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Abstract

This thesis studies Bose-Einstein condensation (BEC) of microcavity exciton-polaritons. BEC

is a quantum phase transition, whereby a system spontaneously develops coherence, allowing

quantum mechanical effects to be visible on macroscopic scales. Excitons are the bound

states of an electron and a hole in a semiconductor. Microcavity polaritons are quasiparticle

arising from the strong coupling of excitons to radiation modes confined in a microcavity – a

cavity on the scale of the wavelength of light.

Microcavity polaritons decay into external photons, typically in a few picoseconds. Thus,

the polariton condensate is a nonequilibrium steady state, maintained by a balance between

radiative decay and external pumping. One consequence of this nonequilibrium nature is that,

whereas in equilibrium only the lowest energy single-particle state can be macroscopically

occupied, for polaritons large occupations can build up in other orbitals. Furthermore, the

condensation can occur in several orbitals simultaneously, enabling the study of interacting

macroscopic quantum states.

In this thesis, we build a theory for the dynamics of the density matrix describing a

multimode polariton condensate. We develop the theory of saturable pumping which we

supplement with standard open quantum system decay. Our theory also includes resonant

polariton-polariton interactions within the condensate modes. Our generic few-parameter

model for the system leads to a Lindblad equation which we use to obtain the steady-state

population distributions, and the time-dependent first and second-order coherence functions,

in such a multimode condensate. We solve the population distribution detailed balance forms

either directly or with approximate analytical solutions. The first-order coherence functions

are obtained either directly, with numericals, or with an approximate linearized Fokker-Planck

approach and a simpler static limit expression. Among the second-order coherence functions,

we consider the dephasing in the intensity oscillations caused by beating between the emission

from different condensate modes. Such oscillations are a form of Josephson oscillations.

As a specific application, we consider a polaritonic Josephson junction, formed from a

double-well potential, in the Rabi regime. We obtain the population distributions, emission

lineshapes and widths (first-order coherence functions) and predict the dephasing time of the

Josephson oscillations. Our theory predicts new multimode effects in the linewidth which are

due to cross-correlations in the fluctuations of the population distribution.
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Chapter 1

Introduction

The pursuit and description [Alle38, Penr51] of macroscopic quantum phe-

nomena has captured the interest of generations of physicists. Beyond the tra-

ditional models of superfluidity and Bose-Einstein condensation (BEC) in cold atomic

gases, condensation in other, more subtle, quasiparticle systems [Mosk62, Demo06] presents

a rich panel of theoretical challenges and phenomena. Among those are microcavity po-

laritons. These quasi-particles, first described by Hopfield [Hopf58] in the context of bulk

semiconductors, are eigenstates of the light-crystal Hamiltonian, combining a mixture

of photons and excitons – a bound state of an electron in the conduction band and a

hole in the valence band, the quanta of excitation in semiconductors. Polaritons were

made more readily observable and manipulable through the perfection of molecular

beam epitaxy techniques leading to the observation by Weisbuch and co-workers [Weis92]

of the splitting of two polariton modes for a two-dimensional quantum well inside a

planar microcavity.

Microcavity polaritons, maintaining integral total spin from their two counterparts’

bosonic origin, as well as inheriting a very low mass (∼ 10−4me) from their photonic

component, have arisen as a strong model for Bose-Einstein condensation. Although

the textbook concept of BEC (Appendix A.1) had to be broadened to consider particles

with lifetimes much shorter than their thermal relaxation time, the signature of a

macroscopic occupancy of the lowest energy state (k‖ ≈ 0) in the light escaping the

cavity is now commonly recognized [Dang98, Love08] (Fig. 1.1).

The new condensate presents a critical temperature much higher than in the alkali

atoms’ condensate. It requires pumping and exhibits decay, and the large excitonic

Bohr radius results in interparticle interactions playing an important role in the physics

of polariton condensates. These three effects, pumping, decay, and interactions, have
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Figure 1.1: Schematic drawing of multimode microcavity polariton condensation. Excitons reside in
a quantum well (the planar structure in the center), at the antinode of a light standing wave formed
by two distributed Bragg mirrors (on both sides). Excitons and photons couple and hybridize to form
light mass polaritons. These can condense, through stimulated scattering, into single particle orbitals
formed by disorder in the cavity. The signature of condensation is seen though the intensity of the
light exiting the cavity near normal incidence. The polariton condensate is a nonequilibrium steady-
state, maintained by a balance between the radiative decay and the external pumping. Because of
their nonequilibrium nature multimode condensates can occur (a two modes condensate is depicted
here).

been used to make predictions of the linewidth of the coherent light emitted from the

cavity [Porr03, Whit09]. This linewidth is predominantly caused by the fluctuations in the

number of polaritons in the condensate which, through particle interactions, causes the

energy of the line to fluctuate [Whit09].

One further consequence of the nonequilibrium nature of polariton condensates

is that, whereas in equilibrium only the lowest energy single-particle state can be

macroscopically occupied, for polaritons large occupations can build up in other or-

bitals. Furthermore, the condensation can occur in several orbitals simultaneously,

enabling the study of interacting macroscopic quantum states. The presence of sev-

eral highly occupied states of a trapping potential can be seen directly in optical

emission spectra [Tosi12, Galb12], and inferred from the presence of Josephson oscilla-

tions [Lago10, Abba13]. Such multimode condensation can also occur in spatially extended

states, in particular in the Bloch states of one [Lai07] and two [Masu12] dimensional lattices.

The in-plane potentials that control these condensates can arise from growth induced

disorder in the Bragg mirrors [Lang99, Love08, Lago10] , metal-film patterning of the mirror

surfaces [Lai07, Masu12], and interaction effects [Tosi12], as well as from the use of non-planar

structures such as micropillars and photonic molecules [Galb12].

The theoretical modeling of these nonequilibrium condensates has been performed
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quite extensively within the mean-field approximation, using an augmented Gross-

Pitaevskii description [Wout07, Keel08, East08, Rodr13] to treat the dynamics of the highly

occupied orbitals, and to obtain the excitation spectra. Mean field solutions of micro-

scopic models using the nonequilibrium Green’s function formalism [Szym07] have also

been developed. The Langevin [Tass00, Haug12, Wout09], Fokker-Planck [Whit09, Schw10] and

density matrix [Laus04, Verg06, Schw08] frameworks have been used to derive the quantum

statistics of the condensate, and hence the first and second-order coherence functions of

the optical emission [Porr03]. While mean field theories are already able to treat several

highly occupied orbitals [East08, Wout08a], full quantum treatments of this regime have yet

to be formulated.

In this thesis we develop a density matrix approach for multimode polariton con-

densates, in which several single-particle orbitals are driven by several reservoirs. This

theory treats both quantum and nonequilibrium fluctuations, and allows photon statis-

tics and emission spectra to be calculated. We first derive a Lindblad equation for two

condensate modes (highly occupied orbitals) pumped by a single reservoir of higher

energy particles, using a treatment similar to that of a two-mode laser [Sing80], and then

extend the result to treat several reservoirs pumping several condensates. This gives

a generic model for the quantum dynamics of a nonequilibrium polariton condensate,

with the complexity of the reservoirs captured in a few known parameters. We show

how the theory can be used to obtain the population distribution of the condensate

orbitals, both numerically and analytically. We also show how it may be used to calcu-

late both first-order and second-order coherence functions. The first-order coherence

function, 〈a†1(τ)a1〉, is the Fourier transform of the emission spectrum from one con-

densate orbital. We obtain it in three different ways: (i) direct numerical solution of

the Lindblad form, (ii) making a continuum approximation to obtain a soluble partial

differential equation, related to the Fokker-Planck equation [Kamp07, Whit09], and (iii) a

cruder static limit approximation, which neglects the dynamics of the populations, but

is generally valid near threshold [Love08, Whit09]. Among higher order correlation func-

tions we consider those of the form 〈a†1(τ)a2(τ)a†2a1〉, which relate to the dephasing in

the intensity oscillations caused by beating between the emission from different con-

densate modes. Such oscillations are a form of Josephson oscillations, which have been

observed experimentally [Lago10, Abba13]. We analyze their dephasing both numerically

and in the static limit.

As a specific application of our theory, we study fluctuations in a polariton Joseph-

son junction, formed in a double-well potential [Lago10], using a tight-binding model in

which each well is pumped by a corresponding reservoir. Diagonalizing the Hamilto-

3



1.1. GENERAL CONTEXT AND ESSENTIAL BACKGROUND

nian leads to symmetric and antisymmetric orbitals when the wells are degenerate. We

obtain the population distribution in these orbitals, calculate the emission lineshapes

and widths, and predict the dephasing time of the Josephson oscillations in the quasi-

linear, strong trapping regime. We predict large fluctuations in the populations when

the wells are tuned to resonance, due to the presence of a soft density mode, and show

how the emission is broadened by intermode and intramode interactions.

In the remainder of this chapter we cover the context and the essential background

of microcavity polariton condensation. We then establish some of the theoretical base

from which the thesis develops. Finally we draw links to other theoretical approaches

which are being used to treat polariton condensation and we close the chapter by

detailing the layout of the remainder of the thesis.

1.1 General Context and Essential Background

Here we cover the general relevance of this work and we review the subjects of quantum

microcavities, microcavity polaritons, condensation in general and polariton conden-

sation in particular. This will provide us with the context and essential background

before starting to engage with the theory.

1.1.1 Relevance of the Work in this Thesis

This work on multimode polarition condensates registers within a broader context of

studying and manipulating strongly correlated many-bodies. On a fundamental level,

polariton condensation can be traced back to the first proposition for Bose-Einstein

condensation of quasiparticles in the 1960’s when Moskalenko proposed that excitons

could occupy a much reduced phase space and launched the pursuit of exciton conden-

sation at the experimental level [Mosk62]. The large effective mass of excitons has made

this pursuit very difficult and to this day there is no clear demonstration of exciton

condensation [Mosk00]. In the meantime, remarkable strides had been make with the trap-

ping and cooling of atomic alkali species and the first Bose-Einstein condensate of cold

atom was demonstrated in 1995, earning the 2001 Nobel prize to its discoverers [Kett08].

By then, the solid state physics community had turned to polaritons, due its much lower

effective mass, to demonstrate BEC in solids. The first example of polariton condensa-

tion can arguably be dated back to the experiments performed by Dang et al in 1998,

[Dang98, Keel07], although some prefer to point to a 2006 article in Nature [Kasp06] for

4



1.1. GENERAL CONTEXT AND ESSENTIAL BACKGROUND

an early example of polariton condensation. During the early years of polariton con-

densation, researchers in the field had to measure up with colleagues working with cold

atoms by demonstrating that they were indeed studying a macroscopic quantum phe-

nomenon and the early literature is reminiscent of this desire of the community to cast

itself within the realm of equilibrium physics [East01, Kasp06]. Now, the relevance of work-

ing far from equilibrium can be fully exploited. The polariton system also presents the

advantage of being easily observable through the light exiting a microcavity whereas the

measurement process destroys the cold atom condensate. The nonequilibrium nature

of polariton condensates adds a whole new portfolio of dynamical phenomena [Caru13],

out of which the formation of multimode condensates occupies center stage. This work

embraces fully the nonequilibrium nature of polariton condensation and builds upon it

the first quantum theory of multimode polariton condensation.

From a practical point of view, polariton condensation experiments are conducted

in the same quantum microcavities structure as vertical cavity surface emitting lasers

(VCSEL); the later were first developped in the late 1970’s and demonstrated at room

temperature in 1988 [Koya88, Skol98]. It is therefore no surprise that the first idea

which comes to mind when asked about applications for polariton condensation is a new

source of coherent light. Indeed reports of room temperature polariton condensation

are steadily appearing in the literature [Chri07, Lu12, Li12] and it is probably safe to say

that it won’t be long before commercial products based on electrically pumped polari-

ton condensates become available. The appeal for polariton condensation as a coherent

light source is due to the fact that stimulated scattering occurs between higher energy

polaritons and condensate polaritons instead of electrons recombining with holes and

generating laser photons. Through this, lower thresholds can be achieved, enabling

devices with lower power consumption. Another application for polariton condensates,

this time within the umbrella of quantum information processing, is through the manip-

ulation of the condensates. The fast switching properties of polaritons and their large

nonlinear response makes them good candidates for the realization of many algorithms

in quantum information science [Ball13] and in particular continuous variable quantum

computation [Brau05]. Although the realizations which have been proposed so far for

such computations involve the use of the upper and lower branches of the polariton

dispersion [Liew11, Demi14], operations can also be envisaged by using multimode conden-

sates. The work in the thesis can therefore become a useful tool for the development

of such theories and applications.

Having discussed the general context of this work, we now continue with a review

of underlying physics of polariton condensation.
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1.1. GENERAL CONTEXT AND ESSENTIAL BACKGROUND

1.1.2 Quantum Microcavities

Quantum microcavities provide the trapping of light and the control of its coupling with

electronic transitions in matter [Vaha03, Kavo07]. They consist of a quantum confinement

structure where the excitons reside, and of a cavity which traps light (Fig. 1.1). Of

the different confinement methods available, the planar semiconductor microcavities

around which our model is developed employ distributed Bragg reflectors (DBR). The

matter component consists of quantum wells embedded in the region where the field

intensity is the highest in the cavity.

Distributed Bragg reflectors are formed by multiple repeats of high, nH , and low,

nL, refractive index layers, each of thickness λ/4, grown on either side of a cavity [Skol98].

The interference of reflected and refracted waves across the structure creates a spec-

tral region where light is reflected across a range of frequencies, known as the stop

band. This traps the light into standing wave modes inside the cavity. Appendix A.2

determines the position of the stop band and its reflectivity, |r| = 1, in semi-infinite

DBRs. Thin, two-dimensional, smaller bandgap, regions are placed at the antinode

of the cavity mode. They form the quantum wells where excitonic – Coulomb bound

electron-hole states – excitations occur. The cavity resonance matches the energy of

an exciton in the quantum wells.

There are two main types of semiconductors microcavities used in experiments. One

is grown out of type III-V semiconductors, e.g. Al0.13Ga0.87As/AlAs (nH/nL) mirrors,

In0.13Ga0.87As QWs and a GaAs cavity [Skol98]. The other uses II-VI semiconductors,

e.g. Cd0.75Mn0.25Te/Cd0.40Mg0.60Te (nH/nL) mirrors, CdTe QWs, Cd0.80Mn0.20Te cav-

ity and Cd0.88Zn0.12Te substrate [Dang98]. Type II-VI cavities possess stronger exciton

binding energy and therefore show a larger Rabi splitting than type III-V cavities (see

Sec. 1.1.3). CdTe-based microcavities tend however to have higher lattice-mismatch

stress which increases the occurrence of misfit dislocations and leads to higher photonic

disorder [Lang02, Keel07]. Typically a large number of quantum wells (& 15) are embedded

in the cavity.

1.1.3 Microcavity Polaritons

Having seen how microcavities are made, we now seek a model description of the quasi-

particles they harbour – polaritons. As a first step, we examine their two components

separately – quantum well excitons and cavity photons. Then we bring in the coupling

between them and derive the polariton dispersion relations. Finally we discuss the
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1.1. GENERAL CONTEXT AND ESSENTIAL BACKGROUND

transition from strong coupling to weak coupling regime by introducing phenomeno-

logically the decay of polaritons. For simplicity, the formalism is developed for an

infinitely extended uniform system, i.e. in the thermodynamic limit. We set ~ = 1.

Exciton Component

Excitons are the lowest energy excited state of semiconductors. They consist of an

electron in the conduction band bound to a hole in the valence band, and are created

by optical excitation slightly below the bandgap energy. In deriving a field operator

and dispersion relation for them, in the envelope approximation [Corz93], we use the

following Hamiltonian, along with the electron and hole Bloch functions,

H =
P2

2M︸︷︷︸
HM

+
p2

2µ
− e2

4πεoεr|r|︸ ︷︷ ︸
Hµ

, (1.1)

1√
V
eike·reuke(re),

1√
V
e−ikh·rhu∗kh

(rh), (1.2)

and the bandgap energy, Eg. The presence and effect of all the other electrons and cores

in the system is taken into the dielectric constant, εr, and the electron and hole effective

masses, me,mh. The excitonic envelope makes use of a canonical set of variables, and

combinations of electron and hole effective masses [Gasi74],

r′ = mere+mhrh
me+mh

center of mass r = re − rh relative distance

M = me +mh total mass µ = memh
me+mh

reduced mass

k = ke + kh total momentum k = mhke−mekh

me+mh
relative momentum

= αhke − αekh .

The existence of bound states, i.e. excitons, is due to the Coulomb potential of the

Hamiltonian (1.1). This gives rise to the hydrogen-like exciton (envelope) wavefunction,

and Bohr radius, given by,

(Hµ − En)φn(r) = 0, ao =
4πεoεr~2

e2µ
. (1.3)

The ratio εr/µ makes the exciton Bohr radius much larger (∼ 10/0.05 ∼ 100) than

that of the hydrogen atom. We can associate an exciton, of center-of-mass wavevector,

7



1.1. GENERAL CONTEXT AND ESSENTIAL BACKGROUND

k, with the state vector, |Dk〉,

〈r|Dk〉 =

∫
δr,r′δr, re−rh

[
1

V
eik·r

′
φn(r)uo(re)u

∗
o(rh)

]
dr′ r re rh (1.4)

or, with respect to unbound electron and hole state vectors,

〈ke,kh|Dk〉 = δke+kh,k〈αhke − αekh|φn〉 (1.5)

where |φn〉, 〈r|φn〉 =
∫
δr,rφn(r)dr, is the state vector associated with the internal

structure of the exciton. We have used the lattice functions (1.2) at band edge,

ke = kh = 0, valid for Wannier excitons, where ao is much larger than the lattice

constant. The Bloch functions, containing the unit cell’s electronic structure, provide

the magnitude of excitonic coupling with light.

The rest energy associated with excitons in semiconductors is εo = Eg − En where

En = e2

8πεrεoaon2 is the binding energy. This is supplemented by the standard kinetic

energy term in their dispersion relation,

εk = εo + k2/2M, (1.6)

with k describing the in-plane wavevector of the center-of-mass of our quantum well

exciton. This is shown as the blue dotted line in Figure 1.2.

Figure 1.2: Photon (green) and exciton (blue) dispersion relations with M = 0.25me m = 2.5 ×
10−5me, εo = ωo = 1417.5meV (values taken from [Skol98]).

Since an exciton is a bound pair of fermions, it can be treated approximately as

a boson. To see this, we define a creation operator, D†k|0〉 = |Dk〉, based on free

8



1.1. GENERAL CONTEXT AND ESSENTIAL BACKGROUND

electron-hole pair operators, c†ke
, d†kh

,

D†k e
−iεkt =

[ ∑
ke,kh

〈ke,kh|Dk〉c†ke
d†kh

]
e−iεkt. (1.7)

We then determine the commutation relation of exciton operators from the anticommu-

tation relations of the electron and hole (fermionic) annihilation and creation operators,

e.g. {cke , c
†
k′e
} = δke,k′e :

[Dk, D
†
k′ ]n = δk,k′

∑
ke,kh

δk,kh+ke |〈αhke − αhke|φn〉|2
(
ckedkh

c†ke
d†kh
− c†ke

d†kh
ckedkh

)
= δk,k′

∑
ke,kh

δk,kh+ke |〈αhke − αhke|φn〉|2
(

(1− c†ke
cke)(1− d†kh

dkh
)− c†ke

cked
†
kh
dkh

)
= δk,k′

(
1−

∑
ke,kh

δk,kh+ke |〈αhke − αhke|φn〉|2
(
c†ke

cke + d†kh
dkh

))
= δk,k′

(
1−O(

Nk a
3
o

V )
)
. (1.8)

The first term samples the entire normalized volume whereas the second one samples

the excitonic component of it. At low densities, excitons obey bosonic commutation

rules, [Dk, D
†
k′ ] = δk,k′ , i.e. are composite bosons.

Photon Component

We now obtain a similar, second quantized form and dispersion relation for cavity

photons. As seen in Appendix A.2, the trapped mode inside the cavity penetrates the

distributed Bragg reflector (DBR) with decay constant LDBR/2 ∝ −d/log|λ1|. The

cavity length, Lc, therefore takes an effective length, Leff = Lc + LDBR. In a typical

GaAs/AlAs structures, Lc = λ, and LDBR ∼ (3 − 4)Lc, [Skol98]. The light mode is

therefore more distributed than one would tell by looking at cavity drawings (e.g. Fig.

1.1).

The continuous in-plane wavevector, k‖, adds to the normal wavevector (Lωo = λ)

and gives photon energy,

ωk‖ =
~c
n

√
(2π/Lwo)

2 + |k‖|2 (1.9)

which, with a Taylor expansion and the grouping of the “mass” terms, m = (n/~c)(2π/Lwo),

9



1.1. GENERAL CONTEXT AND ESSENTIAL BACKGROUND

provides a quadratic dispersion relationship,

ωk‖ ≈
c

n

2π

Lwo

(
1 + 1

2
|k‖|2

)
≈ ωo +

|k‖|2

2m
.

(1.10)

This is shown as the green dotted line in Figure 1.2.

To describe the electromagnetic field quantum mechanically, we use the radiation

gauge, where the vector potential, A, and the scalar potential, U , are

∇ ·A = 0 (Coulomb gauge) and U = 0. (1.11)

We also use the dipole approximation, A(r, t) = A(ro, t) ≡ A(t), since the Bohr radius

of the exciton is much smaller than the wavelength of light. We therefore have,

A(r, t) ≡ A(t),

U(r, t) ≡ 0.
(1.12)

The field is quantized [Scul97] and the expression for the vector potential operator be-

comes,

A(t) =
∑
k‖,λ

eik‖·rAk‖ êλ
(
ψk‖,λ e

iωk‖ t + ψ†k‖,λ e
−iωk‖ t

)
, (1.13)

with Ak‖ =
√

c2~
2εoV ωk‖

, and êλ being the unit polarization vector. We shall be working

with matrix elements, and the photon creation and annihilation operators which obey

bosonic commutation relations, [ψk‖,λ, ψ
†
k‖,λ

] = 1.

Exciton-Photon Interaction

The interaction between excitons and photons is now included [Elli57]. In the radia-

tion gauge, the minimal-coupling Hamiltonian satisfies local gauge invariance with the

modification

p2 → (p− eA)2 ≈ p2 − 2eA · p. (1.14)

Here we have used the commutation relation, [p,A] = 0 since ∇ · A = 0, and ne-

glected the two-photon term, A2, on the basis of it having different time dependencies,

ψ†ψ†, ψψ, or being small, ψ†ψ, ψψ†. The matrix elements for this additional A · p term

are calculated pertubatively and give the following matrix element for the coupling be-

10



1.1. GENERAL CONTEXT AND ESSENTIAL BACKGROUND

tween the ground state and a single exciton state

gk =
eAk

m∗Ω
δkk‖〈uc | êλ · p | uv〉, (1.15)

where Ω is the unit cell volume and m∗ = µ is the reduced exciton mass (since we

used the lattice functions at band edge, (1.4)). While the lattice function provides the

strength of the matrix element, momentum conservation rules arise from the envelope

function. The delta function, emerging in (1.15) from the calculation of the matrix

element, is in fact a conservation of in-plane momentum in the energy transfer between

photons and excitons. In-plane momentum conservation also translates in a one-to-one

correspondence between the polariton states and the angle at which photons escape

the cavity (see Sec. 1.1.5). In addition to enhancing the field intensity, this is another

advantage provided by the use of semiconductor microcavities over bulk systems.

Polaritons

Grouping excitons, photons and their interaction together, letting k be short for k‖, λ

and making use of the rotating wave approximation [Scul97], the complete field, exciton

and interaction Hamiltonian we shall be using can now be compactly expressed as

H =
∑
k

[
ωkψ

†
kψk + εkD

†
kDk + gk(D†kψk +H.c.)

]
, (1.16)

where the first term is the photon energy, the second term is the exciton energy and

the term proportional to gk is the coupling between photons and excitons. We observe

that excitons and photons are not eigenstates of the Hamiltonian derived so far. We

therefore proceed to diagonalize it and determine its eigenvalues based on the disper-

sion relations presented above (1.6, 1.10). Upper and lower polariton operators are

introduced (
p1
k

p2
k

)
=

(
cos(θk) − sin(θk)

sin(θk) cos(θk)

)(
ψk

Dk

)
, (1.17)

where one must choose

tan(2θk) =
2gk

ωk − εk
, (1.18)

for the Hamiltonian to become diagonal. The upper and lower polariton dispersion

relations are then found to be

E1,2
k =

1

2

[
(ωk + εk)±

√
(ωk − εk)2 + 4g2

k

]
. (1.19)
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1.1. GENERAL CONTEXT AND ESSENTIAL BACKGROUND

These are plotted with solid lines in Figure 1.3. The shift in energy between the upper

and the lower branch at zero wavevector, ωo = εo in (1.19), is called the Rabi splitting,

Ω = 2g.

Figure 1.3: Solid lines: Upper and lower cavity polariton dispersion relations with M = 0.25me

m = 2.5 × 10−5me, εo = ωo = 1417.5meV, g = Ω/2 = 3.5meV (values taken from [Skol98]). Dotted
lines: Photon (green) and exciton (blue) dispersion relations in the absence of coupling.

The Hamiltonian (1.16) is now diagonalized with upper and lower polariton modes,

H =
∑
k

[
E1

k p
1†
k p

1
k + E2

k p
2†
k p

2
k

]
. (1.20)

In this thesis, we work solely with lower branch polaritons. The upper branch lies far

above all the experiment energies that are employed and exhibits lifetimes that are

much shorter due to the photon component within it being larger.

Strong Coupling

We developed the theory so far without considering the role of decay outside the cavity,

i.e. the escape of photons, and therefore polaritons, due to the finite reflectivity of the

mirrors. Having a high Q-factor (see Appendix A.3) enables the system to be in a

strong coupling regime and to have two polariton branches, as shown in Figure 1.3.

From a phenomenological perspective, strong coupling manifests itself by two dips in

the reflectivity spectra of the microcavities, as shown in Figure 1.4a. It is seen in mul-

tiple optical systems, for example with single quantum dots embedded in Fabry-Perrot

micropillars [Vaha03] and in photonic crystals [Thon09]. It has also been observed in the ra-

diative coupling of dilute vapor with the external evanescent field of whispering cavity

mode in fused silica microspheres [Vern98]. In the types of systems we are using, strong
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1.1. GENERAL CONTEXT AND ESSENTIAL BACKGROUND

coupling can also be observed in an “unfolded microcavity” where the quantum wells

are embedded along the DBRs [Aski11], and in bulk microcavities [Tred95, Faur08], where the

active medium is the whole cavity and the exciton center of mass motion, k, acquires

an additional, quantized degree of freedom in the growth direction.

Figure 1.4: (a) The strong coupling between microcavity photons and quantum well excitons is
shown in the two polariton absorption dips in the reflectivity spectrum. (b) (see Sec. 1.1.5) The large

polariton ground state occupancy above threshold (50kW/cm
2
) is seen in the photoluminescence

spectrum (from [Dang98]).

The strong coupling regime [Savo95], where polaritons form, takes place when the

exciton and cavity linewidths are smaller than the Rabi splitting, Ω. In other words,

strong coupling occurs when the decay of polaritons into the continuum outside the

cavity and the dephasing due to photonic and excitonic inhomogeneities are smaller

than the coupling [Skol98, Keel07, Deng10]. The transition from strong coupling to weak

coupling can be observed phenomenologically by introducing a damping term, iγ, to

the photon energy in (1.19), ωk → ωk+iγ, and taking Re(E1,2
k=0). As seen in Figure 1.5,

when γ reaches the Rabi splitting energy, Ω = 2g, the two branches merge together,

exemplifying diagrammatically the transition from strong coupling to weak coupling

regimes.

A full treatment of the transition from strong to weak coupling [Savo95] can be ob-

tained semiclassically with the use of transfer matrices (see Appendix A.2) where the

cavity transmission and reflection coefficients are used in conjunction with a transfer

matrix for the quantum wells which includes both the nonradiative exciton broadening

and radiative decay of excitons. A full quantum treatment is also possible [Savo95]. In

this case, a Hamiltonian similar to (1.16) is used, with the light modes expressed as left

and right traveling waves, rather then standing waves, and transmission and reflection

coefficients for them also obtained form transfer matrices.
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1.1. GENERAL CONTEXT AND ESSENTIAL BACKGROUND

Figure 1.5: Transition of the normal, k = 0, cavity modes from the strong coupling regime, where
the spectrum is split due to the interaction, to the weak coupling regime, with γ = [0 ·g, 4 ·g] and
g = 3.5meV. When γ reaches 2g, the system enters the weak coupling regime.

1.1.4 Quantum Condensation

The statistics of bosons is such that degenerate conditions carry higher relative statis-

tical weight than in the classical and fermionic cases. In certain situations, this is so

dominant that a break of symmetry occurs and a very large number of particles end up

in a single particular state; in other words the system “condenses”. While condensation

is primarily a statistically driven effect, interactions also play a role [Legg01]. Thermal

BEC of the ideal Bose gas in 3D is derived in Appendix A.1; from the derivation we

retain that for a given temperature,

Tc =
2π~2

kBm

(
n

g3/2(1)

)2/3

, g3/2(1) = 2.612, (1.21)

the Bose distribution can only accommodate a finite density, n → nsat. Once the

saturation density has been reached, all the exceeding particles end up in the ground

state. They form a large occupancy coherent state. In the thermal case, the only

property that influences the density of states, once dimensionality has been fixed, is

the mass, m, which then appears in the critical temperature, Tc. Figure 1.6 features

the phase diagram of thermal BEC.

In one and two-dimensions, the density of states in the thermodynamic limit or

hard-wall continuum is such that the Bose distribution diverges as µ → 0 (1D) or

only becomes finite with both Tc, µ→ 0 (2D), and any density can be accommodated

within it (expressed in different form in [Hohe67]). Thus the non-interacting gas never
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1.1. GENERAL CONTEXT AND ESSENTIAL BACKGROUND

Figure 1.6: Phase diagram of Bose-Einstein condensation occurring in 3D. For densities which are
on the right of the blue line a condensate forms.

condenses (1D) or only condenses at T = 0 (2D). This is not the case however for a gas

of Bose particles confined in a power-law potential [Bagn91]. The one dimensional ideal

Bose gas can condense with a potential up to harmonic power. The 2D Bose gas can

condense for any finite potential power, as shown in Figure 1.7.

Figure 1.7: Condensation in one and two dimensions of an ideal Bose gas confined in a power-law
potential with power η. In one dimension, condensation is possible up to a harmonic potential, η = 2.
In two dimensions, condensation is possible for any finite power potential, with the zero temperature
thermodynamic limit being recovered at η →∞ (from [Bagn91]).

We now introduce the concept of off-diagonal long range order, ODLRO, arguably

the most important property of macroscopic quantum objects [Penr51, Yang62]. We follow

Pitaevkii and Stringari in this derivation [Pita03]. We seize the opportunity to also
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1.1. GENERAL CONTEXT AND ESSENTIAL BACKGROUND

introduce density matrices. Let the one-body field density matrix be defined as

n(r, r′) = N

∫
dr2...drNΨ∗(r, r2, ...rN)Ψ(r′, r2, ...rN) (1.22)

where Ψ(r, r2, ...rN) is the N -body wavefunction which is appropriately symmetrized

to take into account the indistinguishability of Bose particles. The integration is carried

over N−1 variables. The one-body density matrix can also be written with Heisenberg

picture field operators,

n(r, r′) = 〈Ψ̂†(r)Ψ̂(r)〉 (1.23)

which can be expressed as

Ψ̂(r) =
∑
i

φiai. (1.24)

Here we used the orthonormal single-particle wavefunctions, φi, of the system and the

annihilation (creation), ai (a†i ), operators which remove or add particles from these

orbitals. This formulation removes the burden of symmetrization in the many-body

wavefunction and obeys the commutation relations,

[ai, a
†
j] = δij, [ai, aj] = 0. (1.25)

The field operator can also express the momentum distribution

n(p) = 〈Ψ̂†(p)Ψ̂(p)〉 (1.26)

where Ψ̂(p) = (2π~)−3/2
∫

dr exp(ip · r/~)Ψ̂(r). The momentum space density matrix

can therefore be expressed as

n(p) =
1

(2π~)3

∫
drdr′ n(r, r′)exp(ip · (r − r′)/~)

=
1

(2π~)3

∫
dRdsn(R +

s

2
,R− s

2
)exp(ip · s/~),

(1.27)

where s = r − r′ and R = (r + r′)/2. For non-condensed systems, T > Tc, the

momentum distribution is smooth so n(s) vanishes when s → ∞, Figure 1.8. In the

case of a condensed system, T < Tc, the momentum distribution has a singular behavior

n(p) = Noδ(p) + ñ(p) (1.28)

where ñ(p) expresses the non-condensed component of the system. The inverse Fourier

transform, n(s), see (1.27), therefore remains at a finite value at large separations:
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n(s)s→∞ → no. This feature is called ODLRO [Yang62]. Every local part of the conden-

sate is linked with every other local part. The one-body density matrix therefore has

a non-vanishing off-diagonal value at large separation, Figure 1.8.

