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The interaction between a quantum system and its environment limits our ability to control it and
perform quantum operations on it. We present an efficient method to find optimal controls for quantum
systems coupled to non-Markovian environments, by using the process tensor to compute the gradient of an
objective function. We consider state transfer for a driven two-level system coupled to a bosonic
environment, and characterize performance in terms of speed and fidelity. This allows us to determine the
best achievable fidelity as a function of process duration. We show there can be a trade-off between speed
and fidelity, and that slower processes can have higher fidelity by exploiting non-Markovian effects.
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The control of quantum systems using time-dependent
Hamiltonians is crucial for quantum technologies [1],
enabling the implementation of state transfer and gate
operations. An important task is to establish how optimal
performance can be achieved for such processes. In an ideal
closed quantum system perfect operations are possible
given sufficient time [2]. A speed limit arises because
physical Hamiltonians are bounded, so that energy-time
uncertainty gives a maximum rate of time evolution and
hence a minimum operation time. Beyond this ideal case,
however, other considerations arise. One is a desire for
reliable operation when precise control cannot be guaran-
teed; this can be achieved by using robust control tech-
niques [3] or adiabatic processes [4,5]. Another is the
impact of decoherence and dissipation. In the standard
Markovian approximation such processes give a cumula-
tive loss of information with time. Thus, one generally
expects fast operation to be desirable to minimize infor-
mation loss, although there are notable exceptions, where
slower operation allows access to a decoherence-free sub-
space [6]. In this Letter, we show that fast operation is not
always desirable in non-Markovian systems, because
slower operation can enable information backflow to be
harnessed to increase fidelity.
To provide a concrete demonstration of the trade-off

between speed and fidelity in non-Markovian systems we
use numerical optimal control to explore the achievable
performance for a system consisting of a driven qubit
interacting with a bosonic environment. Optimal control [7]
involves determining a set of time-dependent control fields
that maximize an objective function such as the fidelity.
Here, we show that this can be done effectively in a

non-Markovian system, using an extension of our previ-
ously introduced process tensor approach [8] to efficiently
compute the gradient of the objective function. This allows
us to repeatedly optimize over many hundreds of control
parameters for different process durations, and so find the
achievable fidelity as a function of the process duration.
Our results reveal a marked improvement in fidelity for
process durations T longer than a value T0, set by the
speed limit in the closed system [2]. We further compute a
widely used measure of non-Markovianity, based on trace
distance [9], and show that the improved fidelity coincides
with an increase in non-Markovianity. Since many types of
devices exhibit regimes of non-Markovian decoherence our
results could enable performance improvements across a
range of quantum technologies [10], including supercon-
ducting circuits [11,12], spins [13], quantum dots [8,14],
color centers in diamond [15], and cold atoms [16–18].
Our approach applies to an open quantum system

comprising a few-state system Hamiltonian HS interacting
with an environment (bath) with HamiltonianHB through a
coupling HSB. Models of this form are typically treated
under the assumptions of weak system-bath coupling and
short bath correlation time (Born-Markov). This implies
that information about the system only flows away into the
environment, and does not return, leading to simple time-
local evolution equations for the system reduced density
matrix ρS [19]. To avoid making these approximations we
use process tensors (PT), which are general objects that
encode the complete influence of the environment. Our
approach applies to any open quantum system for which
the PT can be computed as a matrix product operator with
low bond dimension.
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Time-local evolution equations for ρS have been used to
explore performance limits [20–22] using optimal control
[23] in various problems. Studying optimal control beyond
their applicability has so far been difficult. One approach is
to expand the system to incorporate a few modes of the
environment, which are then treated exactly, with the
remaining environment modes providing Markovian damp-
ing. This approach has been used to study controllability
[24], optimal control [25,26], and speed limits [22].
However, it becomes intractable when one considers more
than a few modes of the environment. Another method
involves computing the time-local dissipator describing
non-Markovian dynamics using lowest-order perturbation
theory [27] or the hierarchical equations of motion [28].
These techniques have been used within optimal control to
demonstrate fidelity increases, and can be effective when
the environment spectral density can be approximated by a
small number of Lorentzians. Another type of approach
[29] uses the stochastic Liouville equation, but is limited by
the need to average over a large and a priori unknown
number of trajectories. Some works [30–32] have obtained
optimal protocols under the assumption that the dissipation
is described by a fixed time-local dissipator, such as that
for a pure dephasing channel [33,34]. An issue, however,
is that for optimal control one must consider the effect
of the time-dependent control fields on the dissipative
processes [35].
To overcome these challenges, we extend the process

