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We present a general method to efficiently design optimal control sequences for non-Markovian open
quantum systems, and illustrate it by optimizing the shape of a laser pulse to prepare a quantum dot in a
specific state. The optimization of control procedures for quantum systems with strong coupling to
structured environments—where time-local descriptions fail—is a computationally challenging task.
We modify the numerically exact time evolving matrix product operator (TEMPO) method, such that it
allows the repeated computation of the time evolution of the reduced system density matrix for various sets
of control parameters at very low computational cost. This method is potentially useful for studying
numerous optimal control problems, in particular in solid state quantum devices where the coupling to
vibrational modes is typically strong.
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One of the main challenges in current quantum tech-
nology is to avoid or mitigate decoherence. The field of
“quantum optimal control theory” [1–5] seeks to address
this challenge by searching for classical control sequences
on quantum systems to achieve the highest fidelity of a
process for a given experimental setup. For this to be
successful, it is necessary to be able to accurately compute
the dynamics of the system under the influence of the
environment. The majority of research on optimal control
for open quantum systems has been carried out in the
Markovian limit, where one assumes a weak system-
environment coupling and environment correlations that
are short compared to the timescale of the system evolution
[6,7]. However, in many solid-state devices and other
systems this assumption breaks down [8–12] so one cannot
use simple time-local density matrix equations of motion.
In addition to non-Markovianity being common, it can
be desirable [13–24]: it has been shown that non-
Markovianity of open quantum systems can lead to higher
fidelity of quantum operations due to the possible infor-
mation backflow from the environment to the system. The
simulation of general non-Markovian open quantum sys-
tems is, however, a computationally challenging task,
which hampers progress on the design of optimal control
procedures.
There exist a number of available methods applicable to

simulating specific non-Markovian scenarios [25–37] (see
Ref. [38] for a review of some of these). One approach is to
extend the notion of the system, in cases where the
environment can be modeled as extra “noise qubits,” which
couple strongly to the system and weakly to some
Markovian environment [13,17,22]. This is done system-
atically in the time evolving density operator with

orthogonal polynomials (TEDOPA) [28,29] method, which
maps the environment to a chain of coupled sites. Instead of
augmenting the system space, one can write coupled
hierarchical equations of motion (HEOM) [19,20,25,37];
this performs well for spectral densities that are well-
approximated by a small number of Lorentzians. Most
relevant to this Letter are methods based on an augmented
density tensor, capturing the system history, specifically the
quasiadiabatic propagator path integral (QUAPI) [26,27].
When considering optimal control applications, a major
impediment to all of these methods is that they are
computationally intensive and the entire calculation needs
to be repeated for each set of control parameters. This
makes numerical optimization unfeasibly costly.
In this Letter we present a general method to efficiently

design classical control procedures for non-Markovian
open quantum systems. A crucial step is a recasting of
the TEMPO method [39,40] within the framework of
process tensors introduced by Pollock et al. in Ref. [41].
With the resulting process tensor TEMPO (PT-TEMPO)
method [42] one can perform the bulk of the computation
independent of the system control parameters. This enables
us to repeatedly find the system density matrix time
evolution for various sets of control parameters at very
low computational cost. We can use this to optimize
classical control procedures with respect to any chosen
aspect of the system evolution, taking full account of non-
Markovian effects. To demonstrate this method we apply it
to a quantum dot that is driven by a shaped laser pulse and
strongly coupled to a super-Ohmic phonon environment
[see Fig. 1(a) for a sketch of the experimental setup we
model]. We show that our method can explore a thirty-five
dimensional space of control parameters, and find
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optimized pulses for state preparation in an ensemble of
five qubits of differing energies.
TEMPO and process tensors.—The most general sce-

nario that we consider is a small system coupled to a
bosonic environment with a total Hamiltonian of the form