Figure 1.8: Above Tc, the off-diagonal density matrix vanishes at a certain distance, s. Below Tc,
the density matrix shows ODLRO and remains at a finite value, no, as s→∞.

Lineshape and coherence functions when treated in the full quantum description

appeal to ODLRO through the use of off-diagonal elements.

1.1.5 Polariton Condensation

Polaritons are four orders of magnitude lighter than excitons (twice the photons effec-

tive mass) and seven orders of magnitude lighter than hydrogen atoms. This places

them in the ideal position to exhibit Bose condensation. The polariton system is not

thermal however; it is a steady state pumped and decaying system (see Sec. 1.2.3).

Nevertheless polariton condensation has been demonstrated in multiple types of quan-

tum microcavities [Dang98, Bali07, Love08], as shown in Figures 1.4b,1.9A, and is now show-

ing promising prospects as a new source of low threshold coherent radiation [Lu12, Li12],

Figure 1.9B.

In the experiments on which our model is based [Love08, Kasp08, Deng10], a laser is shone

on the cavity at high incidence angle (k‖ � 0) and with energy much higher (∼
100meV) than the lower polariton ground state (~ω � ~(ωk − gk)), creating high

k polaritons. These injected polaritons relax by phonon emission and thermalize by

polariton-polariton scattering to lower energy and wavevector, k, and loose the laser

coherence in the process [Deng10]. They then start to experience strong coupling, thereby

gaining lower mass and occupying a reduced density of states. At this point, sponta-

neous symmetry breaking occurs, as stimulated polariton-polariton scattering induces
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1.1. GENERAL CONTEXT AND ESSENTIAL BACKGROUND

Figure 1.9: A - In stress induced experiments, a pin exerts pressure on the cavity which diminishes
the bandgap and therefore lowers the polariton ground state energy at that position. The condensate is
shown to move from the region where it is created (left on the contour plot) to the bottom of the stress
induced trap (right on the contour plot) demonstrating that the condensate coherence is spontaneous
and independent of laser coherence (from [Bali07]). B - Polariton lasing has been observed at room
temperature in large (∼ 60 meV) exciton oscillator strength ZnO bulk microcavities (from [Li12]).

a macroscopic occupation of the ground state, k ≈ 0, of the cavity. Condensate parti-

cles will then decay into radiation escaping at near normal incidence from the cavity,

k‖ ≈ 0, in a narrow range of energies. Such emission is observed above a threshold

pump power, analogous to the critical density in the equilibrium case [Deng03].

The stimulated scattering into, and decay out of, the condensate mode need to

balance each other at threshold in order for condensation to occur. The bosonic nature

of final state stimulation into the N -polaritons composite object enhances scattering by

a factor of 1 +N (
√

1+N for amplitude), [Deng10, Keel07]. The scattering term itself

is composite, having a Coulomb contribution as well as a subtle Pauli exclusion term

arising from the indistinguishability of the electrons and holes within two “separate”

excitons [Comb07]. The spin of the polariton also plays a role on the scattering term
[Shel10]; parallel spin excitons have an interaction strength one order of magnitude

stronger than antiparallel spin excitons [Magn10, Roch00]. A simplified rate equation which

includes condensate and reservoir radiative losses as well as scattering rates can be

derived, from which the critical pump power for condensation can be estimated [Porr02].

The above picture is based on the dispersion relation, shown in Figure 1.3, from an

ideal microcavity with perfect translational symmetry. However in reality, the conden-

sate experiences lateral trapping which gives rise to single particle states, φj, in the cav-

ity. The potentials which define φj can stem from (i) cavity-based photonic [Lang02, Savo07]

and, to a lesser extent, excitonic [Savo07] disorder in the microcavity, Figure 1.10A, (ii)
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1.1. GENERAL CONTEXT AND ESSENTIAL BACKGROUND

Figure 1.10: A- Multimode polariton condensate arising due to the photonic effective potential
caused by defects in the Bragg mirrors. The spectrally and spatially resolved polariton emission is
imaged at k‖ ≈ 0 (a) below threshold and (b-d) above threshold (reproduced from [Love08]). B -
Multimode Condensate in a harmonic trap formed by repulsive interaction with reservoir polaritons.
The two pump beams form reservoirs with a harmonic density profile. The multimode condensate can
be resolved both spatially and spectrally (reproduced from [Tosi12]).

photonic [Masu12] and excitonic [Galb12] patterning of the cavity or (iii) reservoir exciton

repulsion [Tosi12], Figure 1.10B.

Photonic disorder has been observed to separate the condensate into spatially (and

spectrally, the zero of energy varies with the modes) resolvable populations, as depicted

in Figure 1.10A. This type of disorder is due to layer width fluctuations in the Bragg

mirrors and crystal dislocations [Keel07], as mentioned earlier in Section 1.1.2. These

generate an effective potential whose low-energy states will be comparable in size to

the wavelength of light, since disorder on shorter scales is averaged away [Lang02]. If

the disorder is strong enough, the low-energy states will be spatially and energetically

separated.

Our model shall refer to these different condensate populations/modes, and the

description of the replenishing of each of them as well as the interaction between them

shall be one of the main focuses of this work. The other focus is to determine the

population distributions and coherence properties of the modes based on the model.

We highlight that interactions are present within the condensates. They originate

from the excitonic component and therefore share the same physical origin as stim-

ulated scattering which forms the condensates. They generate the main source of

condensate decoherence [Whit09], i.e., a finite width to the spectral line in experimen-

tal data. The first order coherence function, g(1)(τ), or inverse Fourier transform of

the emission linewidth, provides access to it. Figure 1.11a shows the measurement of
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1.1. GENERAL CONTEXT AND ESSENTIAL BACKGROUND

Figure 1.11: a) First order coherence decay of a mode within a multimode polariton condensate. b)
Coherence time, tc, of a mode within a multimode polariton condensate for different pumping powers
around and above condensation threshold (reproduced from [Love08]).

g(1)(τ) performed by Love et al [Love08] on a multimode condensate. They also measured

the coherence time, tc, i.e. the time for which g(1)(τ) = e−1, for different intensities

of pumping power, shown in Figure 1.11b. Above threshold, the coherence time of a

multimode condensate is of the order of hundreds of picoseconds, much longer than

the polariton lifetime (a few picoseconds) and therefore arises from the nonequilibrium

nature of the condensate. Our theory will allow to calculate coherence functions and

decay times.

Figure 1.12: Time-resolved measurement of the emission along a line cutting through a two-mode
condensate in a double-well. The experiment shows Josephson oscillations (reproduced from [Lago10]).

Lastly we mention Josephson oscillations, one of the most striking effects which

arises from multimode polariton condensation. Josephson oscillations occur when two
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macroscopically occupied states are separated by a tunneling junction and have a po-

tential difference between them. An oscillating current between the two states can then

be observed. These oscillations have indeed been observed in a multimode polariton

condensate [Lago10], as shown in Figure 1.12. As an example of second order coherence,

we will calculate the coherence decay of Josephson oscillations in a double well.

1.2 Theoretical Base

Having established the physical context for multimode microcavity polariton condensa-

tion, we now form the theoretical basis we will use to describe it. We start by presenting

the formalism of density matrices in number states and in the interaction picture. We

then derive the Lindblad superoperator for open quantum systems. This will lead us

to the description of how pumping and decay, and interactions appear in our model.

Finally we discuss linewidth.

1.2.1 Formalism

The fundamental components of our description are orthonormal Fock states or number

states, |n〉, which are acted upon by number operators, a, a†. These states correspond

the symmetrized representation of n bosons in a single-particle orbital. Number oper-

ators act on them as follow: a|n〉 =
√
n|n−1〉 and a†|n〉 =

√
n+1|n+1〉. Using this

formalism, we can write a many body density matrix

ρ =
∑
i

Pi

[∑
nm

cnc
∗
m|n〉〈m|

]
=
∑
nm

ρnm|n〉〈m|,
(1.29)

which in the most general case is a sum,
∑

i Pi = 1, over pure states. In the case of a

pure quantum state, Pi = δi1, the density matrix is idempotent, ρ2 = ρ. Expectation

values are obtained by performing the trace over the density acted upon by the operator

of interest

〈A〉 = Tr(Aρ)

=
∑
nm

ρnmAmn,
(1.30)
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where Anm = 〈n|A|m〉. Density matrices evolve according to

ρ̇ = −i[H, ρ] (1.31)

and, for independent systems, can be combined with the tensor product, ρ = ρ1 ⊗ ρ2.

A combined density matrix can be reduced to either density by performing the trace

over the one to be left out, e.g. ρ1 = Tr2[ ρ ].

For most of this thesis, we shall be using the interaction picture as opposed to

the Schrödinger picture. Our equations of motion will be obtained perturbatively.

Perturbations are introduced through interactions, either within the condensate or

with other systems, i.e. reservoirs. In the interaction picture, the unperturbed time

evolution of the condensate, e.g. Hs = ω a†a , is placed in the operators while the

interactions either within the condensate or with other systems, here given by H,

remain assigned to the state vectors of the condensate density matrix, ρ. To go from

the interaction picture, ρ, to the Schrödinger representation, ρS, where the whole time

evolution is in the density matrix, one can simply provide the density matrix the time

dependence that was taken away in the interaction picture,

ρ̇S =
d

dt
e−iHst ρeiHst

= −iHsρS + iρSHs + e−iHst
(
ρ̇
)
eiHst

= −i[Hs, ρS] + e−iHst
(
-i[H, ρ]

)
eiHst.

(1.32)

The full Schrödinger evolution is restored.

The evolution of the system (1.31) can also be written with Liouville superoperators,

ρ̇ = Lρ or ρ = eLtρo. The Liouville form is a more general object than commutators

since it can also accommodate evolutions which are non-unitary, as in open quantum

systems.

1.2.2 Open Quantum Systems

In this section we derive the many mode density matrix for quantum decay. The

treatment of open quantum systems will provide us with the Lindblad superoperator,

Ld, [Lind83, Scul97]. Our system of interest will be coupled weakly to a larger system,

a reservoir, which possesses a very large number of degrees of freedom. The system

will lose into it both its population and its coherence. The expansion will be done

with two modes, which may or may not be independent, i.e. factorizes or not as

22



1.2. THEORETICAL BASE

ρ ≡ ρs = ρ1 ⊗ ρ2. We will generalize the end result to many modes. We combine

the density matrix of the two modes with that of two large mode density reservoirs,

ρr = ρr1 ⊗ ρr2 , which for our purposes are at zero temperature, e.g. nk1 = 〈b†k1
bk1〉

= 0. We assume that the initial system-reservoir density factorizes, ρsr,o = ρo ⊗ ρro .
We employ one reservoir per mode in order to avoid having to worry about cross-

talk/feedback through the reservoir [Alei12], e.g. 〈a†2 bk1 b
†
k1
a1〉. Since the entire theory

is constructed in a perturbative manner, we work with the unperturbed states of the

system; any two system and reservoir operators commute. Other perturbative terms

will be added as we construct the theory.

The system-reservoir Hamiltonian, in the interaction picture1 and the rotating wave

approximation is

H =
∑
k1,k2

[
gk1

(
b†k1

a1 + a†1bk1

)
+ gk2

(
b†k2

a2 + a†2bk2

)]
. (1.33)

The solution of the system-reservoir density matrix, ρsr = ρsr,oe
Lt, evolves as

ρsr = ρsr,o +
∞∑
n=1

(−i)n
∫ t

to

dτn

∫ τn

to

dτn−1...

∫ τ2

to

dτ1[H, [H, ..[H, ρs′ro ]..]], (1.34)

where the prime in ρs′ro denotes the dependence of the system on past history, e.i.

ρs(τ1). Given that 〈bk1,2〉= 〈b
†
k1,2
〉= 0, the expansion has to be taken to second order,

and we neglect the higher order terms based on the coupling interactions being weak.

Our equation of motion therefore reads,

ρ̇sr = −
∫ t

to

[H, [H, ρs′ro ] ], (1.35)

where at this point the time dependence is due to both the interactions and the evo-

lution of the operators. This type of expansion, taken up to second order that also

assumes that the system-reservoir density matrix, ρs′r, factorizes at to is called the

Born approximation. This is borrowed from scattering theory [Gasi74]. Next we also use

〈bk1,2bk1,2〉 = 〈b†k1,2
b†k1,2
〉 = 0, and since 〈b†k1,2

bk1,2〉 = 0, 〈bk1,2b
†
k′1,2
〉 = δk1,2k′1,2

to keep

1The relation between Schrödinger, a1S , bk1S and interaction pictures, a1, bk1 , operators is given

by a1 = eiH1ta1S e
−iH1t = a1Se

−iω1t, bk1 = eiHk1
tbk1S e

−ieiHk1
t
t = bk1Se

−iνk1
t, etc.

Where H1 = ω1a
†
1Sa1S , Hk1 = νk1b

†
k1
bk1 , see also (1.32).
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only the terms which will survive the trace below. We are left with eight terms,

ρ̇sr = −
∫ t

to

[∑
k1

g2
k1

(
a†1bk1b

′†
k1
a1′ρs′ro − b

†
k1
a1ρs′roa

†
1′b
′
k1

)
+H.c.

+
∑
k2

g2
k2

(
a†2bk2b

′†
k2
a2′ρs′ro − b

†
k2
a2ρs′roa

†
2′b
′
k2

)
+H.c.

]
dt′.

(1.36)

The primes, b′k1,2
, a1′ , a2′ , denote dependence on the past history, bk1,2(t′), a1(t′), a2(t′).

We then make the interaction picture time-dependence explicit in the operators,

bk1,2 → bk1,2e
−iνkt, a1,2 → a1,2e

−iω1,2t. We also take the trace over the reservoirs, re-

minding ourselves of the invariance of the trace under cyclic permutation, Tr[b†rρrobr] =

Tr[brb
†
rρro ]; we let gk = gk1,2 ,

ρ̇ = −
∫ t

to

[∑
k

g2
ke

i(ω1−νk)(t−t′)(a†1a1ρ(t′)− a1ρ(t′)a†1
)

+H.c.

+
∑
k

g2
ke

i(ω2−νk)(t−t′)(a†2a2ρ(t′)− a2ρ(t′)a†2
)

+H.c.
]
dt′,

(1.37)

where we used, e.g. 〈bk1b
†
k1
〉 = 1. We use the fact that the reservoir degrees of freedom

are dense and smooth to let ∑
k

g2
k →

∫
dνkD(νk)g2

k. (1.38)

We are therefore left with the integration
∫ t
to

dt′
∫

dνk which can be rewritten as∫∞
0

dt′
∫

dνk. The integration in time being over half space provides a Cauchy principal

value, P
(

1
ω1,2−νk

)
, which corresponds to the celebrated Lamb shift [Wall10]. The shift can

be interpreted by the fact that in perturbation theory levels tend to repel each other,

and since there are more vacuum levels above, ]w1,2,∞] than below, [0, ω1,2[, the tran-

sition of interest, there therefore is a net shift in energy. This energy renormalization

has already been accounted for in the exciton energy and we choose in our calculation

to neglect the phenomenon, and to first perform the integration with respect to fre-

quency. This will provide us with a delta-correlation in the reservoir fluctuations. To

do this, we assume the density of state of the reservoir to take a constant value given

by 2πD(νk)g2
k|ω1,2 = γ/2 and we lower the integration limit to −∞. This leads to the

Weisskopf-Wigner approximation∫ ∞
−∞

dνke
i(ω1−νk)(t−t′) = 2πδ(t− t′). (1.39)
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which generates the Markov approximation. In it, the dense number of degrees freedom

of the reservoir over a large range of k1,2 absorbs any dependence on the past history of

the system δ(t− t′) such that ρ(t′) in (1.37) turns into ρ(t); such processes are said to

be Markovian. The reservoir has no memory, an excitation within it instantaneously

relaxes towards equilibrium, and it is thus said to be “delta-correlated”.

The equation of motion is now time-local and the reservoir degrees of freedom have

been eliminated,

ρ̇ = −γ
2

[(
a†1a1ρ− 2a1ρa

†
1 + ρa†1a1

)
+
(
a†2a2ρ− 2a2ρa

†
2 + ρa†2a2

)]
, (1.40)

We extract the matrix elements from the density matrix equation of motion. The

density matrix form is

ρ =
∑
nmpq

ρnmpq |n〉〈m | ⊗ |p〉〈q |, (1.41)

where n,m (p, q) refer to matrix elements of the first (second) mode. We perform the
manipulation leading to matrix elements in length for one of the terms, −2a1ρa

†
1, in

(1.40),

ρ̇nmpq = ... − 2
∑

n′m′p′q′

〈n, p|a1ρn′m′p′q′ |n′, p′〉〈m′, q′|a†1|m, q〉 ...

= ... − 2
∑

n′m′p′q′

〈n+ 1, p|
√
n+ 1ρn′m′p′q′ |n′, p′〉〈m′, q′|

√
m+ 1|m+ 1, q〉 ...

= ... − 2
√
n+ 1ρn+1m+1pq

√
m+ 1 ...

(1.42)

The complete form reads,

Ldρnmpq = −γ
2

[
(n+m+ p+ q)ρnmpq

− 2
(
(n+ 1)(m+ 1)

) 1
2ρn+1m+1pq − 2

(
(p+ 1)(q + 1)

) 1
2ρnmp+1q+1

]
,

(1.43)

where we also begun to use the superoperator notation, Ld. For many modes, this

generalizes to,

Ldρm1m2..
n1 n2..

= −γ
2

∑
i

[
(ni +mi)ρ

m1m2..
n1 n2..

− 2
(
(ni + 1)(mi + 1)

) 1
2ρm1..mi+1..

n1 ..ni+1..

]
, (1.44)

where ni and mi refer to the matrix elements of ith mode. The damping (ni = mi) and

decoherence (ni 6= mi) action can be seen in (1.44); the occupation of ρm1..mi+1..
n1 ..ni+1.. falls

into ρm1m2..
n1 n2..

, inducing growth. The occupation of level ρm1m2..
n1 n2..

itself falls into the level

below, hence the negative rate associated with it.
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1.2.3 Pumping and Decay, Interactions

The condensate formation considerations discussed in Section 1.1.5 are included here

within the scope of our pumping and decay model, illustrated in Figure A.1. The

polariton population is divided into two groups; one is the higher energy polariton

reservoirs and the other consists of the condensate modes. Stimulated scattering from

the reservoir populates the condensate modes. The process through which this occurs

is called pumping and in the density matrix model will involve a superoperator, Lp.
We derive the form of Lp in Chapter 2. The condensate emits coherent photons outside

the microcavity in a process which we call decay and in the evolution of the density

matrix takes the form of the superoperator we derived above, Ld. We also mentioned

in Section 1.1.5 that condensate modes interact together. This interaction is given the

unitary Hamiltonian, H, which can remain in commutator form and will also be further

elaborated upon in Chapter 2.

Figure 1.13: Pumping into and decay from the polariton condensate. A reservoir of higher energy
polariton (Exciton Reservoir) is created by shining the cavity with a laser at higher energy and at
high incidence angle. The quasi-particles introduced by the laser relax and loose their coherence via
multiple scattering until they reach the region above the bottleneck region of the dispersion relation
and form the reservoir. Polaritons then enter the condensate via stimulated scattering. Condensate
polaritons decay outside the cavity through the emission of coherent photons.

Our model is inspired by laser theory [Scul97], since a laser also consists of a large,

nonequilibrium occupation of bosons in a single mode. Overall, we shall obtain an
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equation of motion which only contains the condensate modes degrees of freedom,

ρ̇ = Lpρ+ Ldρ− i[H, ρ], (1.45)

where ρ is the reduced density matrix for the low-energy polariton states. From this,

we will be able to extract physics such as the linewidth of the condensate emission.

1.2.4 Linewidth

The early theory of the linewidth (δω, see Appendix A.3 for general damping theory)

of polariton condensate emission was presented by Porras and Tejedor [Porr03]. They

coupled the condensate to a thermal reservoir and obtained Lindblad terms for pumping

and decay. They also included a term, κ, for the two-body interactions within the

condensate and determined the cross-over for the emission linewidth to be determined

by Schawlow-Townes (δω ∝ 1/N , see below) or by interactions (δω ∝ κN). For atomic

condensates, similar theories are described by Gardiner and Zoller [Gard98] and Thomson

and Wiseman [Thom02].

Figure 1.14: A- Coherence decay, g(1)(τ), of the single mode density matrix equation based on
laser theory with added polariton-polariton interactions, for populations 〈n〉 = 50, 100, 500, 1000. B-
Coherence time, τc, obtained for the intercept of g(1)(τc) = 1/e for population 〈n〉 varying from 1 to
1000. The coherence time first increases, then plateaus near field threshold (dotted vertical line) and
starts increasing again. (recalculation based of [Whit09])

Whittaker and Eastham, in 2009, revisited the theory of polariton emission line-

width [Whit09]. Rather than coupling the condensate to a thermal reservoir, they used

laser theory in density matrix form [Scul97]. To account for interactions within the con-

densate, they added an anharmonic term, κ(a†a)2, to their Hamiltonian. The coherence

decay, g(1)(τ) ∝ 〈a†(τ)a〉, they obtained is shown in Figure 1.14A, for different single
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mode populations, 〈n〉. The inverse Fourier transform of the coherence function gives

the emission lineshape. Figure 1.14B shows the decay time, g(1)(τc) = 1/e, τc = 2/δω,

for populations going from 1 to 1000. From the linewidth form they obtained from den-

sity matrices, they reached simple, experimentally parametrized expressions for both

first, g(1)(τ), and second, g(2)(τ), order coherence functions. While g(2)(τ) does not

depend on κ and standard laser expressions could be used directly, their expression for

g(1)(τ) includes the dependence on κ. The theory recovers the generic Kubo lineshape

form [Kubo54], which we derive below. The body of the thesis will make extensive use of

the treatment of Whittaker and Eastham.

In the remainder of this section we develop the Kubo lineshape theory from linear

response theory [Hamm05] and place the results in [Whit09] within this context. We also

point out the occurrence of motional narrowing and of slow modulation which we shall

refer to as the static limit. We start with a quantity commonly used to discuss linear

response theory, the polarization, given by the dipole operator

P (t) = Tr[µρ] ≡ 〈µρ〉. (1.46)

The unperturbed density matrix, ρ, generally do not have polarization; the perturba-

tion terms generate it. The infinite order perturbation (equiv. to 1.34) reads

ρ(t) = ρ(0) +
∞∑
n=1

ρ(n)(t), (1.47)

where each term can be written in a form involving the commutator of the dipole

operator, E · r ∝ r = µ,

ρ(n)(t) = −in
∫ t

−∞
dτn

∫ τn

−∞
dτn−1...

∫ τ2

−∞
dτ1[µ(τn), [µ(τn−1), ...[µ(τ1), ρ(−∞)]. (1.48)

The expectation value of polarization due to the linear response therefore is

P (t) = −i
∫ t

−∞
〈µ(t)[µ(τ1, ρ(−∞)]〉dτ1. (1.49)

We use t1 = t− τ1, set τ1 = 0 and change the integration limits of (1.49) accordingly,

P (t) = −i
∫ ∞

0

〈µ(t1)[µ(0), ρ(−∞)]〉dt1 (1.50)

The time variable has been eliminated from the equation and we can combine the
integration with the ensemble average. The integrand is the linear response function

28



1.2. THEORETICAL BASE

which we manipulate as follows,

S(t) = −i〈µ(t)[µ(0), ρ(−∞)]〉 (1.51)

= −i〈µ(t)µ(0)ρ(−∞)〉+ i〈µ(t)ρ(−∞)µ(0)〉 (1.52)

= −i〈µ(t)µ(0)ρ(−∞)〉+ i〈ρ(−∞)µ(0)µ(t)〉 (1.53)

= −i〈µ(t)µ(0)ρ(−∞)〉+ i〈µ(t)µ(0)ρ(−∞)〉∗. (1.54)

We have made use of the invariance of the trace under cyclic permutation (1.53) and

the Hermiticity of operators (1.54). The absorption spectrum

A(ω) = 2Re

∫ ∞
0

dteiωti〈µ(t)µ(0)ρ(−∞)〉 (1.55)

provides the equivalent of the lineshape. To move towards Kubo theory, we now let

the dipole operator be expressed as a classical observable with gap energy frequency

ω(τ),

µ(t) ∝ e−i
∫ t
0 dτω(τ). (1.56)

and we separate the frequency into its time average and a fluctuating part,

ω(τ) = ω + δω(τ), 〈δω(τ)〉 = 0 . (1.57)

We then perform a cumulant expansion [Mand95] of S(t) and retain only the leading order

term,

S(t) = e−iωt
〈

exp

(
−i
∫ t

0

dτδω(τ)

)〉
= e−iωt

[
1− i

∫ t

0

dτ〈δω(τ)〉 − 1

2

∫ t

0

∫ t

0

dτdτ ′〈δω(τ)ω(τ ′)〉 ...
]

≈ e−iωt
[
e−

1
2

∫ t
0

∫ t
0 dτdτ

′〈δω(τ)δω(τ ′)〉
]
≡ e−iωte−g(t). (1.58)

In generic processes (and in Kubo’s derivation), the correlation function 〈δω(τ)δω(τ ′)〉
decays exponentially, ∆2e−

|τ ′|
τc , where our generic exponential decay function is parametrized
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with amplitude, ∆2, and decay time, τc. The exponent in (1.58) then becomes,

g(t) =
1

2

∫ t

0

∫ t

0

dτdτ ′〈δω(τ)ω(τ ′)〉

=

∫ t

0

∫ τ

0

dτdτ ′〈δω(τ ′)δω(0)〉

=

∫ t

0

∫ τ

0

dτdτ ′∆2e−
|τ ′|
τc

= ∆2

∫ t

0

dτ(−τce−
τ
τc + τc)

= ∆2τ 2
c (e−

t
τc +

t

τc
− 1).

(1.59)

In the second step, we performed time-ordering [Hamm05, Maha00] through which the factor

one-half was eliminated. We are therefore left with the standard Kubo form

S(t) = exp

[
∆2τ 2

c (e−
t
τc +

t

τc
− 1)

]
. (1.60)

There are two limits to this expression. One is the fast modulation, motional narrowing

or homogeneous limit,

∆τc � 1; e−t/τc → 0, t/τc � 1

g(t) ≈ ∆2τ 2
c

(
t

τc

)
= ∆2τc t

(1.61)

which leads to a Lorentzian lineshape (cf. 1.55),

A(ω) = 2Re

∫ ∞
0

eiωte−∆2τc tdt

= 2Re
1

∆2τc + iω

= 2
∆2τc

(∆2τc)2 + ω2
∝ 1

1 + ( ω
∆2τc

)2
.

(1.62)

The other limit is the slow modulation, static limit or inhomogeneous limit,
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∆τc � 1; e−t/τc → 1− t/τc + t2/2τ 2
c

g(t) ≈ ∆2τ 2
c

(
t2

2τ 2
c

)
=

∆2t2

2

(1.63)

which leads to a Gaussian lineshape,

A(ω) = 2Re

∫ ∞
0

eiωte−
∆2t2

2 dt

= 2
√

2π∆e−
ω2

2∆2 ∝ e−
ω2

2∆2 .

(1.64)

In [Whit09], the Kubo form that was obtained, 2ReS(τ) = e−g(τ) ≡ g(1)(τ), is

g(1)(τ) = exp

[
−4ncκ

2

γ̄2
(e−γ̄τ + γ̄τ − 1)

]
· exp

[ nc
4n̄2

(e−γ̄τ − γ̄τ − 1)
]

(1.65)

= exp

[
−4ncκ

2

γ̄2
(e−γ̄τ + γ̄τ − 1)

]
· exp

[
− nc

4n̄2
(e−γ̄τ + γ̄τ − 1) +

nc
2n̄2

(e−γ̄τ − 1)
]
,

(1.66)

where, in addition to κ, n̄ is the mean field population of the condensate, nc is

the pumping strength and γ̄ = n̄γ/nc is the exponential decay rate of g(2)(τ). The

first exponential accounts for the interaction induced decay while the second one is

Schawlow-Townes, enhanced by additional terms which often occur in semiconductor

systems [Henr82].

The physical origin of the Schawlow-Townes is the spontaneous emission which

occurs while polaritons both enter the condensate and are emitted into photons outside

the cavity. This process generates amplitude variations with variance, σ2 ∝ 2·ωγ2. The

random walk phase variation subtended by this process, δφ = δAq/A, is the quadrature

component perpendicular to the amplitude divided by the amplitude, A or
√
N . The

variance of spectral density induced along the soft mode is therefore given by ωγ2/N ,

the Schawlow-Townes linewidth [Pasc13, Scha58].

1.3 Relation to Other Theoretical Approaches

Other than the density matrix formalism, several other theoretical tools are being used

to describe the physics of polariton condensation. In this section, we provide a survey
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of them and discuss each one based on criteria such as the use of first principles, the

physics that they capture, and the types of quantities that can be obtained from them.

We start with the Boltzmann rate equations which describes nonequilibrium kine-

tics [Tass97, Bany00]. This equation employs densities as main variables and the transition

rates can be parametrized with matrix elements obtained from first principles [Deng10].

There are usually one set of equations for the occupation of reservoir states

∂tnk = P (t)− n

γk
−
∑
k′

W ph
kk′

(
nk′(nk + 1)− nk(nk′ + 1)

)
−
∑
k′k1k2

W PP
k k′k1k2

(
nkn

′
k(nk1 + 1)(nk2 + 1)− nk1nk2(nk + 1)(nk′ + 1)

)
(1.67)

and one equation for the occupation of the condensate

∂tno = − n
γo
−
∑
k′

W ph
o k′

(
nk′(no + 1)− no(nk′ + 1)

)
−
∑
k′k1k2

W PP
o k′k1k2

(
non

′
k(nk1 + 1)(nk2 + 1)− nk1nk2(no + 1)(nk′ + 1)

)
.

(1.68)

The term P (t) accounts for the laser induced incoherent pumping of the reservoir. The

γk, γo terms are decay rates of the polaritons. W ph
kk′ and W PP

kk′k1k2
are for polariton-

phonon and polariton-polariton scattering respectively. Notice that the Boltzmann

equations account for stimulated scattering with the (no,k + 1) occurring within them.

They can be used to determine quantitatively the threshold and obtain nonequilibrium

phase diagrams [Malp03]. The Boltzmann equation do not consider any form of fluctu-

ations (since they treat only an average occupation), ODLRO, exciton disorder and

high density (saturation) regime.

The Gross-Pitaevskii equation augmented with pumping and decay terms embraces

the physical reality one step further [Wout07, Keel08]. The condensate is modeled with a

single-particle macroscopic wavefunction, ψ, the order parameter, which is normalized

to N . In the standard cold atom Gross-Pitaevskii equation the equation reads as

standard Schrödinger kinetic, ∇2, and potential, V , terms supplemented with a point

interaction term, g|ψ|2. For polariton condensates, pumping and decay terms, inspired

by classical laser operation, are added. In one instance of the theory, a separate,

Boltzmann type equation is added to keep track of the reservoir dynamics, nR, [Wout07,

Lago10] while one other [Keel08, East08] reservoir saturation is included via a nonlinear
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1.3. RELATION TO OTHER THEORETICAL APPROACHES

term, Γ, and reservoir interactions appear via a trapping potential, V (r), with one

equation being used. The form which includes a reservoirs explicitly is

i~∂tψ =

[
−~2∇2

2m
+
i

2
[R(nR)− γ] + g|ψ|2 + 2g′nR

]
ψ (1.69)

∂tnR = P − γRnR −R(nR)|ψ|2 +D∇2nR, (1.70)

whereas the form with nonlinear pumping (and a trapping potential) is

i∂tψ =

[
−~2∇2

2m
+ V (r) + g|ψ|2 + i(γeff − Γ|ψ|2)

]
ψ. (1.71)

The first set of equations makes use of a analytically more elaborate monotonic func-

tion, R(nR), for the scattering into the condensate as well as diffusion, D∇2, of reservoir

polaritons. The second form presents the advantage of being contained in a single equa-

tion and being more easily manipulable, both analytically and numerically. The Gross

Pitaevskii approach allows to determine a number of quantities relating to the order

parameter: the elementary excitation spectrum [Wout07], vortices [Keel08], superfluidity

properties [Caru13] and multimode dynamics [East08]. It is a mean field theoretical tool,

and does not include fluctuations, the source of coherence decay; although the theory

has inspired the use of classical limit Wigner functions to include fluctuations [Wout09].

