisation degener-
acy in kx. In the figure 6.14 we fix the kz component of the wavevector at that of the
higher frequency intersection in the θ = 0 polariton dispersion relation. Figure 6.14
seems to confirm that the splitting in the other directions is quadratic. As for feature
1 we can not definitively rule out predominantly linear splitting sufficiently close to
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FIGURE 6.14: Local dispersion in transverse direction kx through the
sixth feature of figure 6.9.

the degeneracy however we have not observed such behaviour. Therefore, as was
the case for feature 1 we concluded that this feature is a generalised Weyl point with
linear dispersion in the z direction and quadratic splitting in the other directions.
The low energy dispersion around this point is therefore of the form

∝ a2(k2
x σx + k2

y σy) + b2(kz − k(I I)
z )σz, (6.44)

where k(I I)
z is the intersection point of the two polariton branches. As was the case

with the first degeneracy, this is a quadratic Weyl node with zero topological charge.

The examination of the six features of the θ = 0 polariton dispersion relation
of figure 6.9 has now been carried out. We now move to consider the polaritons
formed for light propagating in the other special configuration, that of the Voigt
geometry where k ⊥ B.

Magneto-Exciton Polariton Dispersion for k̂ ⊥ B

In the Voigt geometry one of the polarisations of light couples exclusively to the
x3 and x6 electron hole pairs. The other polarisation of light will couple, to some
degree, with each of the other four optically allowed transitions.

Figure 6.15 shows the resulting polariton dispersion relation in the Voigt
geometry. Similarly to figure 6.8 the coupling of a polarisation of light to the
two Z-polarised electron hole pairs results in three polariton branches of fixed
polarisation. The other polarisation of light couples to each of the remaining four
electron hole pairs, resulting in five polariton branches. We see in figure 6.15 that
the colouring of these five polariton branches is not constant as in the case of figure
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FIGURE 6.15: Polariton dispersion relation of bulk GaAs for light
propagating perpendicularly to the magnetic field direction ẑ, i.e.
(θ, φ) = (π

2 , 0). In this figure we have considered no damping of
any of the excitonic resonances, i.e. Γq = 0 ∀q.

6.8 or for the other three branches in figure 6.15. In this instance the degree of
mixture of red and blue represents a variation of the relative weighting of left and
right circularly polarised light in the x − y plane. This inconstancy of polarisation
profile of a polariton branch is, in fact, the norm for these dispersion relations. For
light propagating in a general direction, not orthogonal to the planes of vibration
of any of the electron hole resonances, the polarisation profile of each of the eight
polariton branches varies continuously.

The two degeneracies of the polariton dispersion relation in the Voigt geometry
are labelled in figure 6.16. Analysis of the discriminant (6.42) has suggested that
these two polarisation degeneracies are extended around the kz = 0 plane and split
apart as kz 6= 0 solutions are considered. We shall now examine each of these two
degeneracies.

Figure 6.17 is a panel of figures that examines the local dispersion relation of
each of the degeneracies of figure 6.16 in two different hyper-planes. The two
hyper-planes considered are, in the left column, the kz = 0 hyper plane, and, in the
right column, the ky = 0 hyper-plane. For each of the figures we observe that the
degeneracy is extended in the kz = 0 hyper-plane while each of the surfaces split as
kz 6= 0 solutions are included.

We have now developed a complete picture of the degeneracies of the polariton
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FIGURE 6.16: Polariton dispersion relation of bulk GaAs for k̂ ‖ x̂ as
in figure 6.15 with the degeneracies encircled and numbered.

(A) 1st Degeneracy, kz = 0 (B) 1st Degeneracy, ky = 0

(C) 2nd Degeneracy, kz = 0 (D) 2nd Degeneracy, ky = 0

FIGURE 6.17: Local dispersion of the each of the degeneracies in fig-
ure 6.16. The top row considers the first degeneracy of figure 6.16 and
the bottom row the second degeneracy. For each of the degeneracies
we consider the dispersion in two different hyper-planes. In the left
column we have considered kz = 0 while in the right column we have
considered ky = 0.
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dispersion relations in the absence of dissipation. There are two special relative
orientations specifying the relationship between the magnetic field direction and the
direction of propagation k. These relative orientations are the Faraday configuration
(k ‖ B) and the Voigt configuration (k ⊥ B). In the former case, there are six
polariton branches, three of each of left and right handed circular polarisation.
These six branches intersect at two points, which are isolated degeneracies that
are generalisations of Weyl points. Additionally, there are degeneracies between
each of the transverse polariton modes and the longitudinal modes resulting in
four Weyl points with topological charges of ±1. For light propagating in the
Voigt geometry there are now eight polariton branches as the oscillator strength
of each dipole-allowed transition is non-zero. These eight branches divide into
three of fixed z polarisation and five of variable mixture of left and right handed
circular polarisation. There are two intersections of these set of branches, which are
extended degeneracies in the kz = 0 hyper plane but which split apart as kz 6= 0
solutions are considered.