tensor method described in our previous work [8] for
solving the dynamics of non-Markovian open systems. The
process tensor [36,37] is a multilinear map from the set of
all possible system control operation sequences to the
resulting output states, constructed by discretizing the time
evolution into a series of time steps. It can often be
computed in matrix-product operator form with low bond
dimension using algorithms that systematically discard
irrelevant correlations [39,40]. For a Gaussian bosonic
environment efficient representations can be found using
the methods introduced in [8,41–44], which are often
effective for smooth spectral densities. A range of methods
for bosonic, fermionic, and spin environments is now
available [45–56]. Once computed, the PT can be con-
tracted to time-evolve ρS for any HS, as shown in Fig. 1(a).
In this tensor network diagram [40] each node represents a
tensor, each leg represents an index, and connections
between legs correspond to contractions. The diagram is
in Liouville space so that operators such as ρS are rank-1
objects (i.e., objects with a single index), and maps between
operators, such as the propagators across each time step
Ut ¼ eΔtLSðtÞ with LSðtÞ• ¼ −i½HSðtÞ; •�, are rank-2. The
PT is the region in the dashed box, which can be contracted
with an initial density matrix and the Trotterized propa-
gators [57] to obtain ρS at later times.
For optimal control we must define an objective func-

tion. In the following we consider the example of a state

transfer process, for which we use the fidelity F [58]
between the desired target state and the obtained final state
ρf ¼ ρSðtfÞ. To simplify the presentation of the method we
assume a pure target state, with density matrix σ ¼ jσihσj,
in which case F ¼ hσjρfjσi is a linear function of the
final state. In Liouville space it is the scalar product of
the vectors representing the final density matrix and the
transposed target density matrix, corresponding to the
diagram in Fig. 1(a). The generalization of the method
to nonlinear objective functions, such as the fidelity for a
mixed target state, is straightforward [37].
An optimal protocol is found by numerically maximizing

F over N control parameters that determine the system
propagators at each discrete time step. Such numerical
optimization becomes significantly faster if one can effi-
ciently calculate the gradient of F with respect to the
N-dimensional vector of control parameters, ∇F . A naive
calculation of ∇F requires of order N evaluations of F ,
strongly limiting the size of problems that can be treated.
Such gradients can, however, be efficiently obtained using
the adjoint method [59], which has been applied to unitary
or Markovian dynamics [60,61]. In the GRAPE algorithm
[60], for example, the gradient is computed by combining
states stored during a forward-in-time propagation from the
initial state with those stored during a backward-in-time
propagation from the target state. Crucially, one may see
that the tensor network representation of F in Fig. 1(a)
leads immediately to the generalization required for non-
Markovian dynamics. This diagram represents the fidelity
as a multilinear functional of the propagators; thus the
derivative with respect to the propagator at a given time step

FIG. 1. (a) Tensor network representation of the propagation of
an initial state over four time steps and calculation of the fidelity.
Time increases going up the diagram. The evolved density matrix
is given by this diagram without the target state node. The fidelity
is obtained by joining the legs indicated by arrows. (b) The
derivative of the fidelity with respect to the penultimate propa-
gator is given by joining the legs indicated by the arrows,
contracting a pair of indices in the product of one tensor formed
during a forward propagation with one formed during a backward
propagation.
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is the same diagram with the node for that propagator
removed. As shown in Fig. 1(b), and discussed further in
[37], all such derivatives can be computed by combining
rank-2 tensors stored as the network is evaluated forward in
time with those stored during a backward propagation. The
key difference compared to the adjoint method for unitary or
Markovian dynamics is that we propagate a rank-2 tensor
rather than the state ρS. The additional index in this tensor
encodes information about the past and future dynamics and
enables optimization of non-Markovian evolutions.
To illustrate the general principle, we consider an

example of optimal state transfer in a driven two-level
system. Our system Hamiltonian is HS¼hxðtÞsxþhzðtÞsz,
where the fields hx;zðtÞ are the controls. We treat them as
piecewise constants with values hx;zðtnÞ at the time steps
tn ¼ nΔt. We seek to determine the control fields that steer
the state ρSðtÞ from a prescribed initial state to a target state.
The bath is a set of harmonic oscillators, and the coupling is
HSB ¼ sz

P
qðgqbq þ g�qb

†
qÞ. This model is known as the

spin-boson model, and it describes many physical systems
[62,63]. For definiteness, we take parameters appropriate
for an optical transition on a quantum dot, driven by laser
pulses [64]. In that case hz is the difference between the
transition frequency and the laser frequency, and hx the
signed Rabi frequency (obtained by writing the oscillating
driving field in terms of its real-valued amplitude and
frequency). In the quantum dot the bosonic modes are
acoustic phonon modes, for which we use the super-Ohmic
spectral density JðωÞ ¼ 2αω3ω−2