The role of exciton disorder and finite excitation/saturation has been studied ex-

tensively by Eastham, Littlewood and others by modeling the exciton subsystem as a

set of localized two-level systems [East01]. Their model is a generalization of the Dicke

model, which can be solved to determine thermodynamic properties such as the phase

diagram as well as response functions including those describing the optical emission.

Initial work on a thermodynamic equilibrium condensate has more recently been sup-

plemented by studies of nonequilibrium condensation, i.e. including gain and loss

processes using the Keldysh Green’s function approach [Szym07].

The big advantage of the density matrix formalism in this thesis is that it allows

to treat the both thermal and quantum fluctuations in the order parameter of an

open quantum system. It also treats ODLRO but does not consider the saturation of

excitons [Skol98] in the quantum well. It is parametrized phenomenologically rather than

from first principles.
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1.4 Layout of the Thesis

Having presented both the background and the theoretical context of this thesis, we

are ready to embark into the original component of it. The original work is contained

within four chapters (Chapters 2−5). The next chapter builds our density matrix model

for many reservoir and many mode condensates and for the treatment of condensate

interactions. Chapters 3 and 4 present a general application of the theory while Chapter

5 is a specific one.

In Chapter 3, we lay out how the theory can be used to obtain the population

distributions of each mode, both directly and with analytic expressions. Chapter 4 is

dedicated to coherence functions which we solve for numerically and approximatively

in two ways, a more involved Fokker-Planck scheme and a simpler static limit approxi-

mation. The coherence functions that we use are the first order correlation of one mode

and the coherence decay of Rabi regime Josephson oscillations between two modes.

In Chapter 5, we apply the theory to the tight-binding model of a double well po-

tential. We extract the population distribution of the symmetric and antisymmetric

modes of the double well for different detuning between the wells and we show exam-

ple calculations of first and second order coherence functions with each to the three

approaches mentioned above. Finally we conclude and suggest some future work in

Chapter 6.
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Chapter 2

Pumping and Interaction Model

This chapter constructs the equation of motion for the reduced den-

sity matrix describing Bose Einstein condensates of polaritons [Deng10, Keel07, Scul97],

whose general form is, (1.45),

ρ̇ = Lpρ+ Ldρ− i[H, ρ]. (2.1)

Here Lp,Ld are the superoperators describing the pumping and damping of the low-

energy polariton states. The Hamiltonian, H, is for the dynamics and interactions

of the condensate modes. We already reached a form for Ld in our introduction to

open quantum systems (Sec. 1.2.2). While the physics of condensate formation was

also described (Sec. 1.1.5), we have yet to obtain an explicit form for the pumping,

Lp. This shall be the first goal of this chapter. The second aim is to describe the

Hamiltonian, H. We seek throughout to maintain the theory in the most general form

possible, such that it can be applied to a wide range of configurations.

Towards reaching Lp, we first describe the characteristics of the reservoirs and

condensates which we use onwards to develop our model of the pumping (Sec. 2.1).

We then derive a form for Lp in a simplified pumping model (Sec. 2.2) which is

then expanded into the general theory (Sec. 2.3). We also introduce the pumping

parametrization we will use throughout the remainder of the thesis (Sec. 2.4).

In the introduction, we explained how condensate polaritons can be trapped in

a photonic or excitonic potential and how their excitonic component interacts (Sec.

1.1.5). The second part of the chapter describes how we choose orbitals based on these

potentials and how interactions are approximated, leading to soluble form for H, (Sec.

2.5).
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2.1. KEY FEATURES OF THE RESERVOIRS AND CONDENSATES

2.1 Key Features of the Reservoirs and Conden-

sates

In this section we give a brief description of the essential features of reservoir and

condensate polaritons which our model will incorporate. We extract these features

from the exposé presented in Chapter 1.

In our model, both for reservoirs and condensate modes, we suppose that polaritons

are the elementary excitations of the microcavity system [Hopf58]; their internal struc-

ture was introduced and discussed in the introduction (Sec. 1.1.3). Towards condensa-

tion, the laser-induced high energy reservoir polaritons have thermalized via polariton-

polariton interactions, and cooled down through polariton-phonon interactions [Deng10],

near the bottleneck (highly excitonic lower region) of the lower dispersion relation (Sec.

1.1.5); only these reservoir polaritons enter our model. Condensates are trapped (pho-

tonic, excitonic disorder; quantum well, cavity patterning; reservoir repulsion) and are

separated from one another either because of their spatial profile or the single-particle

state energy levels they occupy (Sec. 1.1.5). Their nonequilibrium nature enables

BEC to form at energies other than the lowest level [East08] and distinction between

spatially superimposed condensates is based on linewidth. Spatial trapping causes the

condensates to spread in momentum along the bottom of the lower branch [Kasp06].

Reservoir polaritons are much heavier, m =
(
d2E
dk2

)−1
, than condensate polaritons,

m′, and are therefore effectively immobile on the long length scale relevant to the

condensate [Wout08b]. The condensate modes densities can overlap with several reservoirs

and can thereby be replenished by several distinct sources [Rich05].

Alongside with the condensate formation mechanism, stimulated scattering, its de-

cay outside the cavity and the excitonic-based polariton-polariton interactions (Sec.

1.2.3), these observations are all the essentials that are needed to derive our model.

2.2 One Reservoir Pumping Two Modes

In this section, we first present the general approach to the one-reservoir, two-modes

problem. We then detail the two steps which lead up to our model expression.
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2.2. ONE RESERVOIR PUMPING TWO MODES

General Approach to the Problem

As is often done in mesoscopic physics [Altl10], we aim for a pumping model which

captures the essential physics leading to the formation of condensates, and can be

parameterized with experimental results. Rather than deriving directly a Liouville

superoperator for many reservoirs arbitrarily pumping many modes (Sec.2.3), we first

solve a simplified model: one reservoir pumping two condensates. This simplified

treatment was obtained independently but shows similarity to that in [Sing80]. We

use the treatment to generalize towards the many-reservoir, many-mode model.

The one reservoir, two modes problem is analogous to the two-mode laser. This

problem has been treated extensively with rate equations and in the semiclassical

approximation [Hake75, Puri01]. The Heisenberg-Langevin approach has also been utili-

zed [Hake75, Scul97]. While a full quantum approach was also used, it had to be tailored

to a specific problem where each mode is associated with a distinct transition [Sing80].

In the other approaches, the energy detuning between the modes and their different

rotating rates could be used to isolate the dynamics of the quantities of interest. All

through these approaches, the underlying key principle resides in the fact that the field

is the synergetic component of the system, it is responsible for the common phase of

the order parameter and the non-locality. The matter component provides the system

non-linearities.

In the full quantum two-mode laser [Sing80] a restriction had to be applied in order

to make the problem soluble in closed form. Each mode had to be attributed a sep-

arate lower level in the transition. This obliged a break in degeneracy at this level

with, e.g., Zeeman splitting. This restriction does not apply in the case of a one-

reservoir two-mode condensate pumping model. This is because, rather than having

discrete transition energies, the polariton dispersion relation is continuous, and the

distinct levels appear naturally; transitions occur between any two localized states on

the dispersion.

Thus we consider, as shown in Figure 2.1, a reservoir of many, labeled by i, higher-

energy, incoherent polariton states above the bottleneck region, |a〉i. These are driven

through final-state stimulation into the lowest-energy orbitals, |n〉, |p〉, generating the

condensates, while by-product states, |b1〉i, |b2〉i, take up the excess momentum and

energy. The by-product states can be polaritons or outgoing phonons. Within our

approach, these processes, polariton-polariton scattering and phonon emission, lead to

the same form for Lp. This model can be solved in closed form, in the interaction

picture, using second-order perturbation theory in the scattering strength [Hamm05] and
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2.2. ONE RESERVOIR PUMPING TWO MODES

Figure 2.1: Schematic of model of condensate formation. Reservoir polaritons |a〉i enter the con-
densate modes,|n〉, |n〉, through stimulated scattering. By-product polaritons/excitons, |b1〉i, |b2〉i,
carry the excess momentum, energy.

an adiabatic elimination procedure [Sing80]. This provides us with the theoretical bridge

towards our many reservoirs pumping many modes derivation (Sec. 2.3).

The interaction picture Hamiltonian describing the scattering from the ith reservoir

state, with annihilation operator, (ca)i, into low-energy polaritons (a1, a2), and some

by-products (cb1 , cb2)i is,

Hp =
∑
i

g1a
†
1

(
c†b1

(ca)
2

√
2

)
i
+ g2a

†
2

(
c†b2

(ca)
2

√
2

)
i
+ H.c. (2.2)

Hp is written for the case of polariton-polariton scattering; (ca)2
√

2
c†b1 acting on a state with

two reservoir polaritons and no by-product polariton, |2, 0〉, gives |0, 1〉. The operator
(ca)2
√

2
becomes ca when phonons are the by-products, cac

†
b1
|1, 0〉 = |0, 1〉. But reservoir

levels will be traced over in our expension and the final expression is parameterized

from experiments; the form of the reservoir operators do not affect the theory. The

scattering matrix elements, g1, for example, is given by

g1 =

∫
drdr′V (r − r′)φ∗1(r)φ∗b1,i(r

′)φa,i(r)φa,i(r
′), (2.3)

where V (r−r′) is the potential two between excitons at points r and r′. Since reservoir

polaritons are much more localized than those of the condensate, V (r − r′) can be
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2.2. ONE RESERVOIR PUMPING TWO MODES

approximated by a point interaction given by Voδ(r − r′), which provides g1 the form

g1 ≈
∫
drV0φ

∗
1(r)φ∗b1,i(r)φa,i(r)φa,i(r)

∝ φ∗1(ri), (2.4)

where φ∗1(ri) is the amplitude of the condensate orbital at the reservoir location. Matrix

elements, g1, g2, are proportional to the condensate amplitude at reservoir location, ri.

We introduce the projection of the condensate-reservoir density matrix onto the ith

reservoir state, ρi = Trj 6=i ρ̂, and its matrix elements,

ρi = ραiβinmpq |n〉〈m | ⊗ |p〉〈q | ⊗ |αi〉〈βi |, (2.5)

with αi, βi ∈ {a, b1, b2} and n,m (p, q) refering to the matrix elements of the first (sec-

ond) mode. The sum over i provides the composite density matrix, ρ, with matrix

elements ραβnmpq =
∑

i ρ
αiβi
nmpq, for which our simplified from for the “density” Hamil-

tonian, Hp (2.2), translates into (we use the version of Hp phonon by-products for

notational simplicity),

Hp =
∑
i=1,2

gi
(
a†ic
†
bi
ca + c†acbiai

)
, (2.6)

and the operators, ai, cbi , are now acting on the composite levels, see Fig. 2.2. We have

therefore greatly simplified the problem by treating reservoir levels |a〉i with a single

upper level |a〉, and similarly with |b1〉i, |b2〉i becoming |b1〉, |b2〉.

The remainder of this section revolves around solving the following schematic rela-

tion,

ρ̇ = −i[Hp, ρ]− γrρ[a,bi→φ] + λrρ[φ→a] + (Ldρ). (2.7)

The term proportional to λr accounts for the replenishing of upper level |a〉 from an

other vacuum state |φ〉, which is schematically depicted by the subscript [φ → a].

This corresponds to the relaxation of laser generated higher energy polaritons into

the reservoir. The γr term is the decay of |a〉 , |bi〉 levels via channels other than

the condensates, e.g., spontaneous emission into outside cavity modes, schematically

depicted by [a, bi → φ]. Linking these two processes to a common, vacuum level,

|φ〉, will allow to algebraically manipulate these λr, γ terms through rate equations,

and eliminate the levels, leaving only the degrees of freedom which pertain to the

condensate, ραiβinmpq → ρnmpq.

Two different time scales are associated with the processes in (2.7). The replen-

39



2.2. ONE RESERVOIR PUMPING TWO MODES

ishing λr and the relaxation γr are much faster than the dynamics of the condensates,

−i[Hp, ρ], Ldρ (1.43). The two different time scales involved allow us to make a twofold

adiabatic expansion. First we isolate the λr dynamics into an effective pumping rate r.

We then solve for a traced form, Tra,bi [ρ], of the slow varying processes, ρ̇ ≈ −i[Hp, ρ
′],

on a time scale for which ρ′ appears to be stationary, ρ̇′ ≈ 0, with respect to the γr dy-

namics. The end result is a parametrized equation which only contains the condensate’s

degrees of freedom.

Figure 2.2: Transitions generated by Hamiltonian Hp. This configuration allows the pumping to be
solved exactly.

In bosonic systems, Hamiltonian commutators often generate, potentially infinite,

recursive sets of equations which all have to be solved in order to reach a solution.

The level configuration presented here generates a Hamiltonian which does not have

this feature, making our problem soluble in closed form. The three levels make 3×3=9

density matrix elements which need to be visited through the action of the Hamiltonian,

Hp, in such a way that the number of particles in the system is conserved. We express

this criteria diagrammatically by placing Hp (2.6) in a transition diagram, Fig. 2.2.

The diagram should not possess any loops where we can pass through a transition, in

the same direction, more than once, i.e. every transition between two levels should

only be paired with its Hermitian conjugate. The general pumping problem discussed

below, Section 2.3 (2.51), also has this feature. Two quanta (one for bra, the other for

ket) are being passed between the condensate and the levels, allowing to survey the 9

matrix elements in closed form.

Eliminating the Non-Condensate Degrees of Freedom from the Replenishing

Component of the Model

We now perform the first manipulation highlighted above and in (2.7). We eliminate

the reservoir levels degrees of freedom in the λr term of Eq. (2.7). We do so by

introducing the density matrix for our reservoir vacuum level, Φ = ρφφ|φ〉〈φ|, writing
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the equation of motion for ρ⊗ Φ, projected onto |φ〉, i.e. the population of |φ〉,

〈φ|d(ρ⊗ Φ)

dt
|φ〉 =

���
���

���
��:0

−i〈φ|[Hp, ρ⊗ Φ]|φ〉 − λr〈φ|ρ⊗ Φ|φ〉+ γr
∑
α=a,bi

〈α|ρ⊗ Φ|α〉. (2.8)

Notice the sign changes in front of λr, γr with respect to Eq. (2.7). On the r.h.s., the

Hp term vanishes identically, [Hp,Φ] = 0. The l.h.s. is also zero,

〈φ|d(ρ⊗ Φ)

dt
|φ〉 = 〈φ|ρ̇′ ⊗ Φ|φ〉+ 〈φ|ρ⊗ Φ̇|φ〉 = 0, (2.9)

since the condensate is assumed to appear stationary and the level |φ〉 is considered

stationary. We can therefore read from (2.8) the steady-state matrix elements equation

0 = −λrρφφnmpq + γr(ρ
aa
nmpq + ρb1b1nmpq + ρb2b2nmpq), (2.10)

or

λrρ
φφ
nmpq = γr(ρ

aa
nmpq + ρb1b1nmpq + ρb2b2nmpq), (2.11)

which we use in conjunction with the trace over all the levels, Tra,bi,φ[ρ⊗ Φ],

ρnmpq = ρφφnmpq + ρaanmpq + ρb1b1nmpq + ρb2b2nmpq (2.12)

or

ρaanmpq + ρb1b1nmpq + ρb2b2nmpq = ρnmpq − ρφφnmpq. (2.13)

Placing (2.13) into (2.11) and solving for ρφφnmpq gives

λrρ
φφ
nmpq = γr(ρnmpq − ρφφnmpq) (2.14)

ρφφnmpq =
γr

λr + γr
ρnmpq. (2.15)

Hence

λrρ
φφ
nmpq =

λrγr

λr + γr
ρnmpq = rρnmpq, (2.16)

and our schematic relation (2.7) now becomes

ρ̇ = −i[Hp, ρ]− γrρ[a,bi→φ] + rρ. (2.17)

We obtained an effective pumping rate, r, which does away with external degrees of

freedom [Scul97]. Expressions for the term proportional to γr involves levels |a〉, |bi〉,
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which will be eliminated in the trace process below.

Performing the Adiabatic Expansion to Isolate the Condensate Dynamics.

Next we write the contribution to the equation of motion for the scattering into the

condensate, ρ̇ = −i[Hp, ρ], the slowly varying processes of (2.17) (the polarization,

e.g. ραβnmpq, α 6=β, do not exhibit fast oscillation in the interaction picture). These will

generate the traced form, ρ̇aanmpq + ρ̇b1b1nmpq + ρ̇b2b2nmpq, mentioned above. The components of

−i[Hp, ρ], are

ρ̇aanmpq =− i
[
g1

√
n+ 1ρb1an+1mpq + g2

√
p+ 1ρb2anmp+1q (2.18)

− g1

√
m+ 1ρab1nm+1pq − g2

√
q + 1ρab2nmpq+1

]
ρ̇b1b1nmpq =− i

[
g1

√
nρab1n−1mpq − g1

√
mρb1anm−1pq

]
(2.19)

ρ̇b2b2nmpq =− i
[
g2
√
pρab2nmp−1q − g2

√
qρb2anmpq−1

]
. (2.20)

We point out the standard form of the prefactors on the r.h.s., such as
√
n+ 1, which

generate the stimulated scattering (amplification) and, along with inversion, the term

in r, are responsible for macroscopic occupation of the low-energy modes, i.e., conden-

sation. In total there are 8 matrix elements on the r.h.s. of Eqs. (2.18−2.20) which we

need to solve for. We do so with three sets of full pumping equation matrix elements

obtained from (2.17). The set we use to solve the aa part, (2.18), is

ρ̇aanmpq = (Eq. 2.18, rhs)− γrρaanmpq + rρnmpq (2.21)

ρ̇ab1nm+1pq = −i
[
g1
√
n+ 1ρb1b1n+1m+1pq + g2

√
p+ 1ρb2b1nm+1p+1q − g1

√
m+ 1ρaanmpq

]
− γrρab1nm+1pq (2.22)

ρ̇b1an+1mpq = −i
[
g1
√
n+ 1ρaanmpq − g1

√
m+ 1ρb1b1n+1m+1pq − g2

√
q + 1ρb1b2n+1mpq+1

]
− γrρb1an+1mpq (2.23)

ρ̇ab2nmpq+1 = −i
[
g1
√
n+ 1ρb1b2n+1mpq+1 + g2

√
p+ 1ρb2b2nmp+1q+1 − g2

√
q + 1ρaanmpq

]
− γrρab2nmpq+1 (2.24)

ρ̇b2anmp+1q = −i
[
g2
√
p+ 1ρaanmpq − g1

√
m+ 1ρb2b1nm+1p+1q − g2

√
q + 1ρb2b2nmp+1q+1

]
− γrρb2anmp+1q (2.25)

ρ̇b1b2n+1mpq+1 = −i
[
g1
√
n+ 1ρab2nmpq+1 − g2

√
q + 1ρb1an+1mpq

]
− γrρb1b2n+1mpq+1 (2.26)

ρ̇b2b1nm+1p+1q = −i
[
g2
√
p+ 1ρab1nm+1pq − g1

√
m+ 1ρb2anmp+1q

]
− γrρb2b1nm+1p+1q (2.27)

ρ̇b1b1n+1m+1pq = −i
[
g1
√
n+ 1ρab1nm+1pq − g1

√
m+ 1ρb1an+1mpq

]
− γrρb1b1n+1m+1pq (2.28)

ρ̇b2b2nmp+1q+1 = −i
[
g2
√
p+ 1ρab2nmpq+1 − g2

√
q + 1ρb2anmp+1q

]
− γrρb2b2nmp+1q+1 (2.29)

The sets for b1b1, (2.19) and b2b2, (2.20), are Eqs. (2.21−2.29) shifted according to :

n,m→ n−1,m−1 and p, q → p−1, q−1, respectively. Notice that the evolution of all

the elements on the r.h.s. of Eqs (2.21−2.29) is contained within the set of equations,

i.e. it can be solved in closed form. The natural way to solve a set of coupled equations
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is in matrix form; we write Eq. (2.21−2.29) and their shifted version as,

Ṙ = −MR + A Ṙ′ = −M ′R′ + A′ and Ṙ′′ = −M ′′R′′ + A′′. (2.30)

The matrix M and each of the R and A vectors are presented on page 46. The matrices

M ′ and M ′′ are obtained with the shift substitution mentioned above. The R vectors

are formed from elements of the density matrix in which two quanta are being passed

between the reservoir levels and the condensate modes. The A vectors are the driving

terms.

We solve for R adiabatically i.e. assuming A (ρnmpq) doesn’t change over the time

scale set by γr. Formally ([Scul97], Appendix 11.A), this is performed by using the

integrating factor e
∫ t′
−∞Mdt′′ = eMt′′|t′−∞ = eMt′ , giving,

eMt′Ṙ + eMt′MR = eMt′A (2.31)

d(eMt′R)

dt′
= eMt′A (2.32)∫ (eMtR)

0

d(eMt′R) =

∫ t

−∞
eMt′Adt′. (2.33)

We assume that the condensate field term, eMtR, slowly builds up, starting from zero

when t is at −∞, and that on this scale the driving term, A, is independent of time.

Thus (2.33) solves into

eMtR ' eMtM−1A (2.34)

or

R 'M−1A, (2.35)

where the 8 matrix elements we seek are within R,R′, R′′. We shall obtain the inverse

matrices M−1,M ′−1,M ′′−1 through the identity M−1 = CT

|M | or M−1 = C
|M | since M is

symmetric; C is the cofactor matrix. The use of cofactors and determinants will be

advantageous in the derivation of the generalized form below (Sec.2.3). Mathematica

can provide these terms easily.
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Obtaining the Model Expression

At last, we extract the 8 terms needed in (2.18−2.20),

ρab1nm+1pq = rM−1
21 ρnmpq (2.36)

ρb1an+1mpq = rM−1
31 ρnmpq (2.37)

ρab2nmpq+1 = rM−1
41 ρnmpq (2.38)

ρb2anmp+1q = rM−1
51 ρnmpq (2.39)

ρab1n−1mpq = rM ′−1
21 ρn−1m−1pq (2.40)

ρb1anm−1pq = rM ′−1
31 ρn−1m−1pq (2.41)

ρab2nmp−1q = rM ′′−1
41 ρnmp−1q−1 (2.42)

ρb2anmpq−1 = rM ′′−1
51 ρnmp−1q−1. (2.43)

and (2.18−2.20) become

ρ̇aanmpq =− i
[
g1

√
n+ 1M−1

31 + g2

√
p+ 1M−1

51 (2.44)

− g1

√
m+ 1M−1

21 − g2

√
q + 1M−1

41

]
rρnmpq

ρ̇b1b1nmpq =− i
[
g1

√
nM ′−1

21 − g1

√
mM ′−1

31

]
rρn−1m−1pq (2.45)

ρ̇b2b2nmpq =− i
[
g2
√
pM ′′−1

41 − g2
√
qM ′′−1

51

]
rρnmp−1q−1. (2.46)

which simplify nicely into the form, ρ̇aanmpq + ρ̇b1b1nmpq + ρ̇b2b2nmpq = Lpρnmpq,

Lpρnmpq = −r
(
g21(n−m) + g22(p− q)

)2
+ γ2r

(
g21(n+m+ 2) + g22(p+ q + 2)

)(
g21(n−m) + g22(p− q)

)2
+ 2γ2r

(
g21(n+m+ 2) + g22(p+ q + 2)

)
+ γ4r

ρnmpq

+
2rγ2rg

2
1

√
nm(

g21(n−m) + g22(p− q)
)2

+ 2γ2r
(
g21(n+m) + g22(p+ q + 2)

)
+ γ4r

ρn−1m−1pq

+
2rγ2rg

2
2
√
pq(

g21(n−m) + g22(p− q)
)2

+ 2γ2r
(
g21(n+m+ 2) + g22(p+ q)

)
+ γ4r

ρnmp−1q−1,

(2.47)

We observe that, as in the form for the damping, Ld (1.44), the expression obtained

contains only the condensate degrees of freedom. We shall postpone the parametriza-

tion of Lp in a notation which reflects the pumping physics (Sec.2.4) until a generalized

pumping expression is derived below. Here we only point out that the two time scales

we exploited in the expansion (2.7) imply that g1,2 � γr which in the denominators

translates as g4
1,2 � γ2

rg
2
1,2 � γ4

r . The constant term, γ4
r , is larger than the others for
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small occupation but will inevitably be comparable at large occupations and there-

fore generates saturation. The denominators generate saturation in the condensation

occupation.

We see also that the minus sign in front of the term ρnmpq means that its occupancy

leaves towards higher levels while the levels below, ρn−1m−1pq, ρnmp−1q−1, with their

positive signs, replenish it. We have pumping action.
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2.2.
O
N
E
R
E
S
E
R
V
O
IR

P
U
M
P
IN

G
T
W
O

M
O
D
E
S

R =



ρaanmpq
ρab1nm+1pq

ρb1an+1mpq

ρab2nmpq+1

ρb2anmp+1q

ρb1b2n+1mpq+1

ρb2b1nm+1p+1q

ρb1b1n+1m+1pq

ρb2b2nmp+1q+1


R′ =



ρaan-1m-1pq

ρab1n-1mpq

ρb1anm-1pq

ρab2n-1m-1pq+1

ρb2an-1m-1p+1q

ρb1b2nm-1pq+1

ρb2b1n-1mp+1q

ρb1b1nmpq

ρb2b2n-1m-1p+1q+1


R′′ =



ρaanmp-1q-1
ρab1nm+1p-1q-1

ρb1an+1mp-1q-1

ρab2nmp-1q

ρb2anmpq-1
ρb1b2n+1mp-1q

ρb2b1nm+1pq-1

ρb1b1n+1m+1p-1q-1

ρb2b2nmpq


(2.48)

M =



γr −ig1
√
m+ 1 ig1

√
n+ 1 −ig2

√
q + 1 ig2

√
p+ 1 0 0 0 0

−ig1
√
m+ 1 γr 0 0 0 0 ig2

√
p+ 1 ig1

√
n+ 1 0

ig1
√
n+ 1 0 γr 0 0 −ig2

√
q + 1 0 −ig1

√
m+ 1 0

−ig2
√
q + 1 0 0 γr 0 ig1

√
n+ 1 0 0 ig2

√
p+ 1

ig2
√
p+ 1 0 0 0 γr 0 −ig1

√
m+ 1 0 −ig2

√
q + 1

0 0 −ig2
√
q + 1 ig1

√
n+ 1 0 γr 0 0 0

0 ig2
√
p+ 1 0 0 −ig1

√
m+ 1 0 γr 0 0

0 ig1
√
n+ 1 −ig1

√
m+ 1 0 0 0 0 γr 0

0 0 0 ig2
√
p+ 1 −ig2

√
q + 1 0 0 0 γr


(2.49)

A = r



ρnmpq

0

0

0

0

0

0

0

0


A′ = r



ρn-1m-1pq

0

0

0

0

0

0

0

0


A′′ = r



ρnmp-1q-1

0

0

0

0

0

0

0

0


(2.50)
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2.3 Many Reservoirs Pumping Many Modes

We now derive the expression for Lp in the general case where u reservoirs replenish v

condensates. We shall make use of the derivation above and, while still being driven

by the physics, draw guidance from algebraic patterns which appear within it.

In deriving Lp (2.47) above, we made use of brute analytic force. We learned

by doing this, that even though the determinant of |M | goes as O(γ9
r ), its inverse,

M−1 = CT

|M | , simplifies and the form left in the denominator only goes up to O(γ4
r ); the

same as in the one-mode problem [Scul97]. There is an algebraic pattern to be exploited

in solving the types of many-reservoir pumping many-mode problems which obey the

configuration in Fig.2.2. One can think that this pattern should indeed occur when

observing that we started with individual reservoir polaritons in our Hamiltonian (2.2)

which we then grouped into a single, composite three-level system (2.6).

Indeed, in the single reservoir, two-mode Hamiltonian (2.6), the choice of grouping

individual states, |a〉i, together to form a single state, |a〉, was theoretically convenient

but should not distract us from the actual physical problem. Here we shall group the

individual reservoir polariton states, |a〉i, into distinct reservoir states, |ai〉, and keep

the notation separate for each of them. By doing this, each reservoir obtains its own

adiabatic term (2.9) and therefore its own effective pumping rate, ri.

In order to continue with the second part of our general adiabatic expansion, we

recast the one reservoir, two modes notation into the general u-reservoirs, v-modes

notation. The composite interaction picture Hamiltonian (2.6) now takes the form,

Hp =
∑
i,j

gij
(
a†jc
†
bij
cai + c†aicbijaj

)
, (2.51)

with i labeling the reservoirs and j the modes. The v-modes reduced density matrix

elements take the form ρ
m1m2..mj ..
n1n2.. nj .. . We see from (2.51) that for each of the u levels,

|ai〉, there are now v levels, |bij〉, therefore making 1 + v levels per reservoir. The

matrix Mi, which associates the ith reservoir with all v condensates, will therefore have

(1+v)2×(1+v)2 elements. And the full matrix is a Kronecker sum, M =
∑

i I ⊗ .. ⊗
Mi ⊗ .. ⊗ I. In taking the adiabatic expansion however, each term of the Kronecker

sum gives its own instantaneous change, ri, to the composite density matrix, ρ̇m1m2..
n1n2..

,

and can therefore be solved for independently. Since (A⊗ B)−1 = A−1 ⊗ B−1, we can

focus on obtaining M−1
i , and the trace over the reservoir levels, Traibijρ, shall provide

the summation which is explicit in the Kronecker sum.
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For the ith reservoir, the trace is ρ̇m1m2..,aiai
n1n2..

+
∑

j ρ̇
m1m2..,bijbij
n1n2.. with each element

given by,

ρ̇m1m2..,aiai
n1n2..

= 〈ai|−i[Hp, ρ]|ai〉 (2.52)

= −i
∑
j

[
gij
√
nj + 1ρ

m1..mj ..,bijai
n1..nj+1.. − gij

√
mj + 1ρm1..mj+1..,aibij

n1..nj ..

]
(2.53)

=
∑
j

[
f

(i)
2j ρ

m1..mj ..,bijai
n1..nj+1.. + f

(i)
2j+1ρ

m1..mj+1..,aibij
n1..nj ..

]
(2.54)

ρ̇m1m2..,bijbij
n1n2..

= 〈bij|−i[Hp, ρ]|bij〉 (2.55)

= −i
[
gij
√
njρ

m1..mj ..,aibij
n1..nj−1.. − gij

√
mjρ

m1..mj−1..,bijai
n1..nj ..

]
(2.56)

= f
(ij)
2j ρ

m1..mj ..,aibij
n1..nj−1.. + f

(ij)
2j+1ρ

m1..mj−1..,bijai
n1..nj ..

(2.57)

with the first 2v + 1 elements of f (i), f (ij) written in vector form,

f
(i)
{1,2v+1} =



0

igi1
√
m1+1

−igi1
√
n1+1

..

igij
√
mj+1

−igij
√
nj+1

..

igiv
√
mv+1

−igiv
√
nv+1


f
(ij)
{1,2v+1} =



0

0

0

..

−igij
√
nj

igij
√
mj

..

0

0


(2.58)

In our one reservoir, two modes derivation, we did not need the complete inverse of

M . Rather, we only needed elements of the first column M−1
i1 , (2.36−2.43). Here this

is, (Mi)
−1
i1 ≡ h

(i)
i ,

h
(i)
i =

C
(i)
i1

|Mi|
=

C
(i)
i1∑

j m
(i)
j C

(i)
j1

, (2.59)

where we also adopted a simplified notation for the elements of the first column of

the matrix, (Mi)j1 ≡ m
(i)
j . The determinant, |Mi|, is written as a column product of

matrix and cofactor elements. We observe that all the cofactors in this column, C
(i)
i1 ,

contain terms in the form,

ζ = γ(v−1)2

r

(∑
j

gij(nj + 1) + γ2
r

)(v−1)(∑
j

gij(mj + 1) + γ2
r

)(v−1)

(2.60)
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and they cancel while forming the inverse matrix elements,

h
(i)
i =

ζc
(i)
i∑

j m
(i)
j ζc

(i)
j

=
c

(i)
i∑

j m
(i)
j c

(i)
j

. (2.61)

This will indeed make the denominator stay of O(γ4
r ),

log
(
O(|Mi|)

)
− log

(
O(ζ)

)
= (v + 1)2 −

(
(v − 1)2 + 2 · 2(v − 1)

)
= 4. (2.62)

Physically, these terms cancel because when deciding to keep the notation separate for

u reservoirs while grouping the |a〉i levels into |ai〉 composite level, we also introduced

transitions which otherwise would have been accounted for only once. These additional

transitions while modifying the algebra do not change the power of the terms involved.