Ĥ¼ ĤSðt;fcngÞþ
X∞
k¼0

½ÔSðgkb̂†kþg�kb̂kÞþωkb̂
†
kb̂k�; ð1Þ

where the system Hamiltonian ĤS depends on the classical
control sequence—which is parametrized by a set of real
variables fcng—and is therefore time dependent. The
operator ÔS is the system coupling operator, gk are the
coupling constants, ωk are the environment mode frequen-

cies, and b̂ð†Þk are the bosonic environment lowering
(raising) operators. The coupling constants and environ-
ment mode frequencies are encoded in the spectral density
JðωÞ ¼ P∞

k¼0 jgkj2δðω − ωkÞ. We assume that at some
initial time t0 the total state can be written in a product
state ρðt0Þ ¼ ρSðt0Þ ⊗ ρEðt0Þ, where ρEðt0Þ is a Gaussian
state of the bosonic environment (for example, a thermal
state). We make no assumption on the coupling strength or
the total state at any later time.
The TEMPO method is numerically exact and based on

Feynman-Vernon influence functionals [43]. Like QUAPI,
the TEMPO method utilizes an augmented density tensor
(ADT) to encode the system’s history and its autocorrela-
tions over time. It employs tensor network methods to
compress this ADT in the form of a matrix product state
(MPS) [44,45], which allows it to include the history
over hundreds of time steps. Figure 1(b) exemplifies the
TEMPO tensor network for four time steps. Each node of
this network represents a tensor and each edge (called leg)

corresponds to an index. When a leg connects two tensors it
signals a summation between them.
The TEMPO method uses a Suzuki-Trotter expansion of

the total propagator e−iĤδt into propagators e−iĤSδte−iĤEδt

of the pure system part HSðtÞ and the remainder HE,
plus higher order terms Oðδt2Þ. The time step δt must be
chosen small enough that these higher-order terms can be
neglected. The tensor network underlying this method
works in Liouville space, which means that density
matrices are represented as vectors and the maps between
them as matrices (so called superoperators). The purple
circle in Fig. 1(b) is the vectorized initial system state ρSðt0Þ
and the green circles are the system propagators for a single
time step Um¼exp½LSðtmþδt=2Þδt� at times tm¼ t0þmδt
with the system Liouvillian superoperator LSðtÞ ¼
−i½ĤSðtÞ; ·�. The blue squares in Figs. 1(b) and 1(c) are
the Feynman-Vernon influence functionals In, which can
be directly constructed from the coupling operator ÔS, the
spectral density JðωÞ and the initial environment state
ρEðt0Þ. An influence functional In quantifies how the
system evolution at some time tm is influenced by the
state of the system at the earlier time tm−n, thus allowing for
a non-Markovian dynamics of the system. The influence
functionals depend only on the time difference nδt between
tm and tm−n, because the environment is time translational
invariant. Because the individual Feynman-Vernon influ-
ence functionals in the network are derived from the
corresponding time intervals in the environment autocor-
relation function, the TEMPO method performs best when
this function is smooth and decays to zero within some
finite time. For more details on this method and the precise
form of the In tensors, see Refs. [39,40].
The crucial point we make use of is that since most of the

TEMPO tensor network consists solely of influence func-
tionals, which do not depend on the system Hamiltonian or
the initial system state (see red dashed region in Fig. 1(b)),
we may perform the bulk of the computation—contraction
of the tensor network—before specifying the system
Hamiltonian. This provides an efficient method enabling
optimization over system Hamiltonian parameters.
As realized by Jørgensen and Pollock, the TEMPO

network can be contracted to yield a process tensor
[41,46]. The process tensor framework takes an operational
approach to characterize non-Markovian open quantum
systems, by considering a finite set of interventions. Its
central object—the process tensor—has two legs for each
intervention and encodes the outcome of every possible
sequence. It has been used to resolve common miscon-
ceptions on implications of completely positive divisibility
[47] and it gives a natural definition of quantum non-
Markovianity that coincides with the classical definition in
the classical limit [48]. Here we show that in addition to
these conceptional advantages it also has computational
benefits. If one chooses a small enough time step such that
a Suzuki-Trotter expansion as described above is a good