We now focus on the evolution of these polariton dispersions as dissipative
processes are included. Rather than model each of the myriad processes that
contribute to the overall dissipation individually, we choose to introduce a uniform
broadening to each of the electron hole pair resonances. Although this uniform
broadening is an idealisation, we do not believe that the inclusion of different
damping for the different excitons would qualitatively affect our results.

6.4.3 Magneto-Exciton Polariton Dispersion Relation with Resonance
Damping

The consideration of resonance damping opens the possibility of interesting non-
Hermitian effects. In crystal optics it has been shown that the introduction of
absorption (a non-Hermitian effect) has changed the nature of the degeneracies
which were present in the Hermitian case [91]. In more general optical systems
absorption has also allowed myriad interesting topological phenomena [75]. In our
case, when damping of the electron hole pair resonances is included, the nature of
equation (6.40) is altered and, hence, so is the discriminant equation (6.42). With this
inclusion the quartic coefficients of equation (6.41) become complex and therefore
so does the discriminant. Owing to the complexity of the discriminant, the solutions
for the polariton dispersion at a given real ω will produce generally complex k.
Similarly, the solution of ∆(θ, ω, Γ) = 0 now constitutes the simultaneous solution of
two equations, Re(∆(θ, ω, Γ)) = 0 and Im(∆(θ, ω, Γ)) = 0. Although in isolation the
solution of either of these equations does not have a direct physical consequence,
the simultaneous solution indicates the presence of an exceptional point [75, 174,
175]. Exceptional points are degeneracies where the real and imaginary parts of k
are degenerate at a given frequency ω. The presence of exceptional points and their
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fate as the strength of dissipation is varied is our primary focus in this section.

Prior to addressing the question of exceptional points, it will be beneficial to
examine the effect of dissipation on the polariton dispersion relation in a general
sense. We would expect that, when dissipation is included, the asymptotes of the
polariton dispersion seen in subsection 6.4.2 would disappear. This disappearance
is achieved by the joining of the branches of the polariton dispersion above and
below each resonance.

FIGURE 6.18: GaAs polariton dispersion relation for light propa-
gating along the magnetic field direction ẑ. In this figure we have
considered a broadening of each of the electron-hole pair resonances
Γ = 0.015R0.

Figure 6.18 shows the polariton dispersion relation in the Faraday configuration
where dissipation has been included. We should thus compare this dispersion
relation to the corresponding one without dissipation in figure 6.8. For this figure
we have considered a uniform broadening of Γ = 0.015R0 for each of the electron
hole pair resonances. As expected the solutions are now generally complex k. The
real and imaginary parts of k of each polarisation are both continuous functions;
the asymptotes have disappeared. At this level of dissipation we can see the
bi-resonant structure of the εL and εR dielectric components by looking at the
imaginary parts of k for each polarisation. The imaginary part of k also reveals
the asymmetry of the oscillator strengths for each resonance. As the strength of
damping is further increased the presence of individual resonances will first become
indiscernible (Γ & 0.03R0), then the presence of any resonance will be difficult to
observe (Γ & 0.25R0). We note that in figure 6.18 there are two degeneracies of the
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real parts of k and one degeneracy of the imaginary parts of k. As the frequency
of the imaginary degeneracy does not match either of the frequencies of the real
degeneracies, this is not a polariton dispersion that exhibits an exceptional point. To
assess the appearance of exceptional points we will use discriminant analysis rather
than plotting individual polariton dispersion relations.

Degeneracy Structure of Dispersion Relations with Resonance Broadening

We now look at solving ∆(θ, ω, Γ) = 0 at chosen non-zero values of Γ. We will solve
this simultaneous equation numerically by root-finding techniques and will use a
graphical representation of the solutions to elucidate the behaviour of the solutions
as Γ is varied.

(A) Γ = 0.0005R0. (B) Γ = 0.008R0.