They end up in the term ζ and cancel out in the derivation of the matrix element.

The first 2v + 1 terms of the simplified c(i) are

c
(i)
{1,2v+1} =



γr
(∑

k g
2
ik(nk+mk+2) + γ2r

)
igi1
√
m1+1(

∑
k g

2
ik(mk−nk) + γ2r

)
igi1
√
n1+1(

∑
j g

2
ik(mk−nk)− γ2r

)
..

igij
√
mj+1(

∑
k g

2
ik(mk−nk) + γ2r

)
igij
√
nj+1(

∑
k g

2
ik(mk−nk)− γ2r

)
..

igiv
√
mv+1(

∑
k g

2
ik(mk−nk) + γ2r

)
igiv
√
nv+1(

∑
k g

2
ik(mk−nk)− γ2r

)


(2.63)

and the ones for m
(i)
j are

m
(i)
{1,2v+1} =



γ

−igi1
√
m1+1

igi1
√
n1+1

..

−igij
√
mj+1

igij
√
nj+1

..

−igiv
√
mv+1

igiv
√
nv+1


. (2.64)

We note that the first column ofMi multiplies the first element ofRi, i.e. ρ
m1m2..mj .., a1a1
n1n2..nj .. .

Looking back at Eq. (2.17), the first term in (2.64) originates from γr〈ai|ρ|ai〉 while the

next 2v terms originate from, 〈ai|−i[Hp, ρ]|ai〉 and all the other terms in that column
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are zero. This explains why we only focused on the first 2v+1 terms of c
(i)
i .

We now determine that the generalization of manipulating (2.36−2.43) into (2.18−2.20)

to reach Lp (2.47) is,

Lpρm1m2..
n1n2..

=
∑
i

[
f (i) · h(i) riρ

m1m2..
n1n2..

+
∑
j

f (ij) · h(ij) riρ
m1m2..mj−1..
n1n2..nj−1..

]
=
∑
i

[ f (i) · c(i)

m(i) · c(i)
riρ

m1m2..
n1n2..

+
∑
j

f (ij) · c(ij)

m(ij) · c(ij)
riρ

m1m2..mj−1..
n1n2..nj−1..

] (2.65)

where m
(ij)
i , c

(ij)
i are the same as (2.64, 2.63) except for mj, nj → mj−1, nj−1.

Notice in (2.58) that nj,mj are inverted in f (ij) with respect to the way they appear

in c(ij) (see c(i), (2.63)). This along with the ± sign in front of γ2
r in (2.63) gives

f (ij) · c(ij) =
(
−igij

√
nj
)[
igij
√
mj

(∑
k 6=j g

2
ik(mk−nk) + g2

ij(mj−nj−2) + γ2
r

)]
+
(
igij
√
mj

)[
igij
√
nj
(∑

k 6=j g
2
ik(mk−nk) + g2

ij(mj−nj−2)− γ2
r

)]
= g2

ij

√
njmjγ

2
r + g2

ij

√
mjnjγ

2
r

= 2g2
ij

√
njmjγ

2
r

(2.66)

The product f (i) · c(i) does not have this feature,

f (i) · c(i) =
∑

j

[[
−g2

ij(mj + 1) + g2
ij(nj + 1)

]∑
k g

2
ik(mk−nk)

]
+
∑

j

[
− g2

ij(mj + 1)γ2
r − g2

ij(nj + 1)γ2
r

]
= −

(∑
j g

2
ij(mj−nj)

)2 − γ2
r

∑
j g

2
ij(nj +mj + 2)

(2.67)

The product m(i) · c(i) differs from f (i) · c(i) only because of the γr instead 0 at the top

of m(i) with respect to f (i) and a sign difference in front of the other elements. This

generates a factor of 2 and a γ4
r term which make the denominator differ from the

numerator in the prefactor for ρm1m2...
n1 n2 ...

. And we obtain,

Lpρm1m2...
n1 n2 ... =

∑
i

ri

[
−

(∑
j g

2
ij(nj −mj)

)2
+ γ2r

∑
j g

2
ij(nj +mj + 2)(∑

j g
2
ij(nj −mj)

)2
+ 2γ2r

∑
j g

2
ij(nj +mj + 2) + γ4r

ρm1m2...
n1 n2 ...

+
∑
j

2γ2rg
2
ij
√
njmjρ

m1m2..mj−1..
n1 n2 ...nj−1..(∑

k g
2
ik(nk −mk)

)2
+ 2γ2r

∑
k g

2
ik(nk +mk + 2)− 4γ2rg

2
ij + γ4r

]
.

(2.68)

We have therefore obtained a generalized form for Lp.
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2.4 Notation

Until now, we postponed to establish a notation which reflects pumping and damping

physics, rather than original Hamiltonian matrix elements. Here we define the para-

meters which we use throughout; these are a generalization of those used in [Whit09]

for the single mode case.

We first define the dimensionless pumping strength, which is the ratio between the

pumping parameter and the decay parameter. The factor of 2 gets absorbed when

going from amplitude to density (Chapter 3),

nc =
r

2γ
→ nci =

ri
2γ
, (2.69)

We separate with an arrow the one-reservoir two-modes notation (Sec. 2.2) from the

many-reservoir many-mode notation (Sec. 2.3). To simplify the notation, we also

assume that the decay rates, γ in the damping Ld (1.44) and γr, are the same.

Next is the saturation parameter, the ratio between decay into other channels and

condensate modes scattering coefficients,

ns =
γ2

4(g2
1 + g2

2)
→ nsi =

γ2

4
∑

j g
2
ij

, (2.70)

and finally, we use a normalized transition strength for the coupling of the reservoirs

to each mode,

α1 =
g2

1

g2
1 + g2

2

, α2 =
g2

2

g2
1 + g2

2

→ αij =
g2
ij∑
k g

2
ik

. (2.71)

In this notation, the pumping superoperators (2.47, 2.68) in the equation of motion
read as follows,

Lpρnmpq = −γnc
1

8ns

(
α1(n−m) + α2(p− q)

)2
+ 1

2

(
α1(n+m+ 2) + α2(p+ q + 2)

)
1

16ns

(
α1(n−m) + α2(p− q)

)2
+ 1

2

(
α1(n+m+ 2) + α2(p+ q + 2)

)
+ ns

ρnmpq

+
γnc α1

√
nm

1
16ns

(
α1(n−m) + α2(p− q)

)2
+ 1

2

(
α1(n+m) + α2(p+ q + 2)

)
+ ns

ρn−1m−1pq

+
γnc α2

√
pq

1
16ns

(
α1(n−m) + α2(p− q)

)2
+ 1

2

(
α1(n+m+ 2) + α2(p+ q)

)
+ ns

ρnmp−1q−1,

(2.72)
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Lpρm1m2...
n1 n2 ... = γ

∑
i

nci

[
−

1
8nsi

(∑
j αij(nj −mj)

)2
+ 1

2

∑
j αij(nj +mj + 2)

1
16nsi

(∑
j αij(nj −mj)

)2
+ 1

2

∑
j αij(nj +mj + 2) + nsi

ρm1m2...
n1 n2 ...

+
∑
j

αij
√
njmjρ

m1m2..mj−1..
n1 n2 ...nj−1..

1
16nsi

(∑
k αik(nk −mk)

)2
+ 1

2

∑
k αik(nk +mk + 2)− αij + nsi

]
.

(2.73)

2.5 The Approximative Hamiltonian of the Con-

densate

In this section we present the Hamiltonian, H, appearing in the equation of motion

(2.1), and point out which manipulations and approximations can be exploited to sim-

plify the many-mode condensate problem. While the choice of reservoirs and the choice

of Hamiltonian, Hp, allowed us to simplify the problem for the decay and pumping,

here we shall resort to choice of basis and rotating wave approximations to achieve that

goal. As described in the introduction (Secs. 1.1.5, 1.2.3), condensate interactions stem

from electron-electron, hole-hole and election-hole interactions [Comb07, Roch00], which are

parametrized as exciton-exciton interactions and incorporated as interactions between

the elementary excitations of our system, polaritons [Deng10]. These interactions are

treated up to two-body terms, a†ia
†
jakal, with matrix elements

gijkl = V0

∫
ddrφ∗i (r)φj(r)φ

∗
k(r)φl(r). (2.74)

In the pumping sections above (Secs. 2.2, 2.3), we used the interaction picture

to find an exact solution for the pumping superoperator, here we use the Schrödinger

picture, in order to make use of the difference in energy between modes (detuning) to

build an argument to discard rapidly oscillating terms which remain small upon time

integration. The general many-mode Hamiltonian reads,

H =
∑
i

ΩiA
†
iAi +

∑
i 6=j

tijA
†
iAj +

∑
ijkl

GijklA
†
iA
†
jAkAl, (2.75)

where we also used a general definition for the operators Ai acting on arbitrary orbitals
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for our modes. We shall provide a justification for approximating this Hamiltonian as,

H =
∑
i

ωia
†
iai +

∑
ij

gija
†
ia
†
jaiaj, (2.76)

where the operators ai are associated with a new mode definition and the terms that are

non-particle conserving within each mode have been eliminated. The forms for pumping

and decay superoperators, Lp, Ld, (2.73, 1.44), are particle conserving as well. This

translates into the evolution of the condensate density matrix, ρm1m2...
n1 n2 ...

, necessitating

only a subset of the full space it spans. More precisely, having an equation of motion

that is particle conserving translates into using O(nN) elements of the density matrix

rather than its full set of elements, O(n2N); n is the maximum number of particles

included in each mode and N is the number of modes.

The operators O, that we apply on ρ to obtain any particular expectation value 〈O〉
are partly immune to this criterion, given that they operate on a steady state which is

diagonal (see Sec. 4.2.3). We shall see in Chapter 4 that the first order coherence and

Josephson decay operators that we use are particle conserving within each mode.

With the equation of motion being number conserving, the problem remains nu-

merically tractable up to 2 modes and possibly 3. We therefore focus in showing in

which circumstances one can treat the physics of the problem with (2.76) instead of

(2.75).

The first step in doing so is to eliminate the hopping term, tij. This can be done

exactly by diagonalizing the quadratic part of H, (2.75), [East08],

ai =
∑
i

fi({Ωi}, {tij})Ai (2.77)

ωi = fi({Ωi}, {tij}) (2.78)

gijkl = fijkl({Ωi}, {tij}, {Gijkl}). (2.79)

In other words, we rewrite H using a linear combination of operators Ai and we obtain

H =
∑
i

ωia
†
iai +

∑
ijkl

gijkla
†
ia
†
jakal. (2.80)

A specific example of this procedure is presented in Chapter 5.

It is more difficult to justify gijklδikδjl → gij. Table 2.1 shows the forms that

the interaction terms can have. Our model only allows to solve the forms δijkl and
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δijδkl. The other forms are non-particle conserving within each mode and we attempt a

justification for neglecting them. This exercise is challenging because we try to contain

all the possible scenarios in an situation where the density matrix has potentially

infinite number of dimensions.

δijkl δijδkl

δijk i6=j 6=k6=l
Form of gijkl δikδjl δikl i 6= k, j 6= l

δilδjk δijl i 6= l

δjkl Total
Nb of occurences N 2N(N−1) N(N−1) 4N(N−1) N4−7N2+6N N4

2 4 2 8 0 16

Number of a†0a
†
0a0a0 a†0a

†
1a0a1 a†0a

†
0a1a1 a†0a

†
0a0a1

occurences a†1a
†
1a1a1 a†1a

†
0a1a0 a†1a

†
1a0a0 a†1a

†
1a1a0

and operator a†1a
†
0a0a1 a†0a

†
1a0a0

forms in a†0a
†
1a1a0 a†1a

†
0a1a1

two modes a†0a
†
0a1a0

(with a†1a
†
1a0a1

redundancies) a†1a
†
0a0a0

a†0a
†
1a1a1

Table 2.1: Forms of the two-body interaction operator and occurrence of each type in an N -mode
condensate. The two forms on the left of the thick line conserve the number of particle in each mode.
The ones one the right do not and cannot be included in our model. The lower part of the table shows
how each form occurs in two modes.

To do so, we first write the density matrix in the Schrödinger picture, giving all

the time dependence to the density operator, but nonetheless making a distinction

between the time evolution due to the linear terms and the interaction term of the

Hamiltonian (2.80),

ρ =
∑
ni,mi

ρmi
ni
e−iωi(ni−mi)t|ni〉〈mi|. (2.81)

We look at the evolution of ρ, in a perturbative scheme and estimate under which

circumstances the non-particle conserving terms provide a transition probability over

infinite time that is finite rather the infinite and therefore do not contribute to the

dynamics. The evolution ρ̇ = −i[H, ρ], with (2.81) on the r.h.s and the commutator of

(2.80) on the r.h.s. is,∑
ni,mi

[
ρ̇mi
ni
−iωi(ni−mi)ρ

mi
ni

]
e−iωi(ni−mi)t|ni〉〈mi| = −i[

∑
i

a†iai, ρ]−i[
∑
ijkl

gijkla
†
ia
†
jakal, ρ].

(2.82)

The term with −iωi(ni−mi) cancels with i[
∑

i a
†
iai, ρ] on the r.h.s., and we are left
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with, ∑
ni,mi

ρ̇mi
ni
e−iωi(ni−mi)t|ni〉〈mi| = −i

[∑
ijkl

gijkl a
†
ia
†
jakal, ρ

]
. (2.83)

We focus on the terms where none of the indices are the same,
∑
6= gijkl, the second

last column of Table 2.1. We then note that in this case the commutator in (2.83)
generates states,

a†ia
†
jakal ρ

..mi,j,k,l..

..ni-1,j-1,k+1,l+1..|..ni-1,j-1,k+1,l+1..〉〈..mi,j,k,l..| =
√
ni
√
nj
√
nk+1

√
nl+1ρ

..mi,j,k,l..

..ni-1,j-1,k+1,l+1..|..ni,j,k,l..〉〈..mi,j,k,l..|
(2.84)

with time dependence e−i
∑

i ωi(ni−mi)te−i(−ωi−ωj+ωk+ωl)t, and

|..ni,j,k,l..〉〈..mi+1,j+1,k−1,l−1..|ρ
..mi+1,j+1,k-1,l-1..
..ni,j,k,l.. a†ia

†
jakal =

√
mi+1

√
mj+1

√
mk
√
mlρ

..mi+1,j+1,k-1,l-1..

..ni,j,k,l.. |..ni,j,k,l..〉〈..mi,j,k,l..|
(2.85)

with the same time dependence ei
∑

i ωi(mi−ni)tei(ωi+ωj−ωk−ωl)t.

We can now cancel the state vectors and the linear time dependence on either side
of the form ρ̇ = −i[H, ρ], reaching,

ρ̇m1m2..
n1n2.. = −i

∑
6=

gijkle
−i(−ωi−ωj+ωk+ωl)t

(√
ni
√
nj
√
nk + 1

√
nl + 1 ρ

..mi,j,k,l..

..ni−1,j−1,k+1,l+1..

−
√
mi + 1

√
mj + 1

√
mk
√
ml ρ

..mi+1,j+1,k−1,l−1..

..ni,j,k,l..

)
.

(2.86)

We treat each matrix element of (2.83) individually.

We shall determine if these terms gives a finite change in occupation by examining

if the integrate evaluated from minus infinity diverges,∫ t

−∞
ρ̇
..mi,j,k,l..
..ni,j,k,l.. dτn =− i

∑
6=

∫ t

−∞
dτn gijkle

−i(−ωi−ωj+ωk+ωl)τn×

(√
ni
√
nj
√
nk + 1

√
nl + 1

∫ τn

−∞
dτn−1 ρ̇

..mi,j,k,l..

..ni−1,j−1,k+1,l+1..

−
√
mi + 1

√
mj + 1

√
mk

√
ml

∫ τn

−∞
dτn−1 ρ̇

..mi+1,j+1,k−1,l−1..

..ni,j,k,l..

)
.

(2.87)

This will iteratively provide an integration over the entire Fock space∫ t
−∞ dτn

∫ τn
−∞ dτn−1..

∫ τ2
−∞ dτ1f(f..(f(ρ....))), with each integration giving a factor of order

−i
∑
6=

gijkl

−i(−ωi − ωj + ωk + ωl)

(√
ni
√
nj
√
nk + 1

√
nl + 1−

√
mi + 1

√
mj + 1

√
mk
√
ml

)
(ρ....). (2.88)
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We note that (ρ....) is bounded between [0, 1] and are of same magnitude in each iteration

since the distribution is either smooth or symmetric on either side of the matrix element

being considered. We choose to make ρ.... equal to one. Since we are mostly concerned

with diagonal elements we can pick a set of non-trivial indices ni,j,k,l = n+1, mi,j,k,l = n.

Conservatively, we also let
∑
6= gijkl ≈ N4g (see Table 2.1), and the factor becomes,

− i

2

∑
6=

gijkl
(
(n+ 1)(n+ 2)− (n+ 1)n

)
−i(−ωi − ωj + ωk + ωl)

≈ N4g (n+ 1)

(−ωi − ωj + ωk + ωl)
. (2.89)

When this term is smaller than 1, the integration (2.87) will tend towards zero, Πn(xn <

1)→ 0. Otherwise it may diverge, setting a finite transition rate. The two other forms

of the non-resonant scattering processes in Table 2.1 create criteria which scale like,

N2gn

ωi − ωj
(2.90)

We have therefore generated a criteria for using gijkl δikδjl → gij. When the matrix

elements and number of modes, N4g, times the average occupation of the condensates,

〈ni,j,k,l〉, is comparable to the difference in energy between them, (−ωi−ωj +ωk +ωl),

the particle non-conserving interaction terms can be neglected. When these conditions

are met, we shall say that we are in the strong trapping regime.

Having set an argument for the neglect of certain terms, we now switch back to the

interaction picture and write the Hamiltonian of the condensate as,

H =
∑
i

κia
†
ia
†
iaiai +

1

2

∑
i 6=j

ηija
†
iaia

†
jaj. (2.91)

Throughout, we will reserve κ for condensate modes self-interactions and η for energy

(density) interactions between condensate modes.

2.6 Discussion

The physics of bosonic systems, when treated quantum mechanically, presents the

particular challenge of generating potentially infinite sets of equations. Both for the

pumping superoperator and the condensate Hamiltonian, we had to invest significant

effort to prevent this from happening. We managed, after selecting the problem ad-

equately and imposing certain quantitative restrictions, to obtain a full equation of

motion which we can exploit (Lp, 2.73; Ld, 1.44; H, 2.91).
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2.6. DISCUSSION

The questions naturally arise : what interesting physics did we miss by imposing

these restrictions? What can this or that term do for our problem? The description

that we have at the moment is very near the diagonal. It presents occupation fluctu-

ations, which are absent in mean-field theory, but limits strongly the incorporation of

off-diagonal terms. Careful addition of these other interaction terms (see Table 2.1)

will mix the Fock states and introduce very rich phenomena (the most obvious here are

certain regimes of Josephson oscillation, see Chapter 4). The answer for how to intro-

duce these terms in the Hamiltonian H to obtain new physics is not at the model level,

but rather lies within the approximative schemes of the next two chapters. Nonetheless

we did not solve for them in this thesis. The conclusion will present some ideas for

how to incorporate them.
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Chapter 3

Population Distribution Functions

Having obtained our equation of motion for many-mode polariton condensates,

and pointed out the physics it captures and the approximations it entails, we

now move from theoretical description to extraction of physical information. The

first and simplest physical quantity we will seek is the population distribution, i.e. the

probability distribution of the occupation numbers for the low-energy polariton modes.

It corresponds to the diagonal elements of the reduced density matrix, ρ. We obtain

expressions both for one reservoir pumping two modes (Sec. 3.1) and many reservoirs

pumping many modes models (Sec. 3.2).

We use two analytical tools to obtain the distributions. The first relies on the

detailed balance form [Carm74, Scul97] of individual steady-state transitions. This provides

two equivalent steady-state subequations, one of which we either use as is to obtain

the population distribution directly, or feed in our second analytical tool. In it, we

approximate the occupation numbers with continuous variables and turn the transition

steps within the detailed balance equations into first-order Taylor expansions (Secs.

3.1.1, 3.2.1). The approximate differential equations we obtain from this process are

solved, either exactly (for the one reservoir, two modes case) or approximately (in the

many reservoir, many mode case). The solutions are multivariate Gaussians.

Two follow-on sections are added to each main derivation. To the one-reservoir,

two-mode section, we add how our solution reduces to the one mode problem [Whit09]

or can be generalized to one reservoir pumping many modes (Sec. 3.1.2). After the

multi-reservoir, multi-mode derivation, we show the source of the approximation in the

multivariate Gaussian solution (Sec. 3.2.2). We also select example solutions in each

model and analytical tool: a mode competition example obtained numerically (Sec.

3.1.3), and an analytical three-mode distribution (Sec. 3.2.3).
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3.1. POPULATION – SINGLE RESERVOIR, TWO MODES

3.1 Population – Single Reservoir, Two Modes

We keep a separate section for the special case of one reservoir and two modes, rather

than directly presenting the many reservoirs pumping many modes solution, for two

reasons. First an analytic solution for the population distribution can be obtained in

a controlled way, by approximating the occupation numbers as continuous variables.

Second it exemplifies, in a full quantum description, the principle of mode competition,

as understood in laser theory [Hake86].

Population distributions are obtained with the diagonal elements of the density

matrix equation of motion,

Ṗnp = 〈n, p|ρ̇|n, p〉. (3.1)

In other words, we let m = n and q = p in the equation of motion for ρnmpq,

Ṗnp = γnc

[
α1n

α1n+ α2(p+ 1) + ns
Pn−1p +

α2p

α1(n+ 1) + α2p+ ns
Pnp−1 −

α1(n+ 1) + α2(p+ 1)

α1(n+ 1) + α2(p+ 1) + ns
Pnp

]
+ γ
[
(n+ 1)Pn+1p + (p+ 1)Pnp+1 − (n+ p)Pnp

]
,

(3.2)

where the first line corresponds to the pumping term, Lp (2.72) and the second line is for

the Lindblad decay, Ld, (1.43). Notice that the condensate Hamiltonian is seemingly

absent in (3.2). This is because the Hamiltonian we approximated, H (2.91), is particle

conserving within each mode, and its contribution to the evolution of diagonal elements

is therefore zero,∑
i 6=j

〈n, p|-i
[
(a†iai)

2+ 1
2
a†iaia

†
jaj, ρ

]
|n, p〉 = -i

[
(n2+p2+np)ρnnpp − (n2+p2+np)ρnnpp

]
= 0 . (3.3)

Throughout, we will be interested in population distributions in the steady-state, Ṗnp =

0.

3.1.1 Detailed Balance Solution and Analytic Solutions

To solve the population distribution equation and find the steady-state, we use detailed

balance. Eq. (3.2) describes the change in the occupation probabilities, due to tran-

sitions which increase or decrease the number of particles in each mode, i.e. pumping

and decay. The first two terms on the first line correspond to transitions into the state
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3.1. POPULATION – SINGLE RESERVOIR, TWO MODES

of n, p particles due to pumping, while the third term describes transitions from the

n, p state to higher occupation, also due to pumping. The second line, similarly, gives

the dynamics due to loss processes. We can find a steady-state solution by requiring

that the growth of an occupation probability due to pumping matches its decay due

to loss, and vice versa. This is a form of detailed balance condition [Carm74]. Specifi-

cally in (3.2), this corresponds to the steady-state equation splitting in two equivalent

subequations,

0 = γnc

[
α1n

α1n+ α2(p+ 1) + ns
Pn−1p +

α2p

α1(n+ 1) + α2p+ ns
Pnp−1

]
− γ(n+ p)Pnp, (3.4)

0 = −γnc
α1(n+ 1) + α2(p+ 1)

α1(n+ 1) + α2(p+ 1) + ns
Pnp + γ

[
(n+ 1)Pn+1p + (p+ 1)Pnp+1

]
. (3.5)

Rearranging (3.4) gives,

Pnp =



Po , n, p = 0

ncα1Pn−1p

α1n+ α2 + ns
, p = 0

ncα2Pnp−1

α1 + α2p+ ns
, n = 0

nc
n+ p

(
α1nPn−1p

α1n+ α2(p+ 1) + ns
+

α2pPnp−1

α1(n+ 1) + α2p+ ns

)
, n, p 6= 0.

(3.6)

We separated the solution in cases because, by only having matrix elements and no

state vectors in the equation, there is no vacuum state to indicate the unphysical

states (e.g. Pn−1p|n=0 → P−1p) which are otherwise implied in the case n, p 6= 0.

Repeated application of these forms allows us to develop the full distribution from the

probability of the vacuum state, Po, which is simply a normalization. Using (3.6),

it is straightforward to obtain the distribution numerically for a given set of control

parameters, nc, ns, α1,2.

The second analytical tool is to approximate the occupation numbers as continuous

variables and to replace index differences in occupation probability elements with first

order Taylor expansions,

Pn−1p → P(n,p) − 1·∂nP(n,p) and Pnp−1 → P(n,p) − 1·∂pP(n,p). (3.7)
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Doing this, Eq. (3.6) transforms into,

P(n,p) =
nc

n+ p

(
α1n(1− ∂n)

α1n+ α2p+ ns
+

α2p(1− ∂p)
α1n+ α2p+ ns

)
P(n,p). (3.8)

The brackets around indices indicate that they are now continuous variables. We

simplified the denominators by neglecting the +1s which appear in (3.6), since ns � 1.

The solution is the multivariate Gaussian

P(n,p) =
1

Z
· exp

(
− (n+ p)2

2nc
+
α1nc − ns
α1nc

n+
α2nc − ns
α2nc

p

)
. (3.9)

This solution can be manipulated into the form (3.8); we postpone the steps until the

one reservoir, many modes example below, (3.16).

To demonstrate an important feature which occurs in multimode population distri-

butions, we write (3.9) in matrix form

P(n,p) =
1

Z
exp

[
− 1

2nc

(
n p

)
·

(
1 1

1 1

)
·

(
n

p

)
+
(
α1nc−ns
α1nc

α2nc−ns
α2nc

)(n
p

)]
,

=
1

Z
exp

[
− 1

2

(
n p

)
· A ·

(
n

p

)
+B

(
n

p

)]
,

(3.10)

to point out that A is singular and that the variance, A−1, therefore diverges. This is

also seen by changing variables according to

u =
1√
2

(n− p) (3.11)

v =
1√
2

(n+ p) (3.12)

and choosing α1,2 = 0.5. Under these circumstances, Eq. (3.9) becomes

P(u,v) =
1

Z
· exp

(
− v2

nc
+
nc − 2ns

nc

√
2v

)
. (3.13)

The equation is satisfied with any value of u. There is a soft mode which occurs along

the n+p = const direction. The simplest example of a soft mode is in the relative phase

between two oscillators, there is no restoring force associated with this parameter and

it is therefore free to take any value. New physics arise along a soft mode when a

small pertubation is added to the otherwise free parameter [Piko01]. The population
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3.1. POPULATION – SINGLE RESERVOIR, TWO MODES

distribution has large uncertainty along the soft mode, so long as n, p ≥ 0. The

vacuum therefore adds an additional complexity to our description i.e. a cutoff to the

distribution. This peculiar soft mode is already present here, in the one reservoir two

modes model, but will also occur in the general model. We call this specific distribution

by the name “ridge” because of its visual appearance when plotted on a mesh, as in

Fig. 3.1.

We also note in Figure 3.1 the depence of the population distribution in the pumping

paramaters, nc, ns. In Fig. 3.1A-C the effect of increasing nc is to place the distribution

further above threshold. As nc increases the width of the distribution also increases. In

Fig. 3.1D-F, with ns increasing and n̄ = nc−ns constant, the spread of the distribution

increases but its position above threshold remains constant.

Figure 3.1: Dependence of the ridge population distribution on pumping parameters, nc, ns. (A-C)
For ns = 50 and increasing nc, the population goes from threshold, nc = 50, to above threshold,
nc = 70, and far above threshold, nc = 120. As nc increases the spread of the distribution, ∝ √nc
in the n+p direction, also increases. (D-F) This is also observed for ns = 5000, 10000, 25000 and
constant n̄ = nc − ns = 400. The position of the ridge stays constant, but its spread increases.

3.1.2 Corollaries of the Single Reservoir, Two Modes Solution

The single-reservoir, two-mode solution obtained above, Eq. (3.9), can be used to either

recover the known solution for a single-reservoir, single-mode condensate [Whit09], or
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generalized to obtain the solution for a single-reservoir, many-mode condensate [Sing80].

These two solutions are presented for completeness.

To recover the single reservoir, single mode solution, we set α1,2 = 1, 0 and Eq.

(3.9) is rewritten as

P(n,p) =
1

Z
· exp

(
− n2

2nc
+
nc − ns
nc

n

)
exp

(
− 2np+ p2

2nc
− ns

0·nc
p

)
. (3.14)

The second exponential is either one when p = 0, or zero when p > 0. We therefore

obtain

P(n) =
1

Z
· exp

(
− n2 − 2(nc − ns)n+ (nc − ns)2

2nc
+

(nc − ns)2

nc

)

=
e
n̄2

2nc

Z
exp

(
− (n− n̄)2

2nc

)
,

(3.15)

where n̄ = nc − ns. This agrees with the form quoted in [Whit09], as expected.

Our form (3.9) can also be generalized to the general case of one reservoir pumping

many modes [Sing80],

P(n1,n2,n3...) =
1

Z ′
exp

(
−
(∑

j nj
)2

2nc
+
∑
i

αinc − ns
αinc

ni

)
, (3.16)

which we show is the exact solution of the many-mode version of (3.8),

∑
i

niP = nc
∑
i

αini(P − ∂niP )∑
j αjnj + ns

, (3.17)

by placing the derivatives,

∂niP(n1,n2,n3...) =
(
− 1

αinc

(
αi
∑
j

nj + ns
)

+ 1
)
P(n1,n2,n3...), (3.18)

into it.
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The P s on either side of (3.16) cancel and we reach

∑
i

ni = nc
∑
i

αini · 1
αinc

(
αi
∑

j nj + ns
)∑

j αjnj + ns
(3.19)

=
∑
i

ni
(
αi
∑

j nj + ns
)∑

j αjnj + ns
(3.20)

=

∑
j nj
(∑

i αini + ns
)∑

j αjnj + ns
(3.21)

=
∑
j

nj . (3.22)

We interchanged the two sums between lines (3.20) and (3.21). The two sides are

the same; Eq. (3.16) is the solution of the single-reservoir, many-mode continuous

population equation (3.17), so long as the discreteness of the occupation number can

be neglected.

3.1.3 Mode Competition Example

While non-equilibrium physics gives rise to stable situations which do not otherwise

exist in equilibrium (e.g. multiple BECs, [Tosi12]), it can also give rise to unstable

situations, where a minute change in a control parameter generates completely different

outputs. One such phenomenon is mode competition [East08], which is present when one

reservoir pumps more than one condensate. Mode competition is well known in laser

physics [Hake86, Sing80].

The underlying physics of mode competition can be explained quite simply by

noting that if the coupling strength, g, of one mode is slightly higher than in the

others, it grows more rapidly. Due to stimulated scattering more reservoir polaritons

will then enter this mode which will grow even bigger. The other mode will receive gain

with much reduced stimulated scattering enhancement, g
√
n+1, and will not be able

to compete for the gain medium therefore remaining at low occupancy. In contrast, by

having multiple reservoirs, Sec. 3.2, the coupling can be preferentially directed to each

mode specifically so that they do not compete for the same medium.