(b)(a)

(c)

FIG. 1. (a) Sketch of the experimental setup to drive a quantum
dot (QDot) with a shaped laser pulse. The pulse form can be
modified with a spatial light modulator (SLM). (b) The TEMPO
tensor network for four time steps. (c) Contraction scheme to
obtain the process tensor in MPS form. The numbers n ∈ N on
the blue boxes in (b) and (c) label the influence functionals In that
account for the influence of the system on itself via the
environment at a time delay of nδt.

PHYSICAL REVIEW LETTERS 126, 200401 (2021)

200401-2



approximation, then the system Hamiltonian need not be
part of the computation of the process tensor. The red
dashed area appearing in the TEMPO tensor network in
Fig. 1(b) can be identified as such a process tensor with
respect to a total Hamiltonian that excludes the pure system
part Ĥ0 ¼ Ĥ − ĤSðt; fpngÞ. Thus, in the language of the
process tensor formalism, the red dashed area in Fig. 1(b) is
a process tensor and the pure system propagators are a set
of interventions.
To optimize the control of a non-Markovian open

quantum system, we propose to make use of the ideas
above and split the computation into two steps. First, we
contract the influence functionals column by column as
explained in detail in Ref. [46] and depicted schematically
in Fig. 1(c). The result of this computation yields the
process tensor in MPS form, which we save. Then, we
perform a search by repeatedly inserting different system
propagators associated with various sets of control param-
eters. This allows us to compute the reduced system
dynamics at very low computational cost and thus enables
us to find control sequence parameters that optimize the
fidelity of the process.
Application to a quantum dot.—We demonstrate the

performance of the PT-TEMPO approach by applying it to
a quantum dot that is strongly coupled to its phonon
environment and driven by a configurable laser pulse.
We aim to drive the quantum dot into a coherent super-
position within a few picoseconds. Modeling this is
challenging because the evolution timescale is comparable
to the memory time, so non-Markovian effects play an
important role.
Figure 1(a) shows a sketch of the experimental setup we

model for this purpose. The laser pulse shape is modified
with a pair of diffraction gratings, lenses, and a spatial light
modulator (SLM). We consider the ground state and the
exciton state of the quantum dot and denote them with j↓i
and j↑i, respectively. Under the rotating wave approxima-
tion the system Hamiltonian (with ℏ ¼ 1) is

ĤSðtÞ ¼
ω↑↓

2
σ̂z þ

ΩðtÞ
2

e−iω0tσ̂þ þ Ω�ðtÞ
2

eiω0tσ̂−; ð2Þ

where ΩðtÞ is the positive frequency part of the classical
electrical field amplitude, ω0 is the laser carrier frequency,
and ω↑↓ is the exciton energy. Also, σ̂z is the Pauli matrix,
σ̂þ ¼ j↑ih↓j, and σ̂− ¼ j↓ih↑j. In addition, the quantum
dot couples strongly to its phonon environment with the
coupling operator ÔS ¼ σ̂z=2 and a super-Ohmic spectral
density JðωÞ ¼ 2αω3ω−2

c expð−ω2=ω2
cÞ, with the unitless

coupling constant α ¼ 0.126 and the cutoff frequency ωc ¼
3.04 ps−1 [10,12,49]. The initial state is assumed to be the
product of the quantum dot ground state j↓i and the thermal
state of the environment at T ¼ 1 K. We note that the
environment autocorrelation function dies off only after

about 2.5 ps, which renders a Markovian approach invalid
at comparable and shorter timescales.
For convenience, we transform the system Hamiltonian

into a frame rotating at the frequency of the optical
transition, such that

ĤSðtÞ ¼
EðtÞ
2

σ̂þ þ E�ðtÞ
2

σ̂−; ð3Þ

where EðtÞ ¼ ΩðtÞ expð−iΔtÞ is the positive frequency part
of the electric field in the rotating frame, andΔ ¼ ω0 − ω↑↓