FIGURE 6.19: Two plots showing the zero contour lines of the real
(blue) and imaginary (orange) parts of the discriminant ∆. In each
plot we have considered a distinct resonance broadening Γ for each
of the electron-hole pair resonances. In the left figure Γ = 0.0005R0
while in the right figure Γ = 0.008R0. Intersections of the zero contour
lines, marked with black dots, represent points at which ∆ = 0.

Figure 6.19 represents the solutions of the equation ∆(θ, ω, Γ) = 0 for two
different amounts of dissipation. In the left plot of figure 6.19 we have chosen
Γ = 0.0005R0 while in the right plot Γ = 0.008R0. In each plot we have used
blue and orange curves which display the zero contour lines of Re(∆(θ, ω, Γ)) and
Im(∆(θ, ω, Γ)) respectively. The intersection of these contour lines are then excep-
tional points where ∆(θ, ω, Γ) = 0. In the left plot of figure 6.19 we see a number of
exceptional points. Comparing the left plot of figure 6.19 to the discriminant anal-
ysis when Γ = 0 presented in figure 6.7 allows us to better understand some of the
exceptional points. The presence of these points can be understood as the extension
of the Γ = 0 degeneracies to the case of complex solutions. As non-zero dissipation
is introduced the four distinct frequency θ = 0 degeneracies of figure 6.9 and the two
θ = π

2 degeneracies of figure 6.16 become exceptional points. All of the exceptional
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points of the polariton dispersion relation become itinerant as Γ is allowed to vary,
moving in the (θ, ω) space. As Γ is increased some of these exceptional points can
meet and annihilate. This is what has occurred in between the left plot of figure 6.19
and the right plot where we see fewer exceptional points. The locations of the excep-
tional points in figure 6.19 are all at non-zero θ. Hence, owing to the φ invariance of
solutions, the exceptional points are not isolated but are instead rings of exceptional
points.

Rings of Exceptional Points

We can examine the local dispersion around the exceptional points predicted from
the discriminant analysis. We will focus on the highest frequency exceptional point
of figure 6.19b, which is a solution of the equation ∆(θ, ω, 0.008R0) = 0. This
solution occurs for light propagating in a direction θ? (or by symmetry of solutions
π − θ?). To begin with, we will look at a 2D plot of the polariton dispersion relation
for light propagating in the direction θ = θ? before examining 3D plots of the real
and imaginary parts of the polariton dispersion around the exceptional point.

FIGURE 6.20: The polariton dispersion relation for light propagating
in a direction (θ, φ) = (θ?, 0), where θ? has been determined from
figure 6.19. We consider Γ = 0.008R0.

In figure 6.20, we see a polariton dispersion relation that exhibits an exceptional
point. In this figure, we have considered a damping of Γ = 0.008R0 and light
propagating in a direction (θ, φ) = (θ?, 0). The exceptional point occurs at the
frequency marked by the black dashed gridline labelled EP in figure 6.20. We clearly
see that, at this frequency, there is degeneracy in both the real and imaginary parts
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of k.

(A) Imaginary Part (B) Real Part

FIGURE 6.21: Two figures showing the imaginary (left) and real
(right) parts of the polariton dispersion relation in the kz = cos(θ?)
plane for a resonance broadening Γ = 0.008R0. For each of these
plots we show the section of the ring from φ = 0 to φ = π.

Figure 6.21 shows one half of the ring of exceptional points of the polariton
dispersion relation for light propagating in a direction θ? in a material with damping
Γ = 0.008R0. We show both the real and imaginary parts of the polariton dispersion
relation. For each part, we plot the ring of exceptional points for φ ∈ [0, π]. The key
observation from figure 6.21 is that the degeneracy in the real and imaginary parts
of k are present over all φ, as expected. The exceptional point for light propagating
in a direction θ? is, therefore, in fact, a ring of exceptional points.

(A) Imaginary Part (B) Real Part

FIGURE 6.22: Two figures showing the imaginary (left) and real
(right) parts of the local dispersion around the exceptional points at
θ1 = θ? and θ2 = π− θ?. Here we are looking at the dispersion in the
plane ky = 0.

Figure 6.22 shows the two exceptional points located at θ? and π − θ?. In this
figure, we display the real and imaginary k parts of the polariton dispersion relation.
For each of the real and imaginary parts, there are extended degeneracies. These
extended degeneracies in real and imaginary k are non-overlapping except at their
end points which are the exceptional point locations.