In order to show mode competition, the notation we defined in Sec. 2.4 has to be

adapted to the phenomenon. We let g1 be the strongest coupling that the system can

present, g, and g2 be a fraction of it, αg, with α varying between zero and one. We

also define a new saturation parameter, n′s, as the decay strength, γ2, normalized by
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Figure 3.2: Dependence of the population distribution on α = α2

α1
= 1, 0.999, 0.99, 0.5, (n′s = 10000,

nc = 10400). The population shows a strong dependence on the α. The two modes both get populated
only when they receive the same coupling to the common reservoir. As soon as the coupling to one
mode becomes slightly bigger, the population largely ends up in that mode. This exemplifies mode
competition.

the maximum coupling, g2, rather the sum of the couplings. We therefore have

α =
g2

2

g2
1

=
α2

α1

, n′s =
γ2

4g2
1

=
ns
α1

, nc =
r

2γ
= nc. (3.23)

This turns the steady-state population algebraic difference equation (3.6) into

Pnp =
nc

n+ p

nPn−1p + αpPnp−1

n+ αp+ n′s
, (3.24)

where we also dropped the +1s in the denominators, and combined them into a single

term. (This can be done since we will not use this distribution as an initial condition

in time involving coherence functions (Sec. 4.2.2).) Population distributions obtained

from (3.24) are shown in Fig. 3.2 and demonstrate the steep dependence of the popula-
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tion distribution on α. We see from it that by changing α by one percent, the solution

shifts from being in either mode to being mainly in one mode. The total average pop-

ulation in all cases stays the same, 〈n〉,〈p〉 ≈ 200, 200 becoming 0, 400. For this reason,

we normalized n′s by the maximum coupling, g.

3.2 Population – Many Reservoirs, Many Modes

We now move to u reservoirs pumping v modes. We take the Lindblad pumping

operator we developed, Lp (2.73), along with Lindblad decay, Ld (1.44). Once again,

the terms we kept for the Hamiltonian (2.91) mean that the term −i[H, ρ] does not

contribute to the population dynamics. We find

Ṗn1n2.. = γ
∑
i

nci
∑
j

[ αijnjPn1n2..nj−1..∑
k αik(nk + 1)− αij + nsi

− αij(nj + 1)Pn1n2..∑
k αik(nk + 1) + nsi

]
+ γ

∑
j

[
(nj + 1)Pn1n2..nj+1.. − njPn1n2..

]
.

(3.25)

As was emphasized in the mode competition example above (Sec. 3.1.3), we see in the

general pumping term, that the growth rate of mode j is reduced by the occupation

of all the other modes, giving rise to the sums over modes in the denominators,
∑

k.

Here however, as long as u ≥ v, each mode can be preferentially replenished by its own

reservoir.

3.2.1 Detailed Balance Solution and Approximate Analytic

Solution

Separating Eq. (3.25) using detailed balance, as in Sec. 3.1.1, gives

0 = γ
∑
i

nci
∑
j

αijnjPn1n2..nj−1..∑
k αik(nk + 1)− αij + nsi

− γ
∑
j

njPn1n2.., (3.26)

0 = −γ
∑
i

nci
∑
j

αij(nj + 1)Pn1n2..∑
k αik(nk + 1) + nsi

+ γ
∑
j

(nj + 1)Pn1n2..nj+1.., (3.27)
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and the recursive algebraic difference equations are

Pn1n2.. =



Po , n1,2,.. = 0

..

1∑
j nj

∑
i n

c
i

∑′
j(nj 6=0)

αijnjPn1n2..nj−1..∑
k αik(nk+1)−αij+nsi

, ∃ nj = 0

..

1∑
j nj

∑
i n

c
i

∑
j

αijnjPn1n2..nj−1..∑
k αik(nk+1)−αij+nsi

, n1,2,.. 6= 0.

(3.28)

Again we ascribe the normalization to the vacuum state, Po. The primed summation,∑′
j(nj 6=0), indicates that any term where nj = 0, which connects to unphysical states

with negative particle number, is omitted.

The solution to this difference algebraic equation is well approximated, in the special

case where αii+j = βj, i = 1, 2..u, j = 0, 1, 2, .., v−1, i+j is circular around v, and nsi , n
c
i

all the same, by

P (n1,n2,..) =
1

Z
· exp

(
− 1

2

(
n1 n2 ..

)
· A ·

n1

n2

..

+ B ·

n1

n2

..

) (3.29)

with

A =


∑
i β

2
i

nc

∑
i,j 6=i βiβj

nc
..∑

i,j 6=i βiβj

nc

∑
i β

2
i

nc
..

.. .. ..

 (3.30)

and

B =
(
nc−ns
nc

nc−ns
nc

..
)
. (3.31)

The off-diagonal terms in A are all the same. So are the diagonal terms.

Eq. (3.29) can also be written with matrix A factorized as a sum of v linear terms,

squared individually,

P(n1,n2,..) =
1

Z
·exp

(
1
2

v−1∑
i=0

(βin1+βmodv(i+1)n2+βmodv(i+2)n3+..)2+ nc−ns
nc

∑
j

nj

)
, (3.32)

where the index for β is given by the modulus v expression, e.g. βmodv(v−1+1) = βo.

We see from this form that even though the number of labels for βi only depends

on the number of modes, v, due the sum
∑v−1

i=0 , the approximation has to have one

reservoir associated with each term within it. From this we see that in order for our
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approximation to be physically realistic, there needs to be as many reservoirs as there

are modes, u ≥ v.

3.2.2 Approximation Error of the Analytic Expression

To prove the validity of the multivariate Gaussian (3.29) as an approximate, special

solution for the population distribution (3.28), we isolate the residual of (3.29) when

placed into the continuous version of (3.28), in two modes. The steps illustrate the

intricate algebraic interplay in the solution and might be indicative of a way to obtain

an exact solution. We start with the two mode version of the last case in (3.28) in the

special notation we proposed for the coupling terms, βo, β1,

Pnp =
nc

n+ p

(
βonPn−1p + β1pPnp−1

βon+ β1p+ ns
+
β1nPn−1p + βopPnp−1

β1n+ βop+ ns
,

)
. (3.33)

We dropped the ones in the denominators of (3.28), and grouped the resulting expres-

sions together. The approximate solution for it, (3.29), in two modes becomes,

P(n,p) = exp

(
−
(
n p

)
·

(
β2
o+β2

1

2nc

β1βo
nc

β1βo
nc

β2
o+β2

1

2nc

)
·

(
n

p

)
+
(
nc−ns
nc

nc−ns
nc

)(n
p

))
. (3.34)

The derivatives of (3.34) are,

∂nP(n,p) =
1

nc

(
− (β2

o + β2
1)n− 2βoβ1p− ns + 1

)
P(n,p) (3.35)

∂pP(n,p) =
1

nc

(
− (β2

o + β2
1)p− 2βoβ1n− ns + 1

)
P(n,p). (3.36)

Pn−1p and Pnp−1 in (3.33) are turned into P(n,p) − 1 · ∂nP(n,p) and P(n,p) − 1 · ∂pP(n,p).

Eqs. (3.35, 3.36) are placed into (3.33), the P(n,p) cancels on either side and we are left

with

1 ≈
1

n+ p

(
βon

(
(β2
o + β2

1)n+ 2βoβ1p+ ns
)

+ β1p
(
(β2
o + β2

1)p+ 2βoβ1n+ ns
)

βon+ β1p+ ns

+
β1n

(
(β2
o + β2

1)n+ 2βoβ1p+ ns
)

+ βop
(
(β2
o + β2

1)p+ 2βoβ1n+ ns
)

β1n+ β0p+ ns

)
.

(3.37)
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We focus on showing the validity of this expression. We first use the identity βo+β1 = 1
to manipulate, e.g.,

βon
(
(β2
o + β2

1)n+ 2βoβ1p+ ns
)

= βon
[
(1− 2βoβ1)n+

(
1− (β2

o + β2
1)
)
p
]

+ nns − β1nns
= βon[n+ p] + nns − βon

[
2βoβ1n+ (β2

o + β2
1)p
]
− β1nns

and, focusing on the first line of (3.37), we complete terms which factorize in (n+ p),

1

n+ p

(
βon(n+ p) + nns + β1p(n+ p) + pns

βon+ β1p+ ns

+
− βon(2β0β1n+ (β2

o + β2
1)p)− β1nns − β1p(2βoβ1p+ (β2

o + β2
1)n)− βopns

β0n+ β1p+ ns

)
.

(3.38)

The subtle interplay in grouping the terms employed here occurs on three other oc-

casions during the expansion. The first line of (3.38) is 1 and we group terms on the

second line,

1 +
1

n+ p

(
− 2β0β1(βon

2 + β1p
2)− (β2

o + β2
1)np− (β1n+ βop)ns

β0n+ β1p+ ns

)
. (3.39)

The term (β2
o +β2

1)np had a prefactor βo+β1 which simplified to one. We use the same

identity once again on one of the term which occurs twice, −2...,

−β0β1(βon
2 + β1p

2) = −βoβ1
(
(1− β1)n2 + (1− βo)p2)

= βoβ1(β1n
2 + βop

2)− βoβ1(n2 + p2),

to obtain,

1 +
1

n+ p

(
− β0β1(βon

2 + β1p
2) + β0β1(β1n

2 + β0p
2)− β0β1(n2 + p2)− (β2

o + β2
1)np− (β1n+ βop)ns

β0n+ β1p+ ns

)
.

(3.40)

We now factorize the first two terms and the last three terms together,

1 +
1

n+ p

(
βoβ1

(
(β1 − βo)n2 + (βo − β1)p2)

β0n+ β1p+ ns
−

(βon+ β1p+ ns)(β1n+ βop)

βon+ β1p+ ns

)
(3.41)

or

1 +
1

n+ p

(
βoβ1(β1 − βo)(n2 − p2)

β0n+ β1p+ ns
−
(
β1n+ βop

))
. (3.42)
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The manipulations (3.38–3.42) are also performed with second line of (3.37) which
now becomes

1 ≈ 1 +
1

n+ p

(
βoβ1(β1 − βo)(n2 − p2)

β0n+ β1p+ ns
−
(
β1n+ βop

))

+ 1 +
1

n+ p

(
βoβ1(βo − β1)(n2 − p2)

β1n+ βop+ ns
−
(
βon+ β1p

))
.

(3.43)

This further simplifies as

0 ≈
1

n+ p

(
βoβ1(β1 − βo)(n2 − p2)

β0n+ β1p+ ns
+
βoβ1(βo − β1)(n2 − p2)

β1n+ βop+ ns

)

+ 1 +
1

n+ p

(
−
(
β1n+ βop

)
−
(
βon+ β1p

)) (3.44)

The 1/(n+p) on the first line cancels with (n2−p2) = (n+p)(n−p) while the second

line vanishes identically. We obtain the residual for (3.37),

0 ≈ βoβ1

(
(β1 − βo)(n− p)
β0n+ β1p+ ns

+
(βo − β1)(n− p)
β1n+ βop+ ns

)
. (3.45)

Our expression (3.34) is therefore exact at βo,1 = 1, 0 or βo,1 = 0.5. We shall see in

Chapter 5 that this corresponds to either independent pumping or equal pumping (the

ridge). With values of βo,1 in between (3.34) is approximate. Careful study of this

derivation along with the factorized expression (3.32) could lead to the formulation of

a fully general analytical expression for the population distribution.

3.2.3 Multivariate Gaussian of a Three-mode Population

The three-mode population distribution has the highest number of modes which can

be visualized at once by using the three physical dimensions along with color coding.

It is also the highest one for which the full Fock space steady-state solution (3.28) can

be easily reached computationally (the three-mode population presented here would

have 15003 = 3.38× 109 elements if obtained computationally). Beyond three modes,

one has to rely strictly on the mathematical representation and marginal probability

distributions to study population distributions, and the analytical expression (3.29)

becomes the primary tool. We therefore use the three-mode analytic solution to show

a full size population distribution and to illustrate the relationship of this distribution

to the marginal ones.
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Figure 3.3: (A) Marginal, P(n,p) =
∫
P(n,p,q)dq, and (B) joint, P(n,p,q), population distribution of

a 3-mode condensate obtained with the analytical expression (3.29), with βo,1,2 = 14
36 ,

11
36 ,

11
36 , (ns =

10000, nc = 10400)

The analytical expression we obtained is symmetric in all the modes. One can think

of a triangular configuration of three reservoirs and three modes where it is possible,

βo = α11, α22, α33, β1 = α12, α23, α31, β2 = α13, α21, α32. We chose values of βo,1,2 =
14
36
, 11

36
, 11

36
. Figure 3.3A shows the marginal population distribution P(n,p) =

∫
P(n,p,q)dq

obtained with (3.29) as well as the full P(n,p,q) representation (Fig.3.3B).

One can see from Figure 3.3B that the probability distribution is concentrated

over a plane in the space of occupation numbers, generalizing the near-ridge shape

distribution of the two-mode case. The marginal distribution of the two-mode case

(Fig. 3.3A), is seen to be a truncated ridge. This quantity describes the probability of

a given occupation of the two modes, irrespective of the occupation of the third. Note

that although the marginal distribution is non-zero at n=p=0, there is no probability

for the vacuum state in the full distribution. This is due to the finite probability of

states in which two of the modes are empty, and all the occupation is in the third mode.

This should be borne in mind when interpreting marginal distributions for many-mode

condensates.

3.3 Discussion

Having a theory which is fully quantum mechanical allows to obtain population distri-

butions of many-mode condensates. Averaging over quantum and thermal fluctuations

leads to semiclassical or mean-field theories. Having a distributed value for occupation

numbers does however increase substantially the complexity of the problem at hand.

In the steady-state and with a particle conserving equation of motion, obtaining the
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population directly requires the use of the entire relevant diagonal space of the density

matrix. This is done with one of the two detailed balance difference algebraic equa-

tions that the model provides. In many modes, this makes the problem intractable

quite rapidly. The difference algebraic equation can be manipulated such that only

multiple integer of the Fock space need to be visited, but this type of solution loses ac-

curacy very rapidly outside of trivial sets of parameters such as independent pumping

and equal pumping (the ridge).

The analytical solutions we developed alleviate this problem. They take the form

of multivariate Gaussians which express the population distribution in single-reservoir

pumping two (3.8) or several modes (3.9), or many reservoirs pumping many modes

(3.29). This type of solution is obtained by observing the patterns in formulas and in

plots obtained from them, in combination with formal derivation. The work presented

here could only provide an approximate solution for the many-reservoir many-mode

model but we have paved the way for more general and accurate solution by point-

ing out the patterns which occur in the isolation (3.37–3.45) of the residual in the

approximation, (3.45).

We shall see in Chapter 5 how population distributions and the way that they de-

scribe how fluctuations are correlated play an important role in determining the deco-

herence of exciton-polariton Bose-Einstein condensates. We also observe in Figs. 3.2A,

3.3B that, while for a single mode condensate [Whit09] the zero-particle cutoff could be

neglected above threshold in order to make the analytical steps simpler, in multi-mode

condensates the cutoff continues to plays an important role, even far above threshold.

This is because of the occurrence of a soft mode in the population distribution which

allows the distribution to reach the zero particle boundary.
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Chapter 4

Coherence Functions

We now calculate time-dependent expectation values. The last chap-

ter merely provided us with the steady state reduced density matrix. Here we

introduce an extra level of difficulty by considering the action of operators as well as

dependence on time. The physical quantities we now extend the theory towards are

correlation functions, both first,

g(1) =
〈a†(t)a(0)〉√

〈a†(t)a(t)〉〈a†(0)a(0)〉
, (4.1)

and second order, e.g. g(2) ∝ 〈a†(0)a†(t)a(t)a(0)〉. The second order function we fo-

cus on corresponds to the coherence decay of the intensity oscillations due to beating

between the modes. This can be understood as the dephasing of the Josephson oscil-

lations.

As a first step, we shall spend some time looking at the physical grounding for

coherence functions (Sec. 4.1), drawing their link to power spectral density, the physical

quantity of the system that they describe.

We then move to compute the first order coherence function (4.2) which is the

inverse Fourier transform of the emission spectrum; we obtain a matrix equation which

allows us to calculate it (Sec. 4.2.1). We show how it is solved numerically for two

reservoirs and two modes, and give an example solution which highlights how the

correlation of fluctuations between the two modes gives rise to extended coherence

times. This is a quantitative manifestation of multimode dynamics (Sec. 4.2.2).

To make it easier to calculate the coherence function, we approximate the matrix

equation with a continuous, linearized Fokker-Planck-like equation [Whit09], and reveal
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how it is solved. We show how the solution compares to full numerics (Sec. 4.3.1). As

well, we present a simpler approximation scheme, namely the static limit derivation of

the linewidth (Sec. 4.3.3).

On Josephson coherence decay (Sec. 4.4), we first explain the origin of the corre-

lation function we calculate (Sec. 4.4.1). We then obtain the matrix equation which

describes it and the static limit approximation for it (Sec. 4.4.2). Finally we show how

the correlation function for the beating, g(2), can factorize into an absorption and an

emission function, g
(1)
a ·g(1)

e , depending on the form of the population distribution (Sec.

4.4.3).

4.1 Physical Interpretation of Coherence Functions

Quantum coherence functions are the expectation value of the two-time correlation

of operators, 〈A†(τ)A(0)〉. They serve to describe the wave nature of a system and

the random fluctations within it. In quantum optics, coherence functions, along with

coherent states, were introduced by Glauber, in relation to the classical limit of quan-

tum electrodynamics [Glau63]. The first order coherence function, g(1), is the Fourier

transform of the power spectrum of the system. The visibility in an interferometer

gives a measure of it [Scul97]. Second order coherence gives a measure of intensity fluc-

tuations. The Hanbury Brown and Twiss or intensity interferometer provides second

order coherence measurements [Brow57].

The link between coherence functions and fluctuations in the system is often drawn

in a way that is historically and experimentally relevant but physically obscure. The

fact that two time variables appear in them is the result of a mathematical manipu-

lation, which is also mimicked by an interferometer (dividing a signal and imposing a

delay). Most importantly, the underlying and intrinsic properties of the system that

it describes however, is its power spectrum. We spend a few paragraphs going from

spectral density to coherence functions, with the use of little more than the operator

version of the Wiener-Khintchin theorem [Weis].

When considered with the theories of thermodynamics, coherence functions can

be presented by using the fact that the spectral density has the same form as a lin-

ear response function (Sec. 1.2.4). This is used to invoke the fluctuation-dissipation

theorem [Call51, Lax60, Lax63] which then prompts the use of a measuring/response element

to introduce coherence functions [Scul97]. We shall stay focused on the fluctuations in
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our system and show that the inverse transform of our spectral density is indeed the

coherence function.

Coherence functions are deep-rooted in the concept of long-range order, ODLRO,

[Yang62]. ODLRO is readily seen from the momentum space [Pita03] and Fourier do-

main (Sec. 1.1.4). We therefore start with the power spectral density of an arbitrary

operator, A(t) whose Fourier transform is A(ν),

〈A†A〉. (4.2)

We first need to review the sign convention for i in the Fourier transform of opera-

tors. To do this, we start with the Schrödinger equation,

Ψ̇ = −iHΨ ⇒ Ψ(t) = UΨo, U = e−iHt, (4.3)

which leads to our standard expression for the evolution of ρ(t),

ρ(t) = UρoU
† ⇒ ρ̇ = −i[H, ρ]. (4.4)

Moving from the Schrödinger, AS, to the Heisenberg, AH , picture and using an expec-

tation value as a representation invariant reference,

〈ASρ(t)〉 = 〈ASUρoU †〉 = 〈U †ASUρo〉, (4.5)

A(t) ≡ AH = U †ASU ⇒ ȦH = i[H,AH ], (4.6)

we read the correct sign for i in the evolution of A(t). One has to be careful in

determining the sign convention of A†(t),

Ȧ†H = −i[A†H , H]. (4.7)

We have therefore established the form of the transformation of Heisenberg picture

operators from time to frequency domain,

A(ν) =

∫ ∞
−∞

e2πiνtA(t)dt ⇔ A(t) =

∫ ∞
−∞

e−2πiνtA(ν)dν (4.8)

A†(ν) =

∫ ∞
−∞

e−2πiνtA†(t)dt ⇔ A†(t) =

∫ ∞
−∞

e2πiνtA†(ν)dν. (4.9)

Going back to the spectral density of our operator, its inverse Fourier transform is
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given by,∫ ∞
−∞

e2πiντ 〈A†A〉dν =

∫ ∞
−∞

e2πiντTr
[
A†(ν)A(ν)ρ

]
dν

= Tr
[ ∫∫ ∞

−∞
e2πiντA†(ν)A(ν ′)δ(ν ′ − ν)dνdν ′ρ

]
.

(4.10)

We used the fact that the density operator doesn’t have any time (frequency) depen-

dence in the Heisenberg picture to apply the Fourier transform solely on the operators,

and added a dummy additional frequency ν ′ along with a delta function. The delta

function is where the second time dependence originates from in the correlation func-

tion:

δ(ν ′ − ν) =

∫ ∞
−∞

e−2πi(ν′−ν)tdt. (4.11)

We group the frequencies, ν, ν ′, and rearrange the integration as follows,

∫ ∞
−∞

e2πiντ 〈A†A〉dν = Tr

[∫ ∞
−∞

[ ∫ ∞
−∞

e2πiν(t+τ)A†(ν)dν

∫ ∞
−∞

e−2πiν′tA(ν ′)dν ′
]
ρ dt

]

= Tr
[ ∫ ∞
−∞

A†(t+ τ)A(t)ρ dt
]
.

(4.12)

We then invoke ergodicity along with the mixed state nature of our density matrix

formalism to group the ensemble average provided by the trace with the integration in

time. And we thereby reach a coherence function,

G(τ) = 〈A†(t+ τ)A(t)〉. (4.13)

At last, the fact that our system is statistically stationary allows to choose any reference

time and, in particular, t = 0,

G(τ) = 〈A†(τ)A(0)〉. (4.14)

Having obtained the standard form of coherence functions, we revert back to the

Schrödinger picture, A ≡ AS,

G(τ) = 〈U †A†UAρo〉

= 〈A†UAρoU †〉.
(4.15)

And we adopt a Liouville notation, which is more appropriate for open dissipative
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systems [Thom02], ρ̇ = Lρ, since the time evolution of the reduced system is not unitary,

and we write,

G(τ) = 〈A†eLtAρo〉. (4.16)

We note that feedback from the reservoirs, inherent with treating open dissipative

systems, is implicitly neglected while transitioning from unitary evolution to Liouville

operator. The feedback traces back to the Born and Markov approximations introduced

in Section 1.2.2 and the adiabatic elimination in Section 2.2. The short exposé in

[Swai81] isolates the term giving rise to this feedback from the Laplace transform of

the “unitary” evolution operator of the weak form of the quantum regression theorem.

This form of the theorem consists in defining an operator ρ′ = Aρ and making use of

a single operator form [Swai81],

G(τ) = 〈A†ρ′(τ)〉. (4.17)

As a side note, there also exists a stronger form of the quantum regression theorem,

〈A†(τ)〉 = c(τ)〈A†〉 ∝ 〈A†(τ)A〉 = c(τ)〈A†A〉, which applies only in linear Markovian

systems [Scul97].

Having interpreted the use of coherence functions to describe the condensate order

parameter, the remainder of the chapter shall calculate them, in specific first and second

order forms.

4.2 First Order Coherence

The first order coherence, g(1), the inverse Fourier transform of the spectral density of

the energy fluctuations in the system, also corresponds to the lineshape of the emission

from the cavity. In this section, we go through the full derivation of the general first

order coherence function and present the numerical solution for it, in two modes. Also

we show how, the phase between condensate modes being free, the cross-correlation,

〈a†1(τ)a2(0)〉, is zero in our system (Sec. 4.2.3). This will lead us in Section 4.3 to

develop approximate solutions for 〈a†1(τ)a1(0)〉.

4.2.1 First Order Coherence Function

Based on the equation of motion we obtained for a many-reservoir pumping many-

mode condensate (2.1), we shall derive an equation of motion for the field distribution,

un1n2.., the magnitude of which shall provide us with g(1). In light of the discussion
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held in Sec. 4.1, we start with the power spectral density of the first mode, given by,

ĝ(1)(ν) = 〈â†1â1〉 (4.18)

where â1(ν) is the Fourier transform of the operator a1(t). The choice of the first mode

is arbitrary. The corresponding coherence function we shall work with is

g(1)(τ) = 〈a†1(τ)a1(0)〉. (4.19)

In superoperator form, it reads,

g(1)(τ) = 〈a†1eLτa1ρo〉. (4.20)

And we define ρ′(τ) = eLτa1ρo such that

g(1)(τ) = 〈a†1ρ′(τ)〉. (4.21)

Next, we introduce the distribution un1n2.. =
√
n1ρ

′ n1 n2..
n1−1n2..

which provides a convenient

way to manipulate the prefactor terms but should not be strictly interpreted as a

physical density matrix object since its magnitude is not conserved. Also, as we will

see below, the equation of motion of its elements regroups terms which do not have

the same physical origin.

We start our expansion with u̇n1n2.. =
√
n1Lρ′ n1 n2..

n1−1n2..
. We consider separately the

contribution from the pumping (Lp, 2.47), decay (Ld, 1.44) and condensate Hamilto-

nian, −i[H, ρ], (2.91). We neglect terms of O(n/ns) in the denominator of the pumping

component since ns � 〈n〉 for our system.

√
n1Lpρ′

n1 n2..
n1−1n2.. =

√
n1γ

∑
i

nci

[
−
(∑

j αij(nj + 1)− αi1
2

)
ρ′
n1 n2..
n1−1n2..∑

j αij(nj + 1)− αi1
2 + nsi

+
αi1
√
n1 − 1

√
n1ρ
′ n1−1n2..
n1−2n2..∑

k αik(nk + 1)− 3αi1
2 + nsi

+
∑
j 6=1

αijnjρ
′ n1 n2..nj−1..
n1−1n2..nj−1..∑

k αik(nk + 1)− αij − αi1
2 + nsi

] (4.22)
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The decay term gives,

√
n1Ldρ′

n1 n2..
n1−1n2.. =

√
n1γ

[
−
(∑

j

nj − 1
2

)
ρ′
n1 n2..
n1−1n2.. +

√
n1
√
n1 + 1ρ′

n1+1n2..
n1 n2.. (4.23)

+
∑
j 6=1

(nj + 1)ρ′
n1 n2..nj+1..
n1−1n2..nj+1..

]
,

while the condensate modes Hamiltonian gives,

√
n1〈n1−1, n(j 6=1)| − i[H, ρ′] |n(j)〉 = −i

√
n1

[
κ1
(
(n1−1)2−n21

)
+
∑
j 6=1

ηj
(
(n1−1)nj− n1nj

)]
ρ′
n1 n2..
n1−1n2.. .

(4.24)

In the condensate Hamiltonian, H (2.91), we simplified η1j = ηj1 = ηj and absorbed

the factor 1
2
, since the matrix of interaction coefficients is symmetric.

We now come to group the terms in
√
n1,
√
n1 ± 1 to form u..ni.., u..ni±1... One

can see in (4.22, 4.23) that the offset factors
√
n1 ± 1 originate from inside the square

brackets, meaning that they come from the evolution, L, whereas the factors
√
n1

come from outside and therefore originate from the operator, 〈a†1...〉. As mentioned

above, the evolution of the distribution un1n2.. combines terms of different origin. Our

manipulations provide the general expression for the evolution of the matrix object

un1n2.. in our system of many reservoirs pumping many modes,

u̇n1n2.. = γ
∑
i

nci

[
−
(∑

j αij(nj + 1)− αi1
2

)
un1n2..∑

j αij(nj + 1)− αi1
2 + nsi

+
∑
j

αijnjun1n2..nj−1..∑
k αik(nk + 1)− αij − αi1

2 + nsi

]

+γ

[(∑
j

nj − 1
2

)
un1n2.. + n1un1+1n2.. +

∑
j 6=1

(nj + 1)un1n2..nj+1..

]
+i(κ1(2n1 − 1)un1n2.. + i

∑
j 6=1

ηjnjun1n2...

(4.25)

To write the initial condition for un1n2.., we note that at τ = 0 (see (4.20)) we

sample the steady state component of the system,

un1n2..(0) = 〈n1, n2, ...|a†1a1ρo|n1, n2, ...〉 = n1Pn1n2.., (4.26)

with Pn1n2.. given by (3.28).

Lastly, the magnitude of u̇n1n2.. gives the coherence function,

g(1)(τ) =
1

〈n1〉
∑
n1,n2..

un1n2..(τ). (4.27)
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For up to several hundreds particles and in two modes, (4.25) can be integrated

numerically, allowing us to obtain g(1)(τ) without further approximations.

4.2.2 Numerical Solution for the Coherence Function

We briefly discuss the numerical approach for solving (4.25). The solution was imple-

mented in two modes (n1, n2 → n, p; for a two-mode form of (4.25), see (C.1)) using the

simplest numerical scheme, forward Euler. The challenge of having to solve in the order

a one million coupled equations dissuaded us from investing further effort in developing

a code with more elaborate the numerical techniques, e.g. Runge-Kutta [Pres07], after

we obtained reliable numerical solutions. The numerical toolboxes we investigated in

Matlab would not support such a large system. We used the code to explore how the

linewidth varies with the parameters αij, κ, η in a reduced, i.e. smaller nc, ns, two-

reservoir, two-mode system, out of which we found an interesting multimode feature,

also shown here (Fig. 4.1). In Chapter 5, we will present results obtained in a two-

reservoir, two-mode system system containing several hundreds particles, as seen in

experiments [Tosi12, Abba13, Love08, Whit09]. These full runs, being quite time consuming,

were generated only a small number of times.

The size of the numerical problem is determined by the maximum occupation num-

ber which must be considered, in turn depending on the model parameters. In practice

we chose pmax, nmax such that the occupation probability in the steady-state, Pnmax pmax ,

is at one-thousandth of its maximum, (Pnp)max. The edges of the occupation matrix

that we treat form “natural” and “artificial” boundaries [Kamp07]. The “natural” bound-

aries occur at n = 0, p = 0 where, if treated naively, some prefactors would imply

unphysical transitions, e.g. u0p ↔ u−1p. We do not need to impose any additional

conditions on these boundaries, only pay close attention to the terms which would give

rise to these unphysical transitions. They occur in pairs (one linked with Lp the other

with Ld), and we eliminate them appropriately along these boundaries. The “artificial”

boundaries occur at pmax, nmax. The prefactors corresponding to transitions outside

these boundaries do not vanish i.e. there is some “probability flow” in and out of the

region treated numerically. To deal with these boundaries we set u̇np = 0 on them.

We found that this procedure, along with the criteria for the size of the region of in-

terest stated above, generates convergent results and reproduces published results for

the single-mode case [Whit09]. We observed that more elaborate schemes such as that

used with natural boundaries would introduce mismatch in the complex phase of the

elements within the distribution as it evolves and fail to produce converging results.
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In implementing the solution, the time steps have to be kept very small, 0.0001γ

so that the evolution, produced by the weighted difference between neighbors, remains

consistent, i.e. equilibrates, across the distribution. We also note that it is important

in defining the coefficients in (4.25) to observe as written the factors ±0.5, ±1. Even

Figure 4.1: Sampling of the parameter space with numerical solutions in a reduced system (αij =
0.5, ns = 50, nc = 70). (A) Population distribution. (B-E) Coherence decay with κ = 5e −
5, 0.0005, 0.005, 0.05 and corresponding values of η in each pane. The coherence time increases for
increasing η up to a value of η = κ and then decreases again.

though they appear small compared with n and p, they are the ones which generate the

81



4.2. FIRST ORDER COHERENCE

difference between two coefficients in (4.25) and are therefore ultimately linked with

transition rates. Appendix B gives relevant extracts of the code implementation.

We used a reduced system to explore the parameter space of our model (Sec. 2.4):

saturation parameter, ns = 50; pumping strength, nc = 70; reservoir i to condensates

j normalized coupling, αij = 0.5 and decay rate γ = 1, which also sets the unit of

time. The ridge-shaped population distribution obtained with these parameters is

shown in Fig. 4.1A. Also shown (Fig.4.1B-E) are 16 runs of the code with intra- and

inter-mode interactions (Sec. 2.5): κ, η = 5e−5, 0.0005, 0.005, 0.05. We notice that, in

the ridge case, fluctuations in n and p are anti-correlated [Sing80]. This translates into

energy fluctuations due to κ and η partly canceling each other when both terms are of

equal strength. This is observed in Fig.4.1C-E where the coherence time increases until

η = κ and then (Fig.4.1C-D) decreases with η becoming stronger than κ. We will come

back to this in a specific example in Chapter 5. We also notice the typical exponential

(linear on a semilog plot) decay in Fig.4.1B which gradually becomes Gaussian Fig.4.1E

(parabolic on semilog) as the interaction strength increases. The Gaussian decay is

characteristic of the static limit, as we shall see in Sec. 4.3.3.