c exp ½−ω2=ω2
c� with α ¼

0.126 and ωc ¼ 3.04 ps−1 [65,66], and use a bath temper-
ature of 5 K. We take the initial and target states to be the
eigenstates of sx with eigenvalues ∓ 1 respectively. Note
that this process differs from that usually emphasized for
quantum dots [65,66], which is a transfer between eigen-
states of sz.
We have determined optimal controls hxðtnÞ, hzðtnÞ by

numerically maximizing F using the limited-memory
Broyden–Fletcher–Goldfarb–Shanno algorithm [67,68],
with the gradient and fidelity computed with the PT. To
explore the impact of speed on fidelity we per-
form this optimization for different process durations T,
with bounds on the controls, jhxj ≤ hmax

x ¼ 5 ps−1 and
jhzj ≤ hmax

z ¼ 1 ps−1, to consider the realistic case in which
the Hamiltonian, and therefore the speed of the unitary
evolution, is restricted. We note that in the unitary case, the
speed limit for state transfer has been identified from the rate
of convergence of the Krotov algorithm [20]. Here, we
consider a fully non-Markovian dissipative system, and use
numerically converged optimization to identify the speed
limit from the behavior of the fidelity against process
duration. Figure 2(a) shows the resulting infidelity, 1 − F
for this optimized protocol, which we refer to as “control A”.
It is interesting to compare the optimized results with

those for the protocols that are optimal for unitary dynam-
ics in the closed system [69], denoted “control B,” which

we used as the starting point for the optimization. These
protocols can be understood by noting that for unitary
dynamics one can achieve the state transfer with infidelity
zero by setting hx ¼ 0 and choosing hzðtÞ such that its time
integral is π. Such a protocol is optimal if it satisfies the
constraint jhzðtÞj < hmax

z for all times, which is possible
when T is greater than the speed limit time T0 ¼ π=hmax

z
(which saturates both the Mandelstam-Tamm and
Margolus-Levitin bounds [2]). Among protocols satisfying
the above condition, we choose hzðtÞ ¼ π=T. For T < T0

the state transfer is not fully achievable and the optimal
protocol is that with hzðtÞ ¼ �hmax

z . Thus, in both regimes,
we have an optimal protocol with a time-independent HS.
As can be seen in Fig. 2(a), the infidelity of this protocol
(control B) for the unitary dynamics smoothly decreases as
the duration T increases from zero, before saturating at zero
for T > T0. Applying this same protocol in the open system
gives a similar overall behavior, with the key difference
being that the saturated value of the infidelity at large T is
now nonzero. This behavior differs from that obtained
for this control in a Markovian model with a constant
decoherence rate, where slower processes produce higher
infidelity, i.e., growing with T. In the “control B” protocol,
we have hzðtÞ ¼ hz and hx ¼ 0, so that the model is the
exactly solvable independent-boson model [70,71], which
has non-Markovian decoherence. The constant infidelity

FIG. 2. (a) Infidelity, 1 − F , for state transfer as a function of
process duration with bounded control fields. Results are shown
for the optimal protocol of the non-Markovian spin-boson model
(control A) and for driving with a constant field (control B). The
latter is an optimal protocol in the closed system. Blue solid:
infidelity of control A in the spin-boson model. Orange dashed:
infidelity of control B in the spin-boson model. Green dot-
dashed: infidelity of control B in the closed system. (b) Non-
Markovianity measure as a function of process duration in the
spin-boson model for controls A (blue solid) and B (orange
dashed). The vertical dotted lines are the speed limit time T0 of
the closed system.
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for T > T0 comes from the decoherence function of the
independent-boson model, which approaches a nonzero
constant for times T ≫ τb ∼ 1=ωc.
Figure 2 shows that the optimization increases the

performance for all process durations, as one would expect,
but the increase becomes marked when T > T0. This is
because the fidelity in this regime is limited not by the
distance to the target state and the speed of unitary
evolution underHS, but by the decoherence and dissipation
produced by the bath. The improved fidelity thus corre-
sponds to suppressing decoherence.
An approach to suppressing decoherence one might

consider is dynamical decoupling [71] (DD). Such a
protocol uses control fields to produce dynamics for the
system that averages away the effects of the bath, which
requires that the timescale of the system is much shorter
than that of the bath τb. This regime is not accessible in our
optimization due to the bounds on the controls. The
standard DD sequence for the process we consider would
be a train of π pulses separated by a time τ ≪ τb and each
with duration τp ≪ τ; this would produce rapid spin flips
and so average awayHSB ∝ sz. Thus, standard DD requires
jhxj ≫ π=τb, which with τb ∼ 1=ωc ∼ 0.3 ps is greater
than hmax

x .
To explore the mechanism that is giving the improve-

ment in fidelity we compute a measure of non-
Markovianity. There are many such interrelated measures
[63,72,73] including, among others, those based on divis-
ibility and complete positivity, and those based on infor-
mation backflow. We choose that introduced by Breuer,
Lane, and Piilo [9], formed from the trace distance between
pairs of states D12 ¼ Trjρ1ðtÞ − ρ2ðtÞj=2, where ρ1ðtÞ and
ρ2ðtÞ are obtained by time-evolving initial states ρ1 and ρ2,
respectively. The non-Markovianity is