Beyond the level of dissipation considered in the right plot of figure 6.19
(Γ = 0.008R0), the exceptional points continue to move. As the dissipation is



170 Chapter 6. Magneto Exciton Polaritons in Bulk Semiconductors

increased, each of the remaining pairs meet and annihilate.

The observations which have been made in this chapter apply to a regime of low
damping, where, in the case of GaAs, the dissipation is on the scale of tens of µeV.
The strength of the dissipation in a bulk semiconductor is determined by many
inter-related factors. A significant one of these factors is the purity of the crystal.
The dissipation can additionally be tuned somewhat by varying the temperature.
For the features described to be observed we would likely require a highly pure
semiconductor crystal in a low temperature environment. The relevant scale to
compare the dissipation Γ to is the Rabi splitting energy. It may be easier to probe
the low damping regime for other semiconductors in table 6.1. This may be the case
as, due to the precise energies of the six optically excitable exciton transitions, the
rings of exceptional points are naturally more robust and persist to higher strengths
of dissipation.

6.5 Conclusion

In this chapter we have studied the magneto-exciton-polaritons of bulk
magnetically-biased semiconductors. This began with our adoption of a methodol-
ogy to describe the interaction of electrons and holes in a bulk semiconductor under
a static external magnetic field. For weakly bound excitons, the requisite framework
is the set of effective mass equations for relevant combinations of valence and
conduction bands. In zincblende semiconductors, where the spin-orbit spliting
of the j = 1

2 valence band from the j = 3
2 valence band is sufficiently strong, the

relevant bands are the four j = 3
2 valence bands and the two j = 1

2 conduction
bands. The set of effective mass equations is thus a system of eight equations to be
solved for the magneto-exciton energies and wavefunctions. The exact solution of
the effective mass equations is not generally possible and instead we must resort to
approximate methods. One such method is the effective Hamiltonian derived by
Cho et al. [147] which utilises the perturbative approach of Altarelli and Lipari [154]
as well as including the exchange interaction. This effective Hamiltonian describes
the magneto-exciton ground state of bulk semiconductors in the low magnetic
field regime. We used this effective Hamiltonian in order to determine the optical
response of the exciton ground state.

We described the optical susceptibility due to the 1s-like magneto-excitons
within the non-interacting linear response framework. In this framework, the
optical susceptibility and hence the dielectric function can be expressed in terms
of expectation values of the dipole operator between the crystal ground state and
the one exciton state. To calculate the dielectric function we made use of several
relations to express the position matrix elements in terms of known momentum
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matrix elements. The structure of these momentum matrix elements enforces the
optical selection rules, dictating which of the electron hole pairs is relevant to the
dielectric function for light of a given polarisation. We considered a magnetic field
at the extreme bounds of the allowable regime for the effective Hamiltonian. At
this magnetic field strength, six of the eight excitons contribute to the dielectric
function overall. In its diagonal basis, each component of the dielectric function
is determined by transitions to a distinct pair of the dipole allowed excitons. The
energies of each of these six electron hole pairs then determines whether there is
anisotropy of the dielectric function. For non-zero magnetic field, the dielectric
function is anisotropic.

The magneto-exciton-polaritons of bulk semiconductors were described by
solving the wave equation incorporating the derived dielectric function. This vector
equation is a generalised polariton equation relevant to an anisotropic dielectric. We
recast the polariton equation as a 2× 2 matrix equation for the transverse polariton
solutions, which we then determined numerically.

The solutions of the polariton equation were studied for light propagating in
special configurations and at varying levels of dissipation. A particular focus of
this study was on degeneracies in the polariton dispersion relation. In the absence
of damping there are several forms of degeneracies present, all appearing for
light propagating in two particular configurations. For light propagating in the
Faraday configuration there are two generalised quadratic Weyl points between the
transverse polariton modes. These quadratic Weyl nodes have a topological charge
of zero. Additionally in this configuration there are four Weyl points between
each of the transverse polariton solutions and the longitudinal polariton solutions.
These Weyl points have a topological charge of ±1. For light propagating in the
Voigt configuration there are two degeneracies between the transverse polariton
solutions. These degeneracies are extended rings in the kz = 0 plane. When
dissipative effects are included, we found that the Γ = 0 degeneracies become
exceptional points which move in (θ, ω) space as Γ is varied. Since these itinerant
degeneracies occur at non-zero θ they are necessarily rings of exceptional points.
The largest amount of exceptional rings occurs in a very low damping regime and
as the strength of damping is increased pairs of exceptional rings come together and
annihilate. Above a certain threshold of dissipation, all of the rings of exceptional
points disappear.
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Chapter 7

Conclusions and Future Directions

In this thesis, we have discussed several topological aspects of photonic systems
that can be realised by exploiting optical anisotropy. Here we provide a brief
summary of the work, put the work in the context of the wider field of topological
photonics and suggest some possible future directions to be explored.