4.2.3 Cross-Correlation Function

Without the non-particle conserving terms in the Hamiltonian (2.91) the phase between

any two condensate modes is free. This is shown by the cross-correlation function,

〈a†1(τ)a2〉, being zero. We show it in a two-mode system, where utnp(0) is zero,

utnp = 〈n, p | a†1eLta2ρ | n, p〉

= 〈n, p | a†1ρ′(τ) | n, p〉

=
√
n ρ′n−1npp(τ)

(4.28)

with

ρ′nnpp = 〈n, p | a2ρ̃ | n, p〉

=
√
p+ 1 ρnnp+1p

(4.29)

such that

utnp(0) =
√
n ρ′n−1npp(0) =

√
n
√
p+ 1 ρn−1np+1p,ss = 0, (4.30)

since the steady state, ρss, is diagonal in the absence of non-particle conserving terms.

Had there been particle exchange induced by the condensate Hamiltonian, the steady
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state would not be diagonal, the phase between the modes would be determined and

the cross-coherence function would not vanish.

4.3 First Order Coherence – Approximate Solutions

In order to make further headway towards extracting the physics of multi-mode con-

densates, we need to move beyond the direct numerical solution for the density matrix

in Fock space. Here we present two semi-analytic approaches to obtain the first order

coherence function. Some computational resources are needed, but in a problem with

reduced effective dimensionality.

Analytic work is being made more difficult in this chapter compared with the work

on population distributions (Chapter 3) for two reasons. In Chapter 3, it was possible

to transform the steady state equation into a differential equation without having to

consider the zero-particle cutoff until after an expression is obtained. In contrast, for

coherence functions the cutoff enters the problem in the first step, it is part of the initial

condition. Also, since we are dealing with off-diagonal terms, the commutator of the

condensate Hamiltonian contributes to the equation of motion. These two elements

make the solution of multi-mode coherence functions beyond the reach of analytic work.

The first approach we shall present emulates the method of solving the second

order continuity equation that is often used to solve for one-step (Poisson), time-

local (Markovian) processes, the Fokker-Planck equation [Kamp07, Whit09]; although here

additional terms are present to account for decay. The second, and much simpler,

approach is to neglect the dynamics due to pumping and decay between the times

where the two operators, a†(τ) and a(0) in g(1)(τ), are evaluated. The decay of g(1)(τ)

is then entirely due to the effect of the condensate Hamiltonian. This is the static limit

approximation, previously employed in the single-mode case [Love08, Whit09].

4.3.1 Fokker-Planck Approach

The Fokker-Planck approach combines two approximation schemes. First the discrete

occupation numbers are treated as continuous and transition operators are approxi-

mated by differential operators. This is known as a Kramer-Moyal expansion [Gard98].

This first approximation is done in the same way as we have done to obtain population

distributions, in Chapter 3, except here the step operators are turned into derivatives

taken up to second order. The resulting equation is a Fokker-Planck form, i.e. a
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convection equation, in which the distribution u undergoes drift and diffusion. There

are however, additional terms which induce a decay. The second approximation is to

expand the prefactors in u into a Taylor series around the maximum of the initial con-

dition, uo (4.26), and to include all the terms which still allow for an analytic solution

to the Fokker-Planck equation i.e. at most a linear drift component and a constant

diffusion rate. The solution is obtained by placing the equation thereby obtained in

reciprocal space and by solving it with the method of characteristics. We present our

solution in the general many-reservoir many-mode formalism. In Appendix C.1, we

show a parallel set of equations expressed in a two-reservoir, two-mode formalism.

Kramer-Moyal Expansion and Linearization

We start our Kramer-Moyal expansion by rewriting our distribution function (4.25)

with prefactor functions and step operators,

u̇n1n2.. = (~E−1−1) · [qn1n2..un1n2..] + (~E−1) · [rn1n2..un1n2..] +hn1n2..un1n2.. + sn1n2..un1n2..,

(4.31)
~E = (En1 ,En2 , ..) is a step operator vector. The ith step operator, Eni , acting on the

ith element qi,n1n2..un1n2.. gives qi,n1n2..ni+1..un1n2....ni+1... The hn1n2.. term arises from

the fact that for mode one, the prefactor of un1n2.. (4.25) has an additional −1
2

in

it, both for pumping and decay. This −1
2

component has to be brought out of the

step operator expansion; it will give rise to the Shawlow-Townes decay. The term

sn1n2.. carries the interaction induced decay component of u. The exact realizations of

qn1n2.., rn1n2.., hn1n2.. and sn1n2.. are not shown; for a two mode version, see Appendix

C.1, Equations (C.3−C.8).

We then use the fact that u̇n1n2.. is smooth with respect to ni to make it continuous

and Taylor expand the step operators into derivatives, E±1
ni
→ 1 ± ∂ni + 1

2
∂2
ni

, up to

second order. The step operator distribution function (4.31) takes a Fokker-Planck

form,

u̇(n1n2..) = ∇ · [(r(n1n2..) − q(n1n2..))u(n1n2..)] + 1
2
∇2 · [(r(n1n2..) + q(n1n2..))u(n1n2..)]

+ h(n1n2..)u(n1n2..) + s(n1n2..)u(n1n2..)

(4.32)

where ∇ = (∂n1, ∂n2, ..), ∇2 = (∂2
n1, ∂

2
n2, ..). The first order or drift term, ∇, has coeffi-

cient, (r(n1n2..)−q(n1n2..)), while the second order or diffusion term, ∇2, has coefficient,

(r(n1n2..) + q(n1n2..)). The terms in h, s are the ones which make (4.32) differ from be-

ing a Fokker-Planck equation. As stated above, because of them the integral of u̇ is
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non-vanishing, i.e. the integrate of u evaluated at the boundaries is non-zero because

of them, causing the magnitude of u to decay, hence the finite linewidth.

In the next steps we will, (i) determine how the coefficients can be Taylor expanded

and which terms we can be include towards the solution, (ii) place a general function

which reflects these terms in reciprocal space and in a form that can be solved by

the method of characteristics, and (iii) show how the coefficients of the transformed

equation are obtained.

(i) The partial differential form (4.32) we obtained, like the Fokker-Planck equation,

is soluble when h, s and the drift coefficients are at most linear functions, and the

diffusion coefficients are constant. We therefore rearrange (4.32) such that these terms

are easily read from it

u̇ = (h+ s)︸ ︷︷ ︸
linear

u+∇ ·
[ [

r− p + 1
2
∇� (r + q)

]︸ ︷︷ ︸
at most linear

u+ 1
2

(r + q)︸ ︷︷ ︸
constant

�∇u
]

(4.33)

where � denotes the element-wise multiplication.

(ii) We now introduce a general form which contains all the terms which appear above,

v̇ = αv +
∑
i

βin
′
iv +

∑
i

γi∂n′iv +
∑
ij

δij∂n′in
′
jv +

1

2

∑
ij

εij∂
2
n′in
′
j
v, (4.34)

where n′i will become the linearized occupancy (see iii below). This form will allow to

keep track of the coefficients while we switch to the (two-sided) Laplace domain. The

coefficients will be obtained by linearizing the prefactors. Placing (4.34) in recipro-

cal space interchanges the partial differentiation operators with multiplication by the

conjugate variables, ∂n′i → iki, and vice versa, n′i → i∂ki , so that,

α

∫
e−i

∑
i n
′
ikiv din′ = αg (4.35)

βi

∫
e−i

∑
i n
′
ikin′iv d

in′ = iβi∂kig (4.36)

γi

∫
e−i

∑
i n
′
iki∂n′iv d

in′ = iγikig (4.37)

δ′ij

∫
e−i

∑
i,j n

′
i,jki,j∂n′in

′
jv d

i,jn′ = iδ′ij ki

∫
e−ı

∑
j njkjn′jv d

jn′

= −δ′ijki∂kjg (4.38)

εij

∫
e−i

∑
i,j n

′
i,jki,j∂2

n′in
′
j
v di,jn′ = −εijkikjg. (4.39)
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Hence instead of being second order, the equation becomes a first order partial dif-

ferential equation and the linear term (with coefficient δij) now appears before the

derivative,

ġ = αg + i
∑
i

βi∂kig + i
∑
i

γikig −
∑
ij

δ′ijki∂kjg −
1

2

∑
ij

εijkikjg. (4.40)

With the method of characteristics [Kamp07], all the derivatives are expressed in terms

of differentiation with respect to a single independent variable, t,

g(t) → g(t,K(t)) ,
dg

dt
= ∂tg +

∑
j

∂kjg
dkj
dt

.

We rewrite our partial differential equation (4.40) to reflect this,

ġ +
∑
j

(
aj +

∑
i

bijki
)
∂kjg = c g +

∑
i

dikig +
∑
ij

eijkikjg, (4.41)

or, in vector form,

ġ +∇g · (Ã+ B̃K̃) = cg +DKg +KEK̃g, (4.42)

where K̃ is the transpose of K, and the final set of coefficients we will use on is,

aj = −(iβj), bij = −(−δ′ij), c = α, di = iγi, eij = −εij
2
. (4.43)

(iii) We are now in position to extract the coefficients in (4.42), from (4.33). The

linearization point, n′ = n−nl, that we use is the maximum of u at t = 0, uo given by

(4.26), or (C.2) in two modes. The elements of nl are given by,

nli =
〈nin1P(n1,n2,..)〉
〈n1P(n1,n2,..)〉

=
〈niuo〉
〈uo〉

, (4.44)

(C.9) in two modes, and the Taylor expansion of the various terms in (4.33, C.3−C.8
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in two modes), around nl provides us with the coefficients,

ai = −i∂ni(h+ s)|nl (4.45)

bij = ∂nj(ri,n1n2.. − qi,n1n2..)|nl (4.46)

c = h|nl (4.47)

di = i
(
ri,n1n2.. − qi,n1n2.. + 1

2
∂n[j→i](ri,n1n2.. + qi,n1n2..)

)
|nl (4.48)

eii = −1
2
(ri,n1n2.. + qi,n1n2..)|nl , (4.49)

or (C.10−C.14) in two modes. For simplicity, in the linear drift coefficient B, we

neglect the quadratic terms (coefficients for n′2i , p
′2
i , n

′
ip
′
j) in the expansion of r + q,

which our form also allows to treat; they would contribute a small linear term to the

drift coefficient. We point out that the subscript i, i.e. ri, qi, in B (and the second

terms in D) originate from the subscript in Eni while the subscript j, ([j → i] in D)

is linked to n′j in the linearization of the drift (and diffusion) terms. Also, since the

Kramer-Moyal expansion we are using only employs diagonal step operators (in En,Ep
as oppose to a mixture EnEp), the last term, eij, is diagonal.

Solution of the Linearized Differential Equation

We now provide the solution of the linearized differential equation (4.42), the last step

before reaching g(1)(τ). The remaining steps being in matrix form can be carried either

with the general forms above or with the two mode expressions in Appendix C.1. Along

the characteristics given by

k̇j = aj +
∑
i

bijki or K̇ = A+KB, (4.50)

The characteristics equation (4.42) becomes,

dg
(
K(t), t

)
dt

=
[
c+DK +KEK̃

]
g, (4.51)

and solves into,

g = go(Ko) exp
[
ct+D

∫ t

0

Kdt′ +

∫ t

0

KEK̃dt′
]
. (4.52)

In the next steps, we (i) solve the characteristics, (ii) perform the inner integrals in

(4.52), and (iii) provide the full solution and the initial conditions for (4.52).
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(i) The characteristics (4.50) have to be solved in the eigenbasis of B. We define the

eigenvector matrix P and the relations,

B = P−1BP (4.53)

A = AP, K = KP. (4.54)

such that, with B being diagonal, the characteristic equation (4.50) can be written in

the form of uncoupled equations,

K̇P−1 = A+ KP−1B (4.55)

⇒ K̇ = AP + KP−1BP (4.56)

= (AB−1 + K)B (4.57)

⇒ ln(AB−1 + K′)|KKo = Bt. (4.58)

This gives,

K = −AB−1 + (AB−1 + Ko)e
Bt, Ko = −AB−1 + (AB−1 + K)e−Bt. (4.59)

Using the eigenvector relations (4.53, 4.54) and eP
−1BP = P−1eBP , we reach

K = −AB−1 + (AB−1 +Ko)e
Bt, (4.60)

Ko = −AB−1 + (AB−1 +K)e−Bt. (4.61)

It is important that Ko be defined as written here; AB−1 cannot be absorbed into its

definition. This is because for K and t being zero, Ko also has to be zero if go(Ko) in

(4.52) is to be consistent with the rest of the solution.

(ii) Next we solve the integral associated with D in (4.52) by making all the time

dependence in K(t) explicit, placing the integrand in the eigenbasis of B once again

generates a set of uncoupled equations which solve as,∫ t

0

Kdt′ =

∫ t

0

dt′KP−1 (4.62)

=
[
− AB−1t+ KoB

−1(eBt − I)
]
P−1. (4.63)
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We then bring the solution back to the original basis∫ t

0

Kdt′ = −AB−1t+KoB
−1(eBt − I), (4.64)

and substitute Ko (4.61) into the solution,∫ t

0

Kdt′ = −AB−1t+ (AB−1 +K)B−1(I − e−Bt). (4.65)

The integral associated with E in (4.52) is more involved,∫ t

0

KEK̃dt′ =AB−1EB̃−1Ãt

−
∫ t

0

(
(AB−1 +Ko)e

BtEB̃−1Ã+ T.c.
)
dt′

+

∫ t

0

(Ko + AB−1)eBt
′
EeB̃t

′
(K̃o + B̃−1Ã)dt′.

(4.66)

The integral in the second line of (4.66) in performed in the same way as (4.62−4.64),

and gives,

−
(

(AB−1 +Ko)B
−1(eBt − I)EB̃−1Ã+ T.c.

)
. (4.67)

Substituting Ko (4.61) in the solution provides,

−
(

(AB−1 +K)B−1(I − e−Bt)EB̃−1Ã+ T.c.
)
. (4.68)

To determine the last integral in (4.66), the eigenbasis of B also has to be used,

but this time it remains explicit in the solution,

(Ko + AB−1)P
[ ∫ t

0

eBt′P−1EP̃−1eBt′dt′
]
P̃ (K̃o + B̃−1Ã), (4.69)

and Ko (4.61) can already be substituted,

(AB−1 +K)P

[
e−Bt

[ ∫ t

0

eBt′P−1EP̃−1eBt′dt′
]
e−Bt

]
P̃ (B̃−1Ã+ K̃). (4.70)

Here we used the manipulation, ... e−BtP
[
... ⇒ ... e−PBP−1tP

[
... ⇒ ... P

[
e−Bt ...,

and its T.c.. We further define a matrix which combines the eigenvector matrix of B

with E,

Ep = P−1EP̃−1, (4.71)
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and solve the centre part of (4.70) as,

e−Bt
[ ∫ t

0

eBt′Epe
Bt′dt′

]
e−Bt =

∑
ij

ı̂⊗ ̂ ep ij
bii + bjj

(1− e−(bii+bjj)t), (4.72)

since the eBt′ on the left of Ep applies to it row-wise, whereas the one on the right

applies column-wise. The outer product of unit vectors ı̂, ̂ produces a matrix with all

zeros, except for a 1 at position ij; bii, bjj are the diagonal elements of B.

(iii) We therefore write the full solution of our characteristics equation (4.52) as

g = go(Ko) exp

[
ct−DAB−1t+ AB−1EB̃−1Ãt

+D(AB−1 +K)B−1(I − e−Bt)

−
(

(AB−1 +K)B−1(I − e−Bt)EB̃−1Ã+ T.c.
)

+ (AB−1 +K)P
[∑

ij

ı̂⊗ ̂ ep ij
bii + bjj

(1− e−(bii+bjj)t)
]
P̃ (B̃−1Ã+ K̃)

]
,

(4.73)

with ep ij being the elements of Ep (4.71). The initial condition, go, is obtained by

placing uo (4.26), (C.2) in two modes, in the reciprocal space,

go(Ko) =

∫
e−iKo·(n−n

l)n1P(n1,n2,..)d
in

=

(∫
e−iKo·nn1P(n1,n2,..)d

in

)
exp(iKo · nl),

(4.74)

where we shifted by the linearization point, n′ = n−nl, such that go is consistent with

the remainder of the solution.

Obtaining g(1)(τ)

Finally, the solution we seek corresponds to g(K), given by (4.73), evaluated at K(τ) =

0, ∫
e−i

∑
i n
′
ikiu(τ) din′

∣∣∣∣
ki=0

=

∫
u(τ) din′ = g(1)(τ). (4.75)
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This turns (4.73) into

g(1)(τ) = go(τ) exp
[
cτ + ζ(τ) + ξ(τ)

]
(4.76)

with, the term from the first integral, (4.65),

ζ(τ) = −DAB-1τ +DAB-1B-1(I−e-Bτ ), (4.77)

the term from the second integral, (4.66 → 4.68, 4.70, 4.72),

ξ(τ) = AB-1

[
Eτ−

(
B-1(I−e-Bτ )E+T.c.

)
+P
[∑

ij

ı̂⊗̂ Ep ij
Bii+Bjj

(I−e-(Bii+Bjj)τ )
]
P̃

]
B̃-1Ã,

(4.78)

and go(τ) being (4.74) evaluated at,

K ′o = −AB-1(I − e-Bτ ), (4.79)

the value of Ko (4.61) on the characteristic for which K(τ) at time τ is zero.

In evaluating (4.76), the coefficients, Eqs. (4.45−4.49), can be obtained analytically,

while the diagonalization of B (B, P ), which remains explicit in (4.78), and the integral

in g0(τ) (4.74), are performed numerically.

Figure 4.2 shows how the first order coherence function obtained from the Fokker-

Planck approach compares with the direct numerical solution for the two-mode case;

they are in good agreement. Looking more closely, the best fit occurs in the ridge

case, when interactions dominate the form of the decay (Fig. 4.2D, κ, η = 0.005). The

interaction energy is bigger in this case than in the independent case due to larger

population fluctuations in the initial conditions. The worst prediction also occurs

in the ridge case, when the interactions are small (Fig. 4.2D, κ, η = 0.0005). This

time the large fluctuations take the distribution further away from the linearization

point and make the one-point approximative scheme less accurate. We also show

how our method compares with the Kubo form in [Whit09], (Fig. 4.2B, blue dotted

line). Overall, the analytically convenient Kubo expression has lower accuracy than

the Fokker-Planck approach developed here. Appendix C.2 gives further comparisons

of the Kubo formulas with our Fokker-Planck approach.
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Figure 4.2: (A,C) Population distributions for two modes pumped by two reservoirs, with α11,22 = 1,
α12,21 = 0 (independent pumping), and αij = 0.5 (ridge), for ns = 50, nc = 70. (B,D) Comparison of
first order coherence functions obtained numerically (solid lines) or with the Fokker-Planck approach
(dashed lines) for the independent and ridge case. The interactions are either weak, κ, η = 0.0005,
or stronger, κ, η = 0.005. With small interactions and in the independent case, in (B), we compare
the Fokker-Planck approach with the Kubo form of [Whit09] (blue dashed line). The Fokker-Planck
approach agrees well with the numerical solution, particularly when the interactions are strong and
the population fluctuations are large, as seen in the ridge case.

4.3.2 Static Limit

A second approximative approach we consider is to evaluate g(1) in the static limit.

This is cruder than the Fokker-Planck approach but also simpler to implement. For

sufficiently small timescales, we can neglect the dynamics due to gain and loss processes.

In such a situation we can therefore calculate g(1) by considering only the interaction

Hamiltonian for the condensate. Formally, the static limit entails two approximations.

The first is to assume that the evolution of the system is strictly due to interactions, ρ̇ '
L′ρ = −i[H, ρ], with the H from Sec. 2.5, while the second is to assume that n1 does not

vary across the distribution
∫
n1Pn1.... ≈ 〈n1〉

∫
Pn1.... . With these, 〈A†(τ)A(0)〉 (4.14),

is turned into a integral transform with integration kernel related to
√
n1〈...−i[H, ρ′]..〉,

(4.24). We show a general derivation here for g(1).
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We start with

g(1)
s (τ) =

1

〈n1〉
〈a†1eiL

′τa〉, (4.80)

and use,

ρ =
∑
n1,n2..

Pn1n2..|n1, n2, ..〉〈n1, n2..| (4.81)

H =
∑
i

κ1(a†iai)
2 +

1

2

∑
i 6=j

ηija
†
iaia

†
jaj, (4.82)

to further write,

g(1)s (τ) =
1

〈n1〉
∑

n(i),n(j)

〈n(i)|a†1e−iHτa1Pn1n2
|n(j)〉〈n(j)|eiHτ |n(i)〉 (4.83)

=
1

〈n1〉
∑

n(i),n(j)

〈n1-1, n(i 6=1)|
√
n1e−iHτ

√
n1Pn1n2 |n1-1, n(j 6=1)〉〈n(j)|eiHτ |n(i)〉 (4.84)

=
1

〈n1〉
Tr
[
e−i[κ1(n1-1)

2+
∑
j 6=1 η1j(n1-1)nj ..]τn1Pn1n2ei[κ1n

2
1τ+

∑
j 6=1 η1jn1nj ..]τ

]
, (4.85)

where we have kept explicit in the exponentials, e∓iHτ , only the terms which do not

cancel. The factor 1
2

in H disappears with
∑

i 6=j →
∑

j 6=1. This further simplifies as,

g(1)
s (τ) =

1

〈n1〉
∑

n1,n(j 6=1)

n1ei[κ1(2n1-1)+
∑
j ηjnj ]τPn1n2.. (4.86)

≈
∑

n1,n(j 6=1)

ei[2κn1+
∑
j ηjnj ]τPn1n2... (4.87)

In the last step we have made use of the second approximation, i.e. we assumed n1

constant across the distribution. We also simplified, κ1 = κ, η1j = ηj, as we have done

before (4.24).

The general integral (4.87) has to be performed numerically. Appendix C.3 shows,

in two modes, how the static limit can be calculated analytically for independent

(βo,1 = 1, 0) and ridge (βo,1 = 0.5) distributions. In the ridge case, the integral is

performed by changing basis, u = 1√
2
(n−p), v = 1√

2
(n+p).

Figure 4.3 shows how first order coherence functions obtained in the static limit

compare with direct numerical solutions for the two-mode case. The static limit so-

lution corresponds to the numerical solution, at early times, when the interaction is

strong. In these cases, decoherence is rapid and occurs on a time-scale for which the

dynamics of the population are negligible. The best fit is obtained in the ridge case

since the larger population fluctuation makes the interaction broadening larger. The
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Figure 4.3: (A,C) Population distributions for two modes pumped by two reservoirs, with α11,22 = 1,
α12,21 = 0 (independent pumping), and αij = 0.5 (ridge), for ns = 50, nc = 70. (B,D) Comparison of
first order coherence functions obtained numerically (solid lines) or with the static limit approximation
(dashes lines) for the independent and ridge case. The interactions are either small, κ, η = 0.0005,
or stronger, κ, η = 0.005. The static limit approximation improves when the interaction becomes
stronger. The ridge case shows a better approximation due to the population fluctuations being
stronger and therefore having stronger interaction broadening. The faint dotted line is with

∫
n1Pn1....

rather than ≈ 〈n1〉
∫
Pn1....; this simplification does not affect the results significantly.

faint dotted lines show the static limit calculated without assuming that n1 is constant

across the distribution (4.86), (C.20) in two modes. Neglecting the multiplier n1 does

not have much effect. This is also true when the system is at mean threshold, nc = ns,

where the variation of n1 along the distribution is the largest.

4.3.3 Static Limit – Three Modes

The simplicity of the static limit approach allows to perform calculations that are either

prohibitive with the full numerical or quite involved with the Fokker-Planck approach.

Here we combine the analytical expression we obtained for the population distribution

(3.29) with the static limit approach (4.87) to calculate the coherence functions of

three-mode condensates, Fig. 4.4. We present results for the independent case Fig.
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4.4A,C,E and the ridge case Fig. 4.4B,D,F. In three modes, the interaction strengths

κ, η become κ, η2, η3. We present static limit calculations with η2 and η3 being switched

on successively and compare the results with those of the two-mode case.

The parameter values we choose for nc, ns are 10400, 10000, the same as what we

chose to show the three mode population in Sec. 3.2.3. We let β0,1,2 be either 1,0,0 to

form independent modes, Fig. 4.4A, or 1
3
, 1

3
, 1

3
and form the ridge, Fig. 4.4B. In the

independent case, the marginal population distribution, Fig. 4.4C, is no different from

the population distribution of the two-mode case (e.g. Fig. 4.3A). Since the modes

do not bear any correlation, the probability distribution of any of them do not depend

on the others. This is not the case for the marginal probability distribution of the

ridge, Fig. 4.4D. Compared with the two-mode ridge (e.g. Fig. 4.3C), the marginal

distribution has a probability which goes down to zero since the particles can all be in

the mode that is marginalized. We see through this that population fluctuations are

therefore much larger in the ridge case when a third mode is introduced.

Looking at the static limit results, we see that in the independent case, Fig. 4.4D,

the coherence time steadily decreases as η2 and η3 are being switched on. The effect of

introducing intermode interactions is simply to increase the fluctuation energy and to

therefore reduce the coherence time. We also see that the case where κ, η2, η3 = g, g, 0

provides the same coherence decay curve as in the two-mode case with κ, η = g, g. The

marginal probability distribution of the three independent modes condensate being

the same as for the two-mode independent distribution, the fluctuation energy when

interactions only involve two modes is also identical, hence the same decay curve.

In Fig. 4.4D, the coherence decay curves for the three mode ridge follow a different

trend. The cohence time increases slightly when the interaction due to η2 is introduced

and increases further when both η2, η3 are switched on. This is due to the same effect

which was pointed out when discussing the numerical results (Fig. 4.1). Fluctuations

between the modes being anticorrelated, introducing η2 adds some energy fluctuations

which cancels those due to κ, but only when both η2 and η3 are switched on do we

see the intercorrelation effect between the three modes acting in a concerted manner

and producing a significant increase in coherence time. Another way to interpret this

result is to consider the vector in the kernel of the static limit integral transform (4.87).

As we introduce the interactions η2, η3 the kernel vector points closer to the direction

normal to the main axis of the ridge, i.e. the narrowest cut through it, Fig. 4.4B. The

decay time is inversely proportional to this effective width of the ridge and therefore

becomes longer as the integral is performed along an axis where the distribution is

narrower. The independent modes distribution being isotropic the orientation of the
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Figure 4.4: (A,B) Three mode joint population distributions, P(n,p,q), with nc, ns = 10400, 10000

in the independent case β0,1,2 = 1, 0, 0 and in the ridge case β0,1,2 = 1
3 ,

1
3 ,

1
3 . (C,D) Marginal popu-

lation distribution P(n,p) =
∫
P(n,p,q)dq. The independent population distribution being isotropic, its

marginal distribution takes the same form as the independent population distribution in two modes.
In the ridge case, the particles can all be in the marginalized mode and the marginal distribution
goes all the way down to zero, and thereby exhibits larger population fluctuations than the two mode
ridge distribution. (E,F) Static limit results with g = 5e−5, κ = g and η2, η3 being either 0 or g.
Also shown is the static limit result in two modes with κ, η = g, g. In the independent case, only
the magnitude of the total interaction strength influences the decay time. With κ, η2, η3 = g, g, 0 the
decay curve is the same as the one in two modes with κ, η = g, g. In the ridge case, the anticorrelation
in the population fluctuations cause the decay time to increase as η2, η3 are being switched on. Larger
population fluctucations in the marginal distribution explain why the decay time is smaller in three
modes than in two modes for the same interaction strengths.

kernel vector does not have an influence, only its magnitude.
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Finally we compare the decay curves of the three mode ridge and of the two mode

ridge when κ, η2, η3 = g, g, 0 and κ, η = g, g. For identical interaction strengths, the

decay time for the three mode condensate is shorter for the two mode one. This can

be explained by the fact that the marginal probability distribution contains larger

fluctuations than the two mode distributions and that the energy fluctuations are

therefore larger, hence the shorter decay time.

4.4 Second Order Correlation – Dephasing time of

Josephson (Intensity) Oscillations.

Above we have shown how our theory can be used to calculate the first order coherence

function, and hence the linewidth of the optical emission from the polariton condensate.

We now show how it may be used to calculate a higher-order coherence function. In

particular we shall develop a differential equation analogous to (4.25), in two modes

(C.1), for a field distribution u, which allows us to compute the time-dependent second

order coherence function 〈a†1(τ)a2(τ)a†2a1〉. We focus on this specific coherence function

because it corresponds to the oscillations in the emission intensity, which would arise in

a multimode condensate due to beating between the different emission frequencies, i.e.

it is a multimode phenomenon. Such intensity oscillations are similar to those of the a.c.

Josephson effect [Jose62], which has recently been observed for the polariton condensate

in a double-well potential [Lago10]. Our theory will allow to study the dephasing of

these oscillations. We will find that because the condensate modes are coupled, this

dephasing is not, in general, simply related to the decay of first order coherence. Thus

measurements of these intensity oscillations provide information beyond that of the

emission spectrum and could provide insight into the coupling between the condensates.

4.4.1 Intensity Oscillations

To motivate the consideration of the intensity-intensity coherence function, we consider

for definiteness a double-well potential, as studied in [Lago10] and discussed further in

Chapter 5. We suppose that there are two relevant orbitals, aL,R, localized in the left

and right well (see Fig. 4.5), with some tunneling between them.

The single-particle states for this double well are in general a superposition of these

left and right orbitals, a1,2 = c1
c21−c22

aL,R + c2
c22−c21

aR,L, and therefore overlap in space. The
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Figure 4.5: Schematic of a double well potential. In general, single-particle states, a1, a2, in a double
well potential are superpositions of the relevant left and right orbitals, aL, aR.

intensity on the left is

ÎL = a†LaL

= (c∗1a
†
1 + c∗2a

†
2)(c1a1 + c2a2)

= |c2
1|a
†
1a1 + |c2

2|a
†
2a2 + c∗1c2a

†
1a2 + c∗2c1a

†
2a1.

(4.88)

We treat the operators a, a† as the classical, complex amplitudes of the electric field

(order parameter of the condensate) to show how, semiclassically, the intensity on the

left or right oscillates,

〈ÎL〉 = |c2
1|〈a

†
1〉〈a1〉+ |c2

2|〈a
†
2〉〈a2〉+ c∗1c2〈a†1a2〉+ c∗2c1〈a†2a1〉

= |c2
1|n1 + |c2

2|n2 + 2 Re[c∗1c2

√
n1n2ei(ω1−ω2)t]

(4.89)

where ω1,2 are the frequencies of the condensate orbitals in each mode and n1,2 the

densities in the modes. The final term in (4.89) is the beating of the intensity between

the oscillators corresponding to the single-particle orbitals.

The intensity oscillations are non-zero in the semiclassical theory because we as-

sumed a particular phase for the order parameter(s), which could physically arise from

spontaneous symmetry breaking [Pita03]. However, our theory does not include any

terms which fix this (relative) phase, so that the ensemble averaged intensity will not

oscillate, 〈a†1(τ)a2(0)〉 = 0, as shown in Sec. 4.2.3. We interpret this within the semi-

classical theory by noting that the phase of the oscillating component will fluctuate

between members of an ensemble (e.g. different runs of an experiment); our theory is

an average over many such phases. However, we can study how the oscillations in each

member behave, for example considering the intensity-intensity correlation function,

〈I(τ)I(0)〉, and in particular the components relating to the semiclassical oscillation,

〈a†1(τ)a2(τ)a†2a1〉. We will see that these components decay so that the oscillating part

of the intensity-intensity correlation, averaged over different runs, decays.

Experimentally, an oscillating emission from a condensate has indeed been observed

for a double-well potential [Lago10]; the results were shown in Figure 1.12. However we
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note one important difference: the experimental data is an average over many runs

and still reveals oscillations, showing that there are processes which fix the relative

phase of the condensate orbitals, i.e., the origin of the intensity oscillations. Such

a relative phase could be established by the Josephson-like terms, which we neglect

in the strong-trapping regime, as discussed in section 2.5. Thus the experiment may

not be entirely in this regime, although it is in principle accessible. We observe that

these intensity oscillations are non-harmonic, contrary to the expectation based on the

beating of different modes. Finally note that different regimes of a Josephson junction

are possible; the physics discussed above applies to that of a conventional junction deep

in the Rabi regime (where interaction effects are negligible), [Legg01]. Closer to our

theory are the coherently pumped Rabi regime experiments performed in [Abba13],

where the phase of the oscillations in the double well is fixed by the pumping laser.