N ¼ max
ρ1;ρ2

Z
dD12

dt
dt; ð1Þ

where the integral extends over regions where the integrand
is positive, and the maximum is over all pairs of orthogonal
states on the surface of the Bloch sphere (which is the same
as the maximum over all pairs of initial states; see [74]).
The two curves in Fig. 2(b) show the non-Markovianity as a
function of process duration for the optimal controls (solid)
and the constant field (dashed). For control B, the non-
Markovianity increases from zero as the process duration
increases from zero, becoming constant for T⪆2 ps. This
corresponds to the buildup of correlations due to the
system-bath coupling in the independent-boson model,
and is unaffected by the system dynamics since
½HS;HSB� ¼ 0 when hx ¼ 0. The non-Markovianity with
the optimal control A is higher, but initially shows a similar
increase and saturation as the duration T increases from
zero. However, there is then a marked feature at T ≈ T0,
beyond which the non-Markovianity increases rapidly with

process duration before reaching a new and much higher
level. This suggests that the improvement in fidelity for
long process durations occurs because the optimization
increases the degree of non-Markovianity of the map,
restoring some of the information lost to the environment
during the earlier parts of the dynamics by the end of the
process.
Figure 3 shows the optimized controls (top panel), and

the dynamics of the Bloch vector hσx;y;zi, for the optimal
protocol, control A, at T ¼ 4.0 ps. For this duration, the
optimal hz remains constant, while the optimized hx has an
overall slope and oscillations of varying magnitude. The
resulting dynamics of the Bloch vector moves down below
the equator during the control and develops weak oscil-
lations. The clearest effect of the optimization is seen in the
length of the Bloch vector, which is shown for both
protocols A and B. In the latter case the length of the
Bloch vector is given by the decoherence function of the
independent-boson model, which goes from one, for zero
time, to a constant nonzero value at late times. The optimal
control A clearly avoids this decay and even shows an
increase in the Bloch-vector length at the very end of the
pulse, consistent with a decoherence suppression mecha-
nism. The control in hx is very different from that for a
standard DD sequence as described above. The behavior
shown is representative of that we find for other process
durations [37]. For a unitary dynamics it has been shown
that there is a unique global optimum for durations near the
quantum speed limit [75]. The consistency in the form of
our solutions suggests that this may also be the case here.
Some insight into a possible mechanism for the

improved fidelity can be gained by considering the

FIG. 3. (a) Driving fields hxðtÞ (green) and hzðtÞ (orange) for
the optimal state transfer process, control A, of duration 4.0 ps.
(b) Dynamics of the components of the Bloch vector (left axis,
green solid, hσxi; blue dot-dashed, hσyi; orange dashed, hσzi) and
length of the Bloch vector (right axis, black solid). The length of
the Bloch vector for control B is also shown (right axis, black
dashed).
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decoherence at zero temperature when hx ¼ hz ¼ 0. This is
the solvable independent-boson model [70,71], in which an
initial product state j↑xi ⊗ j0i ¼ ðj↑i þ j↓iÞ ⊗ j0i= ffiffiffi

2
p

evolves to ðj↑i ⊗ jfi þ j↓i ⊗ j − fiÞ= ffiffiffi
2

p
. Here, j � fi

are bath states in which the Gaussian ground-state wave
functions of the oscillators have evolved in oppositely
displaced potentials. This reduces the system coherence by
the overlap of the bath states, hσxi ¼ 2Rehfj − fi. We
suggest that our controls both suppress and reverse this
polaron formation process, disentangling the system and
environment. For a single-oscillator environment such
disentangling occurs periodically without the control fields;
our optimization may be exploiting similar physics in an
ensemble. Optimization results for other spectral densities
and temperatures [37] are consistent with this suggestion.
In conclusion, we have presented a method for comput-

ing optimal controls in general non-Markovian systems. It
extends the PT method [8] to efficiently compute gradients,
so permitting optimization over large numbers of control
parameters. The method takes full account of the changes in
the dissipator produced by the control fields, allowing it to
discover protocols that exploit non-Markovianity for
improved performance. We have used it to investigate state
transfer in the spin-boson model, where we find that slow
processes can improve on fast ones by exploiting non-
Markovian effects. These results show that performance
improvements are possible across the many qubit imple-
mentations subject to non-Markovian decoherence, and
could be identified using the methods described here.

The supporting data for this article are openly available
from Zenodo [76].
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