As a first study, we characterised closed surfaces in wavevector space by a
topological invariant called a Chern number. The materials which we consid-
ered were biaxial, optically active dielectrics which were either homogeneous
or periodically patterned. We showed that these materials can possess gapped,
i.e. non-degenerate, and topologically non-trivial index surfaces. This approach
is novel as it does not rely on a specific form of lattice geometry, but rather on
the conical intersections generically present in the index surfaces of biaxial materials.

These theories of topologically non-trivial optical systems concerned photonic
semi-metals with topological bands, rather than photonic insulators, which possess
a complete band-gap. As such, the question of the bulk-boundary correspondence
for these photonic semi-metals is somewhat more complicated. We therefore chose
to study the effect that the closing of the band-gap has on edge state formation in
systems which have abrupt terminations and/or interfaces. The insights from this
analysis allowed a parameter regime where partial edge states of a photonic crystal
model to be identified.

Our final investigation concerned the quasi-particles resulting from the strong-
coupling of light to matter excitations in bulk semiconductors. When a magnetic
field is applied to a bulk direct-gap zincblende semiconductor, the magneto-exciton-
polariton dispersion relations which follow are rich in topological features. In
the absence of dissipative processes, these dispersions display isolated Weyl point
degeneracies as well as extended ring degeneracies. When dissipation is introduced,
these degeneracies become rings of exceptional points.

The promise of optical anisotropy in realising topologically non-trivial photonic
systems is considerable. Here, we have addressed several diverse systems with
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the common theme that being able to control and manipulate the propagation and
polarisation characteristics of incoming light using anisotropy can have significant
topological implications. Elements of this work should be considered as tools
in a larger toolbox that allows the implementation of everything from effective
spin-orbit coupling to synthetic magnetic field for photons, in order to explore
myriad forms of topological order.

There are many possible extensions to the work presented in this thesis. An
interesting extension to the studies carried out in chapter 2 would be to derive the
propagator Hamiltonian of section 2.6 without using any of the approximations
adopted in this thesis. Preliminary work in this regard has suggested that the
resulting Hamiltonian, despite possessing real eigenvalues, is non-Hermitian. If
this is indeed the case, then it would be interesting to assess whether signatures
of this non-Hermitian Hamiltonian would have observable consequences for the
propagation of light.

Our work in chapters 3 and 4 has shown that anisotropic photonic crystals have
the potential to produce topologically non-trivial bandstructures. In chapter 5 we
discovered that despite being topologically non-trivial the theories of chapters 3
and 4 were not particularly well suited to displaying edge features. This limitation
was due to the theories lacking a complete photonic band-gap in the topologically
non-trivial parameter regime. We therefore suggest that future theories concerning
the topological invariants of the bandstructures of anisotropic photonic crystals
should focus on both the topological invariants and realising a complete band-gap
from the offset.

A worthwhile avenue of exploration to extend the work of chapter 6 is to
investigate the topological phases of bulk magneto-exciton-polaritons subjected
to a periodic potential. Various 2D or 3D effective periodic potentials could be
implemented, opening up new possibilities. In the case of 2D effective potentials,
owing to the extra features of bulk dispersion relations, it may be possible to
achieve richer topological phase diagrams than those of microcavity systems [34–36,
176]. These diagrams could be richer in the sense that they have higher values of
topological invariants which have already been realised in microcavity settings, or
open the possibility of non-zero invariants as yet unrealised in 2D. For 3D effective
periodic potentials, we may focus on intrinsically three-dimensional topological
effects. The bulk may, therefore, provide the platform for 3D topological insulators,
Weyl semi-metal phases or open Fermi arcs in momentum space for polaritonic
bandstructures.

In a more general sense, topological photonics has many interesting pathways to
explore. Beyond utilising anisotropy alone the incorporation of absorption and/or
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non-linearity could allow myriad intriguing possibilities.
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