4.4.2 Coherence Function and Static Limit Expressions

Having determined the form of the Josephson correlation function, 〈a†1(τ)a2(τ)a†2a1〉,
we now proceed to obtain the distribution for it, uJ , and the static limit expression

which approximates it. In Liouville form, the correlation function reads

gJ(τ) = 〈a†1a2e
Lτa†2a1ρo〉. (4.90)

We define

ρ′(τ) = eLτa1a2ρo ⇒ ρ′nnpp =
√
p
√
n+ 1 ρn+1np−1p, (4.91)

and

uJnp =
√
n
√
p+ 1 ρ′n−1np+1p(τ) (4.92)

such that

uJnp(0) =
√
n
√
p+ 1 (

√
p+ 1

√
n ρnnpp) = n(p+ 1)P ss

np. (4.93)
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And, following the same steps as in (4.22–4.25), we reach,

u̇Jnp = γ
∑
i

nci

[
αi1n

αi1(n− 1
2
) + αi2(p+ 3

2
) + nsi

uJn−1p

+
αi2(p+ 1)

αi1(n+ 1
2
) + αi2(p+ 1

2
) + nsi

uJnp−1

−
αi1(n+ 1

2
) + αi2(p+ 3

2
)

αi1(n+ 1
2
) + αi2(p+ 3

2
) + nsi

uJnp

]
+γ

[
nuJn+1p + (p+ 1)uJnp+1 −

(
n+ p

)
uJnp

]
+ i
(
κ(2n− 1)− κ(2p+ 1) + η(−n+ p+ 1)

)
uJnp,

(4.94)

The static limit can be calculated in the same fashion as above (Sec. 4.3.3) and

gives the expression,

gJs (τ) ∝
∫∫

P(n,p)e
i(2κ−η)(n−p)τ dn dp. (4.95)

Both (4.94) and (4.95) are solved numerically. Example solutions will be shown in

Chapter 5.

4.4.3 Factorization of the Josephson Coherence Function

In Chapter 3, we presented how the natural variable to describe the ridge is u =
1√
2
(n + p), Eq. (3.13), i.e. a combination of the occupancy in n and p, and that

the zero-particle cutoff adds features along the soft mode. On the contrary, with

independent pumping, the population distribution highlights the fact that the modes

are completely independent. In this section these observations are considered in the

context of coherence functions. We examine the factorization of the correlation function

for Josephson oscillations

〈a†1(τ)a2(τ)a†2a1〉
?
= 〈a†1(τ)a1〉〈a2(τ)a†2〉. (4.96)

We know that for any given time, two mode operators commute, e.g [a†2, a1] = 0, but

it is not necessarily the case at two different time points [a†2(τ), a1]. Moreover, we

know that [a†1(τ), a1] 6= 0 and that the two correlation functions above, 〈a†1(τ)a1〉 and

〈a2(τ)a†2〉, correspond to the emission spectrum of the first mode and the absorption

spectrum of the second mode [Glau63], respectively.
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Figure 4.6: (A, C) Independent, α11,22 = 1, α12,21 = 0, and ridge, αij = 0.5, population distribution
with ns = 50, nc = 70. (B, D) Comparison of first order coherence function with Josephson coherence
function with κ = 0.005, η = 0. In the independent case the Josephson coherence function factorizes
〈a†1(τ)a2(τ)a†2a1〉 = 〈a†1(τ)a1〉〈a2(τ)a†2〉. It is not the case however with common reservoirs.

We ran the numerical calculation of the Josephson, first mode emission and second

mode absorption correlation functions, both for the ridge and the independent cases

(Fig. 4.6). We plotted Josephson correlation function together with the square of

the two first order correlation functions. In the independent case, (Fig. 4.6B), the

correlation time for the absorption spectrum (squared) is longer than for the emission

spectrum. Simply expressed, this difference to the energy difference of adding an extra

particle in the initial condition. The Josephson correlation falls exactly in between the

two first order correlations, indicating that it factorizes verifies the hypothesis above

(4.96). In the ridge case (Fig. 4.6D) the emission absorption correlation also decays

faster than the one for emission. But the Josephson coherence decays much faster than

the square of either first order function. The Josephson correlation function does not

factorize in the ridge case, due to the coupling between the modes in Lp.
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4.5 Discussion

We have shown how our theory can be applied to calculate coherence functions. We pre-

sented an exact numerical solution and two approximate approaches. Our full quantum

theory can be exploited to study the effects on the emission linewidth of fluctuations in

the population distribution which are not accessible with semi-classical approaches, i.e.

mean-field theories [Wout07, Keel08]. We also show how these enter into the calculation of

higher order correlation functions by calculating the dephasing in the beating of the

intensity – Josephson oscillations.

The Fokker-Planck approach provides a way to transform u into a form where an

integral can be performed analytically. This reduces the effective dimensionality of

the problem quite significantly while also providing reasonable accuracy. The integral

transform approach for calculating g(1) or static limit, although much simpler, is valid

only when the decoherence is dominated by the interaction-induced energy fluctuations.
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Chapter 5

Application and Results

The theory developed so far makes very little reference to the specific form of

the multi-mode condensate. We defined a mode with single particle wavefunction,

φj, associated with a bosonic operator, aj. We incorporated pumping of this mode by

an arbitrary number of saturable reservoirs, Lp, (2.73), parametrized by the quantities

nci , n
s
i , αij; as well as a decay of the mode into vacuum, Ld, (1.44); and interactions, H

(2.91). This provided the theory with flexibility in its application, making it a useful

tool for describing, at a quantum level, non-equilibrium condensation with different

potentials, interaction, and kinetic terms.

This chapter serves a dual purpose. On one hand, we give a flavor for how the

theory can used to describe an actual multi-mode polariton condensate (Secs. 5.1, 5.2)

with a realistic set of parameters (Sec. 5.3). The application model we employ is the

double-well potential which formed the basis for the demonstration of Josephson oscil-

lations in polariton condensates [Lago10]. We use the theory to calculate the population

distributions (Sec. 5.4.1), emission linewidths (Sec. 5.4.2), and decay of Josephson

oscillations (Sec. 5.4.3). One the other hand, the Chapter also serves to discuss the

population distributions (Chapters 3) and to expose and contrast the full numerical

solutions, with the Fokker-Planck and static limit approximations (Chapter 4) in a

realistic physical context.

5.1 The Double-Well : Application of the Theory

We derive the properties of condensates residing in a double well potential [Weis91] (Fig

5.1), in the regime where particle non-conserving terms in the condensates Hamiltonian
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5.1. THE DOUBLE-WELL : APPLICATION OF THE THEORY

can be neglected, following the criteria discussed in Sec. 2.5. The description we use,

Figure 5.1: Schematic of the application of the theory to a double-well. Localized left-right pumping
reservoirs, |a1〉, |a2〉, pump, with matrix elements gij , two delocalized modes, |n〉, |p〉. The modes are a
linear combinations of left and right tight-binding orbitals with weight varying with detuning between
the wells, ∆ε, and hopping parameter, t. This scheme allows to eliminate the hopping terms, e.g.
a†LaR, in the condensates Hamiltonian (HLR, (5.1) → H, (5.3)).

shown in Fig. 5.1, is the tight-binding model of a double-well; isolated left and right

well orbitals with operators, aL, aR, are combined to form an approximate solution of

the double-well potential. Our solution retains only eigenvalues and matrix elements.

It is parametrized by the detuning between the wells, ∆ε, and the hopping between

left and right wells, t. The tight binding Hamiltonian is,

HLR = ∆ε(a†RaR − a
†
LaL)− t(a†RaL + a†LaR) +HLR(NL). (5.1)

We assume that interactions, HLR(NL), only occur within the localized orbitals con-

densates, and the wavefunction overlap between the left and right modes is negligible.

Thus,

HLR(NL) = g((a†LaL)2 + (a†RaR)2), (5.2)

where for simplicity we take the localized orbitals to have identical wavefunctions and

terms of the from a†LaLa
†
RaR are absent due to the overlap being negligible. To describe

the pumping we assume there are two non-coherent, thermalized (Sec. 2.1) reservoirs

localized over each well (Fig 5.1).

Having defined our model system, we shall proceed with diagonalizing the hopping

term, t(a†RaL+a†LaR), in new modes (a1, a2, Sec. 5.2) which, for ∆ε = 0, correspond to

the symmetric and anti-symmetric eigenstates of a double-well. Two delocalized modes

are thereby obtained. We then determine (Sec. 5.2.1) how each one receives pumping
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from the two localized left-right reservoirs. The next step is to map the left-right tight-

binding interaction term of the condensate, (5.2), onto our condensate’s interactions,

H(NL), (5.13), preserving only the particle conserving terms, κ, η (Sec. 5.2.2).

Once this exercise has been done, we establish physically relevant parameters to be

used (Sec. 5.3) and we study the population distributions, coherence decay and Rabi

regime Josephson coherence decay (Sec. 5.4).

5.2 Left-Right Well to Delocalized Representation

Here the left-right Hamiltonian (5.1) is mapped onto the delocalized modes represen-

tation, a1, a2,

H = ∆E(a†2a2 − a†1a1) +H(NL), (5.3)

with the use of intermediate variable θ and the unitary transformation ansatz,

(
a†L a†R

)
=
(
a†1 a†2

)(cos(θ) − sin(θ)

sin(θ) cos(θ)

)
(5.4)

and its Hermitian conjugate (H.c.).

In this transformation, the linear component of HLR (5.1) reads,

HLR(0) = ∆ε
[(
a†1 sin(θ) + a†2 cos(θ)

)(
a1 sin(θ) + a2 cos(θ)

)
−
(
a†1 cos(θ)− a†2 sin(θ)

)(
a1 cos(θ) + a2 sin(θ)

)]
−t
[(
a†1 sin(θ) + a†2 cos(θ)

)(
a1 cos(θ)− a2 sin(θ)

)
+ H.c.

]
.

(5.5)

We isolate the off-diagonal components in (5.5) and require that they vanish,

0 =2∆ε sin(θ) cos(θ)(a†1a2 + a†2a1)

+ t
[

sin(θ)2a†1a2 − cos(θ)2a†2a1

]
+ t
[

sin(θ)2a†2a1 − cos(θ)2a†1a2

]
.

(5.6)

The solution must have each component, a†1a2, a†2a1, cancel separately, and we obtain,

2∆ε sin(θ) cos(θ) + t(sin(θ)2 − cos(θ)2) = 0, (5.7)

giving

∆ε sin(2θ) = t cos(2θ) or tan(2θ) =
t

∆ε
. (5.8)

105



5.2. LEFT-RIGHT WELL TO DELOCALIZED REPRESENTATION

The ratio of hopping over detuning, t
∆ε

, is the key control parameter in our double-well

representation. A value of t/∆ε = 0 is the limit case for large detuning between the

two wells. This makes θ = 0, so the transformation (5.4) is diagonal and the modes

map directly to the left and right well. The other limit is t/∆ε → ∞, which makes

θ = π/4 and means the modes are the fully distributed symmetric and anti-symmetric

superposition of the left and right orbitals.

The remaining terms of the linear Hamiltonian in (5.5) must be equivalent to the

form in (5.3),

∆E(a†2a2 − a†1a1) =∆ε(sin(θ)2a†1a1 + cos(θ)2a†2a2 − cos(θ)2a†1a1 − sin(θ)2a†2a2))

− 2t sin(θ) cos(θ)(a†1a1 − a†2a2)

=∆ε cos(2θ)(a†2a2 − a†1a1) + t sin(2θ)(a†2a2 − a†1a1),

(5.9)

giving,

∆E = ∆ε cos(2θ) + t sin(2θ)

=
∆ε2 + t2√
∆ε2 + t2

.
(5.10)

5.2.1 Left-Right Pumping of Delocalized Condensates

The modes now being in a delocalized representation, a1, a2, will receive pumping from

both the left and the right reservoirs (Fig 5.1) based on the fraction of the mode that is

subtended by each reservoir. One can read from the mapping ansatz (5.4) established

above, the fraction of the pumping which is received from either reservoir. We simply

use the function, sin(θ), cos(θ) to trace back the fraction of each mode lying on the

left and on the right.

We recall that matrix elements, g1,2, parametrize amplitude interactions, Hp (2.51)

and that they appear as density parameters, α12 = g2
12/(g

2
12 + g2

22), in our pumping

superoperator, Lp (2.73). We therefore read the density fractions on the left and on

the right as the square of the transformation functions in (5.4),

α11 = α22 = cos2(θ) = 1
2

+
∆ε

2
√

∆ε2 + t2
(5.11)

α12 = α21 = sin2(θ) = 1
2
− ∆ε

2
√

∆ε2 + t2
, (5.12)

where we also used trigonometric manipulations to show how αij relate to t,∆ε. For
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large detuning, ∆ε � t, the modes become localized and the cross-pumping, α12, α21,

vanishes.

5.2.2 Mapping of the Interaction Terms

The last step in establishing this example application of the theory is to map the

non-linear coefficients of (5.2) into

H(NL) = κ(a†1a1)2 + κ(a†2a2)2 + ηa†1a1a
†
2a2. (5.13)

To do this, we place (5.4) and its H.c. into (5.2),

HLR(NL) = g
[(

(a†1a1)2 + (a†2a2)2
)
(sin(θ)4 + cos(θ)4) + 4a†1a1a

†
2a2 sin(θ)2 cos(θ)2

+
(
(a†1a1 − a†2a2)(a†1a2 + a†2a1) + (a†1a2 + a†2a1)(a†1a1 − a†2a2)

)
×

(sin(θ)2 − cos(θ)2) sin(θ) cos(θ)

+ 2(a†1a2 + a†2a1)2 sin(θ)2 cos(θ)2
]

= g
[(

(a†1a1)2 + (a†2a2)2
)
(sin(θ)4 + cos(θ)4)

+
(
8a†1a1a

†
2a2 + 2a†1a

†
1a2a2 + 2a†2a

†
2a1a1 − a†1a1 − a†2a2

)
sin(θ)2 cos(θ)2

+
(
a†2a

†
2a2a1 − a†1a

†
1a1a2 + a†1a

†
2a2a2 − a†2a

†
1a1a1

)
1
2

sin(4θ)
]
.

(5.14)

The terms present in (5.14) but not in (5.13), which describe interaction processes

with transfer of particles between single particle orbitals, will be neglected. As dis-

cussed in (Sec. 2.5), this is valid when the energy separation between orbitals ∆ε is

large compared with the interaction energy g〈n1,2〉. We identify that the self interac-

tion, κ = κ1 = κ2, and the density-density interaction, η = 1
2
(η12 +η21), terms in (2.91)

are

κ = g(sin(θ)4 + cos(θ)4) = g
(

1
2

+ 1
2

cos(2θ)2
)

=
g

2

(
1 +

∆ε2

∆ε2 + t2
)

(5.15)

η = 8g sin(θ)2 cos(θ)2 = 2g sin(2θ)2 =
2g t2

∆ε2 + t2
, (5.16)

when translated in our model application.
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5.3 Choice of Parameters

In the following, we adopt parameters which are physically realistic and yet also com-

putationally accessible. We make γ = τ−1
o , the inverse of the polariton lifetime, and

we adopt a value of τo = 2ps, [Whit09]. This sets the unit of time and energy (~ = 1).

We then make the interaction strength between each tight-binding orbital, g =

4 × 10−5γ, which sets the values of κ and η (5.15, 5.16). This is consistent with pre-

vious values used in single mode mean field [East08] and density matrix studies [Whit09]

which were parametrized with linewidth experiments. It depends both on the underly-

ing exciton-exciton interaction [Tass99] and the size of the single-particle orbitals which

appears as a field mode normalizing factor. Averaging over Hopfield coefficients and

Stokes vectors [Deng10] is implied.

For simplicity, the pump power, nc, and gain saturation, ns, parameters are made

equal for both reservoirs. While ns = 25000, nc = 25500 have been taken for conden-

sates significantly above threshold earlier [Whit09], this generates population distribu-

tions, σ ∝ √nc, and average populations, 〈n〉 ∝ n̄ = nc − ns, which in two modes are

difficult to handle in the numerical coherence calculations:
(
4×max(σ, n̄)

)2 ∼ 4× 106

equations to solve. We therefore settle for a slightly reduced system. Earlier we showed

numerical results in a reduced exploratory system where g was modified (Sec 4.2.2).

Its non-linear effect on coherence time, especially in the motional narrowing regime,

precludes the scaling of g in our physically grounded approach.

We settle for ns = 5000, and nc = 5000, 5200 which correspond to values at mean

field threshold n̄ = 0 and above threshold n̄ = 200. This will generate a maximum

of 8002 = 640 000 equations to solve. Physically this corresponds to a system with

smaller gain medium, which gets depleted for a smaller n with respect to ns. It will

also have a narrower population distribution, σ, which means that for g being the same,

the interaction broadening will be smaller. This will place our system in a motional

narrowing regime rather than in a static limit (Sec. 1.2.4).

We shall see in Sec. 5.4.2 that this choice of parameters is also advantageous when

comparing the methods of Chapter 4. It shows the limit of validity of the static limit

approximation in the motional narrowing regime where Fokker Planck and full numerics

still capture the physics.
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5.4 The Double-Well : Results

Now that the theory has been related to a specific model of a two-mode condensate,

we present results for the population distributions, first-order coherence functions, and

the decay of Josephson oscillations.

Beside the two values of nc = 5000, 5200 mentioned above, we also vary the ratio

t/∆ε. The sets of parameters we shall focus on are presented in Table 5.1.

nc t/∆ε α11, α22 α12, α21 κ η Figures

5000 0 1 0 4× 10−5 0 5.2D,5.3A, 5.5A

5200 0 1 0 4× 10−5 0 5.2A,5.3, 5.4B,5.5
5200 1 0.85 0.15 3 × 10−5 4 × 10−5 5.4B
5200 3 0.66 0.33 – – 5.2B
5200 ∞ 0.5 0.5 2× 10−5 8× 10−5 5.2C,5.3, 5.4B,5.5

Table 5.1: Summary of sets of values used throughout (ns = 5000, g = 4× 10−5, γ = 1).

5.4.1 Population Distributions of the Condensate

In this section we shall describe the population distribution obtained in our double-well

model, Fig. 5.2. These will allow to resolve discontinuities in mode occupancies which

are pointed out by a nonequilibrium phase boundary in mean-field theories [East08] (Sec.

1.3). The additional information they provide is also key to the calculation of coherence

functions [Whit09] (Sec. 4.2.1). We point out features in the distribution which will have

an important effect on coherence.

The population distributions for different values of t/∆ε (Table 5.1) are presented in

Fig. 5.2A-C. Fig. 5.2A is for t/∆ε = 0, where the two modes are pumped independently

and we see that the population distribution is indeed formed out of two independent

Gaussian; it factorizes, Pnp = PnPp.

Fig. 5.2C is for t/∆ε =∞, where the two modes are fully delocalized between the

left and the right wells and are equally pumped by the left and right reservoirs. The

population distribution takes the form Pnp = (Pn+p)|n,p≥0. A Gaussian form is still

present but this time its shape is dictated by the unique variable n+p. The n and p

variables are present independently only in the zero particle cut-off. One could have

expressed the population distribution with a single variable were it not of the zero
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Figure 5.2: (A-C) Populations with left-right reservoir pumping of modes n, p above threshold
nc = 5200, ns = 5000 with the reservoir to mode coupling varying as α11 = α22 = 1, 0.66, 0.5, α12 =
α21 = 0, 0.33, 0.5. The relevant quantities evolves from n, p to n+p as the modes become pumped
indiscriminately by the left and right reservoirs. (D) Population at mean field threshold nc=ns=5000
and α11 =α22 =1, α12 =α21 =0.

particle cut-off. We suggest that the n and p picture is partly overcomplete and that

the modes take a distribution where they are mostly unique but also preserve some

independence through the zero particle cut-off. This population corresponds to the

transition point between the single-mode and the two-mode solutions in the mean-field,

approach presented in [East08]. Linearizing the mean field version of the population

equation (??) and mapping the parameter notation (2γeff =
∑

i
γncαij
ns
− γ, 2Γηj =∑

i

γncα2
ij

n2
s
, 4Γβ =

∑
i
γncαi1αi2

n2
s

) indeed shows that the ridge solution corresponds to the

discontinuity in [East08].

Fig. 5.2B shows how these two pictures, independent versus partly unique, merge

for an intermediate value of t/∆ε = 3, 0 < 3 < ∞. At the mean field threshold, Fig.

5.2D, the dominant feature is the zero particle cutoff.

We shall also mention how some interplay between the modes is embedded in the
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distribution. This in turn influences coherence decays (Sec. 5.4.2, 5.4.3). In the

independent case, Pnp = PnPp, there is no inter-dependence in the mode distributions

and the interplay between the modes, when studying the decay of coherence, can only be

due to condensate interactions. In the other limit, Pnp = (Pn+p)|n,p≥0, our distributions

point out the correlation of the population distribution in the diagonalized single-

particle basis, and the decay of coherence will be impacted not only by the interactions

but also by these correlations.

5.4.2 Decay of First-Order Coherence

We now present and discuss our results for the decay of the first-order coherence func-

tion of one mode of the condensate. This subsection plays the dual role of describing

the physics determining this quantity, and discussing the three approaches to its cal-

culation developed in this thesis from a technical point of view. On the physics side,

we shall mention coherence times, modes interplay and interactions, and the static and

motional narrowing regimes. The technical side compares the full numerical solution

of Sec. 4.2.2, with the Fokker-Planck (Sec. 4.3.1) and the static limit (Sec. 4.3.3)

approximations.

The full numerical solution is considered to be “the gold standard”, the static limit

is the “back of the envelope” calculation. The Fokker-Planck approach is in between,

more involved than the static limit, but much more direct than the numerical solution.

Nonetheless we shall see that it is in good agreement with full numerics. We first

discuss our best picture of the physical phenomena, the full numerical solution.

Figure 5.3A presents the numerical calculation of the coherence decay at mean-

field threshold (nc = ns, thin dark blue line, with P ss
np corresponding to Fig.5.2D) and

above threshold (thick dark blue lines, with P ss
np corresponding to Fig.5.2A-solid line,

C-dotted line). These results are obtained by direct numerical solution of u (4.25),

for the present two-mode, two-reservoir case (C.1). In all cases, we see a straight

line on the semilog plot, representative of the motional narrowing regime (Sec. 1.2.4).

The model would present the static regime only with wider population distribution

(larger
√
nc) or stronger interaction (larger g) which both induce larger interaction

energy. The coherence increases as we go from mean field threshold to significantly

above threshold; the linewidth reflects the ratio of the fluctuations (∝ √nc) to the

total density (∝ n̄), so that larger populations give larger coherence times. We also see

that the coherence time for zero detuning, t/∆ε =∞, where the modes are a symmetric

and antisymmetric superpositions (dotted line), is shorter than that for large detuning,
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t/∆ε = 0, where they form independent condensates (solid line), although intricate

interplay between interactions and population distributions adds an additional level to

this observation. We will discuss this with Figure 5.4 below. For now, we simply say

that in the symmetric-antisymmetric configuration, the modes are more distributed

and therefore experience less interaction within themselves (κ = 2× 10−5 vs 4× 10−5)

but overlap much more with each other (η = 8 × 10−5 vs 0). The combined effect of

these interactions and the changes in population distributions is a more rapid loss of

coherence (tc = 265γ vs 435γ) in the ridge case.
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Figure 5.3: A - Coherence decays with κ, η = fκ,η(g), ns = 5000 and nc = 5000-thin line, 5200-thick
lines. The solid lines are for independent pumping (vanishing tunneling), while the dotted line is with
modes equally pumped by either reservoirs (vanishing detuning). B - Equivalent decays in the static
limit (light blue) and from the Fokker-Planck approach (dark blue.)

Figure 5.3B (thick lines) shows the Fokker-Planck calculations with the same above-

threshold parameters as in 5.3A. The Fokker-Planck solution is in good agreement with

full numerics both in terms of magnitude and shape.

On the technical side, we discuss two features of the Fokker-Planck solution, one

general, and the other linked with the loss of precision due to the linearization (Sec.

4.3.1). (i) In independent modes, tc is slightly overestimated with respect to the nu-

merics (tc = 488γ vs 429γ). (ii) This effect is overshadowed however in the symmetric-

antisymmetric configuration by the fact that the population is distributed further away

(5.2C vs 5.2A) from the linearization points, 〈n
2〉
〈n〉 ,

〈np〉
〈n〉 , and the Fokker-Planck solution

looses its precision. The loss in precision is reflected in the Gaussian aspect of the thick

dotted line in Fig. 5.3B. These two features are also reflected in Fig. 5.4B below.

Figure 5.3B (thin lines) also shows the static limit results with its characteristic

Gaussian shape, quadratic on a semilog plot. It gives the correct orders of magnitude

and presents the faster decoherence of the symmetric-antisymmetric case compared

with the independent (5.2C vs 5.2A). As expected, the static limit results also show
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shorter coherence times than the other approaches because all forms of motional damp-

ing (dynamical averaging of the fluctuations) have been neglected.
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Figure 5.4: (A) Effect on the coherence time, tc, of the correlations in the population distribution,
in the static limit. When the energy interaction terms included, κ, η = fκ,η(g), (5.15, 5.16), the fact
that they are anticorrelated in the t/∆ε > 0 population distributions prolongs the coherence time
compared with them being rigid, κ, η = g, 0. (B) This effect, albeit damped, is also present in the
motional narrowing regime as seen in the Fokker-Planck and full numeric results.

We now turn to Figure 5.4, which shows the coherence time as a function of detun-

ing or tunneling at a fixed above-threshold pumping, nc = 5200, and discuss the effect

of correlations in the distribution mentioned above. We shall do so with Figure 5.4A,

which presents static limit results, in conjunction with Figure 5.2C, the symmetric-

antisymmetric population. As we noted already, the relevant variable in this popula-

tion distribution is n + p which implies that within the distribution an increase in n

corresponds to a decrease in p and vice-versa. The energy fluctuations associated with

the population distribution will therefore be anticorrelated since they either depend on

self × self (κ) or self × other (η) and the latter contributions are anticorrelated with the

former. This is most obviously seen in the static limit as shown in Figure 5.4A. If we

eliminate this effect by including only a constant (rigid) interaction within each mode,

κ = g, η = 0, the increasingly wider population distribution as we sweep t/∆ε from 0 to

∞ causes tc to decrease monotonically. In contrast, letting the inter-mode interaction

increase as the modes overlap maintains tc larger even though, at t/∆ε =∞, the total

interactions are stronger than in the rigid case (see Table 5.1). What is more, the

effect destroys the monotonicity when κ and η are of approximately the same strength,

t/∆ε = 1; giving a peak in the coherence time when the modes partially overlap. The

numerical and Fokker-Planck coherence times results in Figure 5.4B show that this

effect is still present but is less pronounced in the motional narrowing regime.
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5.4.3 Decay of Josephson (Density) Oscillations

In Section 4.4 we saw how the equation of motion for multi-mode condensates can be

used to study the dephasing of the beating between two modes and that the corre-

sponding coherence function which describes it is 〈a†1(τ)a2(τ)a†2a1〉. Here we apply our

numerical and static limit solutions of it to the double-well model (Fig. 5.5).
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Figure 5.5: (A) Full numeric and (B) static limit Rabi regime Josephson coherence decays with
same parameters as for the coherence decay results (Fig. 5.3).

With the numerical calculations (Fig.5.5A), we see that the decay follows an ex-

ponential form (linear on a semilog plot); the motional narrowing regime is reflected

in this calculation as well. A comparison of the beat coherence decay times, (tc)
J ,

(Fig.5.5A), with the decay time of the first-order coherence, tc, (Fig.5.3A), shows that

the values of (tc)
J are slightly more than half those of tc. As we saw in Section 4.4.3, the

Josephson beats correlation function factors into the product of two coherence decay

calculations only when the modes are independent (t/∆ε = 0).

Figure 5.5B shows the static limit calculation. As in the first-order calculations

above, motional narrowing of the fluctuations is neglected in the static limit and the

correlation times obtained are smaller than in full numerics. It is worth highlighting

the coherence revival which arises, from a mathematical point of view, from the Fourier

transform of the zero particle cutoff in the population distribution (Fig. 5.2C). The

interactions can indeed rebuild the phase of the order parameter in the correlation

function although it is unlikely that this can be observed experimentally due to other

sources of noise which come into play as t > tc.

Given the interaction terms included in the Hamiltonian, the Rabi regime Joseph-

son oscillations are being considered here [Legg01]. As discussed in Section 4.4.1, other

non-particle conserving interaction terms would have to be introduced in order to be
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used in the Josephson regime [Lago10]. These additional terms provide the pulse to pulse

synchronization observed in the measurement. In order to perform experiments close to

threshold and in the Rabi regime, while still having incoherent pumping, synchroniza-

tion would have to be provided by a probe beam with pulse to pulse coherence time

longer than the coherence we wish to measure. The coherent pumping experiments

presented in [Abba13] show Josephson oscillations in the Rabi regime.

5.5 Discussion

We exposed how the theory can be applied to a specific physical system, used rel-

evant parameters, and obtained the population, linewidth and Josephson coherence

decay. These results were used to discuss the strengths and weaknesses of the tools

developed in Chapter 4. We also uncovered a multimode effect with our theory. The

correlations which appears in the ridge population distribution when two modes share

common reservoirs enhance the coherence time of the condensate. Josephson oscillation

coherence decay is the first example of the usage of the many-mode quantum theory

beyond population distributions and first order coherence decays. The theory shows

how population distributions provide additional information with respect to mean field

theory. It would be interesting to investigate further, in light of non-locality in quantum

mechanics, the fact that in the symmetric-antisymmetric distribution, beside for the

zero particle cutoff, n + p becomes the relevant parameter, rather than the individual

occupations.
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Chapter 6

Conclusion and Future Work

We conclude this thesis by, on one hand, summarizing the theory work that

has been done, suggesting novel experiments and drawing further links with

the current field of polariton condensation (Sec. 6.1). On the other hand, we discuss

how the theory could be expanded by adding the treatment of non-particle conserving

terms in the condensate Hamiltonian (Sec. 6.2).

6.1 Summary and Further Applications

In summary, we have developed a model for the nonequilibrium dynamics of polari-

tons in an incoherently pumped microcavity, incorporating gain due to scattering from

multiple reservoirs, and resonant polariton-polariton interactions. We innovate from

previous works addressing condensates formed with a single macroscopically-occupied

orbital by having several such states coexist, i.e., multimode polariton condensates. We

used the theory to determine the steady state population distributions of the modes.

We have also used it to predict the quantum statistics, revealed for example via the

linewidths, and shown how these quantities are affected by interactions between the

condensates. We predict that the populations of the modes can be anticorrelated due to

their coupling to a common reservoir, leading to a narrowing of the emission lines and

a prolongation of the coherence time. We have also demonstrated theoretically a de-

phasing mechanism for intensity oscillations, and shown that, for realistic parameters,

their coherence decay provides a useful probe of correlation effects.

Novel expirements can be envisaged with the theory. The first would be to observe

the enhancement in coherence time due to anticorrelations in the population fluctu-
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ations as t/∆ε is being swept from zero to infinity, Fig. 5.4A (see also Figs. 4.1C,

4.4F). To see the enhancement effect on the linewidth, one would have to ensure that

the system is in the static regime. Another experiment which could be proposed and

would help in parametrizing the coupling strengths, αij, is to compare the first-order

decay time, tc, with the dephasing time of Josephson oscillations, (tc)
J . As we saw in

Sections 5.4.3, 4.4.3, the Josephson coherence decay function factorizes into two first-

order decay functions, with (tc)
J = tc/2, only when the pumping is independent. By

comparing the two coherence times one could establish how much each mode shares

the same reservoir and therefore parametrized αij.

Although we have focused on the specific example of condensation in a double-well

potential, our theory can be applied to a range of many-condensate systems now being

considered [Lago10, Masu12, Tosi12, Galb12], once they have been decomposed into the appro-

priate single particle orbitals. Each such orbital comprises a possible condensate mode

in our theory, with gain and loss characterized by a few phenomenological parameters.

In general the decoherence of the condensate depends on the structure of the single

particle orbitals, so our theory allows for the study and optimization of coherence prop-

erties of polariton condensates across the geometries now being developed, including

wires, photonic molecules, and photonic crystals [Masu12]. With respect to superfluidity

studies [Caru13], the condensate in-plane reference frame does not have to be fixed to

that of the laboratory, i.e. the condensate Hamiltonian can have a term to accommo-

date in-plane flow [Hive12, Bali07]. More speculatively, the model could provide a basis for

studying spontaneous vortex lattices [Keel08], beyond the mean-field level, and also for

treatments of polariton dynamics in the quantum correlated regime [Caru13]. Pulsed ex-

periments could also be accommodated by providing a time evolution to the pumping

strength parameter, nic → nic(t), as long as the Hamiltonian, Hp, can be assumed to

remain time independent.

One notable feature in experiments is the presence of a large repulsive interaction

with the reservoir excitons [Tosi12, Wout08c]. We have omitted this from our discussion,

because it can be included on average as an effective potential, and hence a redefinition

of the orbitals. Fluctuations in the reservoir occupation can broaden the emission line,

i.e., lead to decoherence of the condensate, but this is negligible compared with the

intrinsic linewidth provided pump laser noise is eliminated [Love08].

Macroscopic quantum objects are ideally suited for the study of entanglement [Brau05].

The multimode polariton condensate, treated beyond mean-field theory, could be used

as a model to study entanglement [Liew11]. In the two mode problem that we studied in

this thesis, the modes are treated as local orthogonal and continuous observables [Zhan13].
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Reservoir polaritons do not distinguish in which mode they end up and can be thought

of being in any of the modes to which they couple, with a probability given by the

coupling coefficient, αij. This lends itself to the exploration of entanglement between

modes.

6.2 Extension of the Theory

An important theoretical extension of our work would be to allow the treatment of

non-particle conserving terms, both in the condensate Hamiltonian, H, and in the

decay term, Ld. The inclusion of nonresonant interaction terms between the modes,

in particular terms such as a†1a
†
1a2a2, become significant beyond the strong-trapping

regime. The non-resonant interaction terms lead to the equivalent Bogoliubov spectrum

for a homogeneous single-mode condensate, and hence are implicated in superfluidity,

while at the semiclassical level they cause nonlinear mixing and synchronization in

the multimode case [East08]. We suggest a generalization of our theory would allow

the impact of quantum and nonequilibrium fluctuations on such phenomena to be

explored, in complex geometries where many condensates coexist. Another example

is the spin. The modes will have, in addition to the spatial structure emphasized

here, a polarization structure, which could be incorporated as an additional degree of

freedom to the single-particle orbitals [Shel10, Read10]. This would also allow to include

spin flip and polarization dependent mechanisms [Glaz13, Magn10]. With respect to density

oscillations, the non-resonant terms would allow to study the phenomenon beyond the

Rabi regime, i.e. in interaction dominated Josephson phenomena [Legg01, Abba13].

The Lindblad decay form we used also assumes a particle conserving form, because

we provided a reservoir for each mode (Sec.1.2.2). With a common decay reservoir for

all the modes, terms such as 〈a†2 b b†a1〉 would provide another mechanism for parti-

cle exchange between the modes. Interference effects due this mechanism have been

suggested in [Alei12].

In Fock space, the Liouville evolution of non-particle conserving terms generates a

recursive dependence on all the elements within the density matrix. This contrasts with

having to solve for the diagonal elements in the case of steady-state population distri-

butions or the one off-diagonal terms for linewidth and Josephson coherence functions.

We suggest that these interactions could be included by generalizing the Fokker-Planck

approach to apply to the full density operator, rather than the distributions u or P ,

i.e., by assuming ρmnpq is smooth, so that Eq. (1.45) becomes a partial differential
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equation. Such an approach would be similar in spirit to those based on the classical

limit Wigner representation for ρ, as discussed by Wouters and Savona [Wout09] among

others. The smoothness of ρmnpq would have to be asserted.

Alternatively, the problem could also be approached without consideration of the

classical limit of quantum electrodynamics. The Fokker-Planck approach could be

generalized to the entire density matrix, as mentioned above. We draw a parallel with

the approach in Chapter 4 for the remaining steps. In our expansion in Chapter 4,

once the Kramer-Moyal expansion had been done, we performed a double-side Laplace

transform which interchanged linear terms with differential operators and turned the

second-order derivatives into quadratic terms. The equation became a first order dif-

ferential equation. This allowed for integrals to be done analytically and we were left

with doing the transform of the initial conditions, uo, and diagonalizing a coefficient

matrix, B, rather than evolving matrix elements. We suggest that a transform could be

performed on a linearized Kramer-Moyal expansion of the full density matrix in order

to reach both a steady state for the population distribution and calculate coherence

functions. The transform to be used might be related to the Mellin transform [Erde54],

F(s) =M{f(x); s}

=

∫ ∞
0

f(x)xs−1dx
(6.1)

in relation to fractional calculus [Saba07, Das11], to deal with square root terms which arise

from having to deal with amplitudes, e.g. a|n〉 =
√
n|n−1〉 since

M{naρ(n,m,p,q) : s} = P(sn + a, sm, sp, sq)

≈ P(s) + a ∂nP(s).
(6.2)

We note also that while our expansion was at most linear when combined with dif-

ferential operators, there is no limitation with the order of the derivative when the

coefficient is a constant. We also note that while the dimensionality of the problem

would remain quite large, it will only be so in the intermediate steps if the initial con-

ditions are to be reached with this method also. The intermediate steps would largely

remain analytical; in the Fokker Planck approach, we evaluated our solution at K = 0

and we were left with only one variable which is time.

Another approach, more numerically-driven, is the cumulant expansion technique

used in [Magn10] which may also lead to a way to deal with the non-resonant terms.

Since the population distribution is also non-diagonal with particle non-conserving
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terms, the moments use in the cumulant expansion may have to be obtained thought

adiabatic evolution or perturbative schemes in order to reach the steady state.
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Appendix A

Topics Related to Cavity Polariton

Condensation

A.1 Thermal BEC

We derive here the expressions whereof the emergence of thermal BEC can be seen, with

particular attention to the features of Bose statistics and dimentionality which give rise

to thermal BEC in 3D. The derivation follows that of Pitaevskii and Stringari [Pita03]

and Annett [Anne04].

A.1.1 Derivation of Bose-Einstein Statistics

The key component of thermal Bose-Einstein condensation is the Bose distribution. We

derive it here, starting with the grand canonical partition function which highlights the

important fact that every state is summed over occupation numbers running to infinity,

Z =
∞∑

n0=0

(eβ(µ−ε0))n0 ·
∞∑

n1=0

(eβ(µ−ε1))n1 . . . (A.1)

where εi is the single-particle state energy, µ is the chemical potential of the parti-

cle ensemble and β is Boltzmann constant times the temperature, kBT . The grand

canonical potential is then obtained, with the individual sums being taken and the

multiplication over each energy states now turning into a sum,

Ω = −kBT lnZ = kBT
∑
i

ln(1− eβ(µ−εi)). (A.2)
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An implicit expression relating the chemical potential, µ, to the total number of par-

ticles, N , follows as

N = −∂Ω
∂µ

=
∑
i

1

eβ(εi−µ) − 1
. (A.3)

and we obtained the Bose-Einstein distribution. We note that in the factor

1

eβ(εo−µ) − 1
(A.4)

the chemical potential, µ, cannot take a value larger than εo since this would correspond

to having a negative number of particles in that state. As µ→ εo, the occupation of the

lowest level becomes very large. This is the mechanism of Bose-Einstein condensation.

A.1.2 The Emergence of BEC

Having obtained the key equation for Bose statistics (A.3), we now determine in which

circumstances it saturates and do not allow further particles within the distribution.

This is the criteria for the emergence of thermal BEC. We first label the single particle

state energy with its wavevector, εi → εk, and we let sum over the states become an

integral,
∑

i →
V

(2π)3

∫
d3k,

N =
V

(2π)3

∫ ∞
εo

d3k

eβ(εk−µ) − 1
, (A.5)

or, working with the particle density, n = N
V

,

n =
1

(2π)3

∫ ∞
εo

d3k

eβ(εk−µ) − 1
. (A.6)

We wish to perform this integral in terms of energy. In 3D, the energy degeneracy of

the momentum space provides the following relationship between increments in energy

and in wavevector,

dε = 4πk2dk, (A.7)

where we used spherical coordinates and k is now a scalar. By using the dispersion

relation of our Bose particles, ε = ~2k2

2m
, we can write

k =

√
2mε

~2
, dk =

√
m

2~2ε
dε, (A.8)
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and rewrite terms in (A.6, A.7) as a function of the energy variable

g(ε)dε =
4π

(2π)3

2mε

~2

√
m

2~2ε
dε

=
m3/2ε1/2√

2π2~3
dε,

(A.9)

where g(ε) is the density of states. Our integral (A.6) becomes

n =

∫ ∞
εo

g(ε)dε

eβ(ε−µ) − 1
. (A.10)

The next few steps involve some algebraic manipulations. We let x = β(εk − εo) and

z = eβ(µ−εo), and rewrite (A.10) in dimensionless form

n =
m3/2

√
2π2~3

1

β3/2

∫ ∞
0+

x1/2dx

exz−1 − 1

=
(mkBT )3/2

√
2π2~3

∫ ∞
0+

x1/2 ze−x

1− ze−x
dx.

(A.11)

The integral can be expanded into a series and further manipulated∫ ∞
0+

x1/2 ze−x

1− ze−x
dx =

∫ ∞
0+

x1/2ze−x(1 + ze−x + z2e−2x + ... )dx

=

∫ ∞
0+

x1/2

∞∑
p=1

zpe−pxdx

=
∞∑
p=1

zp
∫ ∞

0+

x1/2e−pxdx

=
∞∑
p=1

zp
1

p3/2

∫ ∞
0

y1/2e−ydy

=
∞∑
p=1

zp
1

p3/2

√
π

2
.

(A.12)

We can now write (A.11) as

n =

(
mkBT

2π~2

)3/2

g3/2(z). (A.13)

The function g3/2(z) =
∑∞

p=1
zp

p3/2 is plotted between zero and one in Figure A.1. The

ratio test of convergence shows that the series converges when |z| < 1 and diverges if
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Figure A.1: Plot of the function g3/2(z) between zero and one. At z = 1, the function is finite but
its derivative is infinite (reproduced from [Anne04]).

|z| > 1. For z = 1, the series is just convergent,

g3/2(1) =
∞∑
p=1

1

p3/2
= 2.612. (A.14)

Going back to the definition z = eβ(µ−εo), we see from the partition function (A.1) that

µ cannot take a value larger than εo (z > 1) since this would make it diverge (also

pointed out in the Bose factor, A.4). We are therefore limited to µ ≤ εo or z ≤ 1.

When z reaches one (µ = εo) the Bose distribution saturates, no more particle can be

accommodated. For any density n there therefore is a critical temperature

n =

(
mkBTc
2π~2

)3/2

2.612 → Tc =
2π~2

kBm

( nsat
2.612

)2/3

(A.15)

below which the excess number of particle cannot be accommodated with Bose statis-

tics. All exceeding particles, No = N − V nsat, end up in the ground state, forming

a massive coherent state – the Bose Einstein condensate. At zero temperature, the

trivial solution of having all particles in the ground state, nsat = 0, is obtained.

A.2 Semi-infinite Bragg Mirrors

To illustrate the physics of Bragg mirrors, which allow to confine the photonic compo-

nents of polaritons, we derive the reflectivity and stop band characteristics of a semi-

infinite Bragg mirror [Felb98, East10, Kavo07]. This derivation is the Bragg mirror equivalent

to the use of Snell’s law in a simple dielectric interface [Jack98], from which the total in-

ternal reflection angle can be determined.

One period of the Bragg mirror is composed of two layers with thickness d=d1+d2,
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and refractive indices n1, n2 ∈ R>1.

We denote ko = ω/c the wavevector incident at angle θ from the normal, and

k1,2 = n1,2ko, the wavevectors inside the two layers of a Bragg mirror period. Maxwell’s

equations (∇ × H = Ḋ for a transverse-magnetic (TM) wave or ∇ × E = −Ḃ for a

transverse-electric (TE) wave) oblige the wavevector component parallel to the surface,

ko sin(θ) = k‖o = k‖1,2 ≡ k‖, to remain conserved throughout. We therefore have, along

the z-axis,

βo = (k2
o − k2

‖)
1/2 (A.16)

β1 = (n2
1k

2
o − k2

‖)
1/2 (A.17)

β2 = (n2
2k

2
o − k2

‖)
1/2. (A.18)

We define the fields

E = êE(z)eik‖·r‖e−iωt for TE, B = êB(z)eik‖·r‖e−iωt for TM (A.19)

And we solve for U(z) = E(z), B(z), inside the mirror with the wave equation, ∇2E =
n(z)2

c2
Ë, ∇2B = n(z)2

c2
B̈, (∇2 = ∂2

z +∇2
‖),

0 ≤ z ≤ nd :
d2

dz2
U(z) +

(ω2

c2
n(z) + k2

‖

)
U(z) = 0 (A.20)

and at the boundary conditions,

z ≤ 0 : U(z) = eiβoz + re−iβoz.

z ≥ Nd : U(z) = teiβoz. (A.21)

Eq. (A.20) can be solved piecewise with the transfer matrices for which we introduce

the vector

φ(z) =

(
U(z)
−i
ko

dU(z)
dz

)
. (A.22)

We rewrite the problem as

T nφ(0) = φ(zNd) (A.23)

where T = T2T1 is the transfer matrix accross one period of the Bragg mirror. The

transfer matrices for each layer are

Ti =

(
cos(βidi) − ko

iβi
sin(βidi)

iβi
ko

sin(βidi) cos(βidi)

)
. (A.24)
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Substituting (A.21, A.22) into (A.23), we get

T n

(
1 + r

βo
ko

(1− r)

)
=

(
t
βo
ko
t

)
. (A.25)

We recognize that detTi is unity and so is detT = detT1detT2. The characteristic

equation for T therefore is

λ2 − TrTλ+ detT = λ2 − TrTλ+ 1 = 0, (A.26)

for which the roots multiply to one,

λ1λ2 =

(
TrT

2
+

√
(TrT )2

4
− 1

)(
TrT

2
−
√

(TrT )2

4
− 1

)
= (TrT )2

4
− (TrT )2

4
+ 1 = 1 (A.27)

and take the following form,

1
2
|TrT | < 1 : λ1,2 = e±iφ are imaginary.

1
2
|TrT | ≥ 1 : λ1 = λ−1

2 are real; we pick |λ1| ≤ 1. (A.28)

The eigenvalues follow from the boundary conditions to be satisfied and the wave

nature of the phenomena but not the detailed nature of the waves (E vs B field, TE

vs TM). They are kinematic (only depends on the wave nature of the field) as opposed

to dynamic properties (depends on the specifics of EM waves), [Jack98]. With λ1,2

imaginary, the incident wave can be placed in the eigenbasis of T , U(0) = a e1 + b e2,

and will take an additional phase at each layer

U(ld) = aeilφe1 + b e−ilφe2; (A.29)

the wave will propagate through the structure. With λ1,2 real, the solution can only

be proportional to the eigenvector associated with λ1,

φ(0) ∝ e1 =

(
a

ib

)
, (A.30)

since any component in e2 would grow indefinitely by λ2 in each layer (e1,2 take the

form above when λ1,2 are real). The transmission as N →∞ is therefore t = 0 and(
1 + r

βo
ko

(1− r)

)
∝

(
a

ib

)
(A.31)
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from which we obtain

1 + r
βo
ko

(1− r)
=
a

ib
→ r =

βoa− ikob
βoa+ ikob

(A.32)

and therefore |r| = 1. An evanescent wave decays as

λ1 =e−d/γ → γ=−d/ log |λ1|, (A.33)

inside the structure.

The criteria (A.28) when related to (A.24) provides us with where the stop bands

are in the Bragg mirror. Reflectivity outside the stop band cannot be calculated in a

semi-infinite mirror since the lhs. of (A.25) is undetermined.

A.3 Quality Factor

The notion of quality factor is crucial to the trapping of light and strong coupling.

Here we derive the expression for it, starting from its definition

Q =
wo
δω
, (A.34)

where δω is the full-width at half maximum of a resonance with energy ωo. We begin

with the expression for a driven oscillator that is homogeneously damped

ẍ+ γẋ+ ω2
ox = Aeiωt (A.35)

The frequency response, f(ω) = |x(t)|2/A2, for it is

f(ω) =
1

(ω2
o − ω2)2 + ω2γ2

, (A.36)

which has a maximum at resonance f(ωo) = 1/γ2ω2
o . We are looking for ω at half-

maximum,

f(ω = ωo ± δω
2

) =
1

2γ2ω2
o

=
1

(ω2
o − ω2)2 + γ2ω2

, (A.37)

which can be manipulated into,

(2ω2
o − ω2)γ2 = (ω2

o − ω2)2 or (ω2
o ± δω2

4
)γ2 = (ω2

o − (ωo ± δω
2

)2)2. (A.38)
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This leads to the approximation

ω2
oγ

2 = (∓2ωo
δω

2
)2 → γ = δω (A.39)

since γ, ωo � δω
2

. We therefore reach

Q =
ωo
γ
. (A.40)

In microcavities, photonic (homogeneous) decay dominates over excitonic (inhomoge-

neous) decay [Skol98] and this description is therefore a useful one to understand the

physics of microcavity polaritons.
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Appendix B

Code for Numerical Solution

of g(1)(τ )

Certain subtleties in obtaining the numerical solution for unp are easily pointed out by

presenting core code elements. We ran the code using Matlab for up to a week on a

Linux desktop. Matlab allows to represent unp (4.25) directly in matrix from,

u̇np = [Aun−1p+Bunp−1+Cunp+Dunp]+[Eun+1p+Fun+1p+Gunp+Hunp]+Iunp, (B.1)

and to use elementwise (A.*u) multiplication. We define matrices, formed by outer

products of vectors, which increment in the direction of the quantity they describe,

n mat = ( 0 : n max ) ’* ones (1 , p max ind ) ;

p mat = ones ( n max ind , 1 ) * ( 0 : p max ) ;

We initialize unp(t) according to (4.26),

u = n mat .*P norm ;

u dot = ze ro s ( n max ind , p max ind ) ;

The coefficients are then generated (./ is elementwise division), paying close atten-

tion to the factors ±0.5, ±1 in order to obtain the right dynamics,

A1 = gm*n c1 * alpha11 *n mat . / ( alpha11 *( n mat −0.5) + alpha12 *( p mat +1) +n s2 ) ;

A2 = gm*n c2 * alpha21 *n mat . / ( alpha21 *( n mat −0.5) + alpha22 *( p mat +1) +n s2 ) ;

A = A1+A2 ;

B1 = gm*n c1 * alpha12 *p mat . / ( alpha11 *( n mat +0.5) + alpha12 *p mat +n s1 ) ;

B2 = gm*n c2 * alpha22 *p mat . / ( alpha21 *( n mat +0.5) + alpha22 *p mat +n s2 ) ;

B = B1+B2 ;

C1 = gm*n c1 * alpha11 *( n mat +0.5) . / ( alpha11 *( n mat +0.5) + alpha12 *( p mat +1) +n s1 ) ;

C2 = gm*n c2 * alpha21 *( n mat +0.5) . / ( alpha21 *( n mat +0.5) + alpha22 *( p mat +1) +n s2 ) ;

C = C1+C2 ;

D1 = gm*n c1 * alpha12 *( p mat +1) . / ( alpha11 *( n mat +0.5) + alpha12 *( p mat +1) +n s1 ) ;

D2 = gm*n c2 * alpha22 *( p mat +1) . / ( alpha21 *( n mat +0.5) + alpha22 *( p mat +1) +n s2 ) ;
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D = D1+D2 ;

E = gm * n mat ;

F = gm * ( p mat +1);

G = gm * ( n mat −0.5) ;

H = gm * p mat ;

I = i *( kappa *(2*n mat −1) + eta *p mat ) ;

CDGHI = −C−D−G−H+I ;

The time consuming part of the code is to evolve unp according to the Euler method,

with very small time steps, 0.0001γ. It is the weighted difference between values of

neighboring matrix elements which induces the evolution of un1n2 . Making the time

step larger will not allow for the changes to “propagate” through the matrix correctly

and it will start to evolve garbage values. Another point is to treat the natural and

artificial boundary conditions properly. We eliminate certain terms at the natural

boundary conditions, n, p = 0, and we clamp u̇np to zero at the artificial boundary

conditions (n max ind, p max ind),

s t e p s i z e = 0.0001*gm;

whi l e g1 >= 0.08 && t <= 6000001

% n , p=0, d i s ca rd A,B,G and H to maintain dynamic balance .

u dot (1 , 1 ) =

− C(1 ,1 )*u (1 , 1 ) − D(1 ,1 )*u (1 , 1 ) + E(1 ,1 )*u (2 , 1 ) + F(1 ,1 )*u (1 , 2 ) + I (1 ,1 )*u ( 1 , 1 ) ;

% n=0, d i s ca rd A and G to maintain dynamic balance .

u dot ( 1 , 2 : p max ind−1) =

B( 1 , 2 : p max ind −1).*u ( 1 , 1 : p max ind−2) − C( 1 , 2 : p max ind −1).*u ( 1 , 2 : p max ind−1) . . .

− D( 1 , 2 : p max ind −1).*u ( 1 , 2 : p max ind−1) + E( 1 , 2 : p max ind −1).*u ( 2 , 2 : p max ind−1) . . .

+ F( 1 , 2 : p max ind −1).*u ( 1 , 3 : p max ind ) − H( 1 , 2 : p max ind −1).*u ( 1 , 2 : p max ind−1) . . .

+ I ( 1 , 2 : p max ind −1).*u ( 1 , 2 : p max ind −1);

% p=0, d i s ca rd B and H to maintain dynamic balance .

u dot ( 2 : n max ind −1 ,1) =

A( 2 : n max ind −1 ,1) .*u ( 1 : n max ind −2 ,1) − C( 2 : n max ind −1 ,1) .*u ( 2 : n max ind −1 ,1) . . .

− D( 2 : n max ind −1 ,1) .*u ( 2 : n max ind −1 ,1) + E( 2 : n max ind −1 ,1) .*u ( 3 : n max ind , 1 ) . . .

+ F( 2 : n max ind −1 ,1) .*u ( 2 : n max ind −1 ,2) − G( 2 : n max ind −1 ,1) .*u ( 2 : n max ind −1 ,1) . . .

+ I ( 2 : n max ind −1 ,1) .*u ( 2 : n max ind −1 ,1) ;

% n , p>0, c en te r e lements

u dot ( 2 : n max ind −1 ,2: p max ind−1) =

A( 2 : n max ind −1 ,2: p max ind −1).*u ( 1 : n max ind −2 ,2: p max ind−1) . . .

+ B( 2 : n max ind −1 ,2: p max ind −1).*u ( 2 : n max ind −1 ,1: p max ind−2) . . .

+ E( 2 : n max ind −1 ,2: p max ind −1).*u ( 3 : n max ind , 2 : p max ind−1) . . .

+ F( 2 : n max ind −1 ,2: p max ind −1).*u ( 2 : n max ind −1 ,3: p max ind ) . . .

+ CDGHI( 2 : n max ind −1 ,2: p max ind −1).*u ( 2 : n max ind −1 ,2: p max ind −1);

% outer edges , clamp to zero

u dot ( n max ind , 1 : p max ind−1) = 0 ;

u dot ( 1 : n max ind−1,p max ind ) = 0 ;

u dot ( n max ind , p max ind ) = 0 ;

i f mod( t−1 ,1000) == 0 %record g1 every 1000 increments ( 0 . 1*gm)

g1 ( index1 ) = abs (sum(sum(u ) )/ pop n ) ;

index1 = index1 +1;

end

u = u + s t e p s i z e *u dot ;

t = t +1;

end
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Appendix C

First Order Coherence

Approximations – One and Two

Modes Analytical Specifics

C.1 Fokker-Planck Approach – Two Modes

Although we derived the Fokker-Planck approach in the general case, the full solution

has only been implemented in two modes. Here we present the two-mode formalism as

well as the linearized coefficients A to E, appearing in (4.45−4.49).

The two-mode equation (cf. 4.25) we wish to solve is

u̇n,p = γ
∑
i=1,2

nci

[ αi1nun−1p

αi1(n− 1
2
) + αi2(p+ 1) + nsi

+
αi2pun−1p

αi1(n+ 1
2
) + αi2p+ nsi

−
αi1(n+ 1

2
) + αi2(p+ 1)

αi1(n+ 1
2
) + αi2(p+ 1) + nsi

unp

]
+ γ
[
nun+1p + (p+ 1)unp+1 −

(
(n− 1

2
) + p

)
unp
]

+ i(κ(2n− 1) + ηp)unp.

(C.1)

We use the initial conditions (cf. 3.29, 4.26),

uo(n, p) = n exp

(
−
(
n p

)
·

(
β2

0+β2
1

2nc

β0β1

nc
β0β1

nc

β2
0+β2

1

2nc

)
·

(
n

p

)
+
(
nc−ns
nc

nc−ns
nc

)
·

(
n

p

))
(C.2)
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with β0 = α11, α22 and β1 = α12, α21.

Placing (C.2) in the form u̇(np) (4.32) provides the following prefactor functions,

gn(n, p) = γnc

( βo(n+ 1)

βo(n+ 1
2
) + β1(p+ 1) + ns

+
β1(n+ 1)

β1(n+ 1
2
) + βo(p+ 1) + ns

)
(C.3)

gp(n, p) = γnc

( β1(p+ 1)

βo(n+ 1
2
) + β1(p+ 1) + ns

+
βo(p+ 1)

β1(n+ 1
2
) + βo(p+ 1) + ns

)
(C.4)

rn(n, p) = γ(n− 1) (C.5)

rp(n, p) = γ p (C.6)

h(n, p) =
γ

2
nc

( βo
βo(n+ 1

2
) + β1(p+ 1) + ns

+
β1

β1(n+ 1
2
) + βo(p+ 1) + ns

)
− γ

2
(C.7)

s(n, p) = i(κ(2n− 1) + ηp), (C.8)

The Taylor expansion of the prefactors (cf. 4.45−4.49) around the mean of the initial

conditions,

nl =
〈nuo〉
〈uo〉

, pl =
〈puo〉
〈uo〉

, (C.9)

gives the following coefficients (cf. 4.45-4.49),

A =− i∇(h+ s)|nl,pl (C.10)

B =

(
∇(rn − gn)

∇(rp − gp)

)∣∣∣∣∣
nl,pl

(C.11)

c =h|nl,pl (C.12)

D =i
(
rn − gn +

1

2
∂n(rn + gn), rp − gp +

1

2
∂p(rp + gp)

)∣∣
nl,pl

(C.13)

E =− 1

2

(
rn + gn 0

0 rp + gp

)∣∣∣∣∣
nl,pl

. (C.14)

As mentioned in Chapter 4, the coefficients (C.10−C.14) can be obtained analyti-

cally but the eigenbasis of B used in g(1)(τ), (4.76) as well as the initial condition, go,

(4.79, 4.74) used with (C.2, C.9), which appear in the result require the last steps to

be numerical.
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C.2 Fokker-Planck Approach – One Mode

We compare the solution developed in this thesis, in one mode, with the one developed

by Whittaker and Eastham [Whit09]. The approach in this thesis gives the following

characteristic equation in one mode (cf. 4.42)

ġ +

(
2κ+ γk+

2γnc
(
i− (2ns − 1)k

)
(1 + 2ns + 2nl)2

)
dg

dk
=

γ

[
− 1

2
+ i(nl −

1

2
)k − 1

2
(nl − 1)k2

+
nc

1+2nl+2ns

(
1− 2(nl + 1)k +

(2nc − 1)k

1+2nl+2ns
+ (nl + 1)k2

)]
g.

(C.15)

We note that the interaction (κ), originating from the s term (4.33, 4.45, C.15, C.10),

appears only in the characteristics.

Once the one-mode version of (C.1) is linearized around nl = n̄ + nc
n̄

, n̄ = nc − ns,
the Kubo form of [Whit09] arises from the characteristic equation,

ġ +
(

2κ+
iγ

2nc
+ γ

nc − ns
nc

k
)dg

dk
= γ

[ −1

2(nc − ns)
− (nc − ns)k2

]
g, (C.16)

This simpler from is obtained by manipulating and dropping terms that are small when

ns = [1000, 4000], n̄ = 200. It is solved, along with the shifted (Gaussian) steady state

population which, once expressed with the characteristics ko for k(τ) = 0, reads,

go = exp

[
− 2nc

(
κ+

iγ

4nc

)2 1− 2e−γ̄τ + e−2γ̄τ

γ̄2

]
, (C.17)

where γ̄ = γn̄/nc. This gives the form [Whit],

g(1)(τ) = exp

[
− 4nc

(
κ+

iγ

4nc

)2 e−γ̄τ + γ̄τ − 1

γ̄2

]
exp
(−γτ

2n̄

)
, (C.18)

|g(1)(τ)| = exp
[−4ncκ

2

γ̄2
(e−γ̄τ + γ̄τ − 1)

]
exp
[ nc

4n̄2
(e−γ̄τ − γ̄τ − 1)

]
. (C.19)

In C.19, the exponential which contains the interactions κ corresponds to the form

derived by Kubo for the spectrum of a transition whose frequency is fluctuating (Sec.
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1.2.4) [Kubo54, Hamm05]. The steps to reach this expression combine elegant manipu-

lations which we have not been able to generalize in the multimode theory. Furthermore

the cutoff needs to be included, even far above threshold, in the multimode case (Sec.

4.3).

C.3 Static Limit – Analytic Solutions

Here we show how an analytic expressions for the static limit in the ridge case can be

obtained.

In a continuous occupation and for two modes Eq. (4.86) reads,

g(1)
s (τ) =

1

〈n〉

∫∫
nP(np)e

i(κ(2n+1)+ηp)τdn dp, (C.20)

while the fully formed expression (4.87) is

g(1)
s (τ) =

∫ ∞
0

∫ ∞
0

P(np)e
i(2κn+ηp)τdn dp, (C.21)

with (3.29), (3.34) in two modes,

P(n,p) =
1

Z
exp

(
−
(
n p

)
·

(
β2
o+β2

1

2nc

β1βo
nc

β1βo
nc

β2
o+β2

1

2nc

)
·

(
n

p

)
+
(
nc−ns
nc

nc−ns
nc

)(n
p

))
. (C.22)

Independent Case

In the independent case, βo,1 = 1, 0, the integral gives,

g(1)
s (τ) =

1

Z
· ncπ

2
e

(nc−ns+2incκτ√
2nc

)2+(nc−ns+incητ√
2nc

)2

×[
1 + erf

(nc − ns + 2incκτ√
2nc

)]
·
[
1 + erf

(nc − ns + incητ√
2nc

)] (C.23)

which factorizes with respect to κ, η, as expected.
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Ridge Case

In the ridge case, βo,1 = 0.5, also has an analytic solution. It is obtained by performing,

the following transformation

u =
1√
2

(n− p) (C.24)

v =
1√
2

(n+ p) (C.25)

⇒


2κn+ ηp =

1√
2

(2κ− η)u+
1√
2

(2κ+ η)v∫ ∞
0

∫ ∞
0

dn dp→
∫ ∞

0

dv

∫ v

-v

du

, (C.26)

So that

g(1)s (τ) =
1

Z
·
√
πnc

i(2κ− η)τ
×[

e
(nc−ns+2incκτ)

2

nc

(
1 + erf

(nc − ns + 2incκτ√
nc

))
− e

(nc−ns+incητ)2
nc

(
1 + erf

(nc − ns + incητ√
nc

))]
.

(C.27)

The factor 1/i(..)τ is reminiscent of the denominator in a Sinc function and occurs

due to the cutoff. The normalization, Z, is given by the g
(1)
s (0). The error functions

can be neglected far above threshold.

For the intermediate cases, the integrals (C.21) have to be performed numerically.
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[Bany00] L. Bányai, P. Gartner, O. M. Schmitt, and H. Haug. “Condensation kinetics

for bosonic excitons interacting with a thermal phonon bath”. Phys. Rev.

B, Vol. 61, pp. 8823–8834, 2000.

[Brau05] S. L. Braunstein and P. van Loock. “Quantum information with continuous

variables”. Rev. Mod. Phys., Vol. 77, pp. 513–577, 2005.

[Brow57] R. H. Brown and R. Twiss. “Interferometry of the intensity fluctuation on

light. I. Basic theory: The correlation between photons in coherent beams

of radiation”. Proc. of the Royal Society of London. Series A, Mathematical

and Physical Sciences, Vol. 242, No. 1230, pp. 300–324, 1957.

[Call51] H. B. Callen and T. A. Welton. “Irreversibility and generalized noise”.

Phys. Rev., Vol. 83, No. 1, p. 3440, 1951.

[Carm74] H. J. Carmichael and D. F. Walls. “Modifications to the Scully-Lamb laser

master equation”. Phys. Rev. A, Vol. 9, pp. 2686–2697, 1974.

[Caru13] I. Carusotto and C. Ciuti. “Quantum fluids of light”. Rev. Mod. Phys.,

Vol. 85, p. 299, 2013.

[Chri07] S. Christopoulos, G. B. H. von Högersthal, A. J. D. Grundy, P. G.
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