is the detuning of the carrier frequency of the input
pulse with respect to resonance. The input pulse (before
it enters the pulse shaper) is assumed to be Gaussian, i.e.,
EinðtÞ ∝ τ−1 exp ð−t2=τ2Þ exp ð−iΔtÞ, with the input pulse
duration τ assumed to be between 30 and 300 fs. The pair of
diffraction gratings and appropriate lenses enable the
spatial separation of the frequency components of the input
pulse, with an approximately linear relationship between
frequency and position at the SLM. Therefore each SLM
pixel modifies a particular frequency range of the pulse. We
further assume that the pulse also has a finite spatial width
with a Gaussian profile, which results in a finite spot size
for each frequency part at the SLM. Given that each SLM
pixel can induce a phase shift ϕn to its corresponding
frequency Ωn the output pulse EðtÞ ∝ ðh � EinÞðtÞ is a
convolution with the SLM’s impulse response function

hðtÞ ∝ sinc
�
δΩpt

2

�
e−ðδΩ2

s t2=4Þ
X

n∈pixels
eiðΩntþϕnÞ; ð4Þ

where δΩp is the pixel width and δΩs is the spot size in
terms of their corresponding frequency range [50,51]. We
assume 512 SLM pixels centered at the pulse carrier
frequency and evenly spaced over a frequency range of
2π × 128.0 ps−1. Also, we assume that the spot size of the
pulse covers about two pixels, i.e., δΩs ¼ 2.0 × δΩp.
The setup described here leads to 515 experimental

parameters to modify the laser pulse, namely, the initial
pulse length τ, the initial pulse detuning Δ, the pulse area
Θ, and one phase shift ϕn for each of the 512 SLM pixels.
Instead of directly using the 512 parameters on the SLM,
we use a continuous phase mask function f½x� on the
interval x ∈ ½−1; 1�, where −1 is mapped to the most
red detuned pixel and 1 is mapped to the most blue
detuned pixel of the SLM. Then, the phase shift ϕn
of pixel n is ϕn ¼ 2πfracðf½xðnÞ�=2πÞ ∈ ½0; 2πÞ, where
xðnÞ ¼ ðn − 256Þ=256 and fracðyÞ ¼ y − byc denotes the
fractional part.
To study the non-Markovian dynamics of the quantum

dot as a function of these experimental parameters we
employ the PT-TEMPOmethod for which we first compute
the process tensor. Similar to the conventional TEMPO
method, the accuracy of the result as well as the necessary
computation time depends on the choice of the simulation
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parameters. We choose time steps of 10 fs, a memory
time of 2.5 ps and we truncate singular values that are
smaller than 10−6.5 relative to the largest value during the
contraction. With this, the computation of the process
tensor takes approximately 167 s, which only needs to
be calculated once. The application of a system
Hamiltonian to this process tensor takes only 1.7 s on a
single core of an Intel I7 (8th Gen) processor. For
comparison, a conventional TEMPO computation [39]
leading to a comparable accuracy of the result takes
approximately 230 s for each set of control parameters.
As a first example we apply a laser pulse to drive

the quantum dot from its ground state j↓i to the jyþi ¼
ðj↑i þ ij↓iÞ= ffiffiffi

2
p

state. For simplicity we pick a two-
dimensional parameter space, for which we fix the initial
pulse length to τ ¼ 50 fs and the pulse area to Θ ¼ 10π.
We also fix the shape of the phase mask function to a
downward facing parabola f½x� ¼ Φ − 1300x2 with a
central phase shift Φ. This parabola results in a broadened
and chirped output laser pulse that starts blue detuned and
ends red detuned with respect to its carrier frequency. The
central phase shift induces an overall phase which rotates
the x-y coordinate system. Applying our method we can
easily map out the trace distance of the final state to the
jyþi target state, as a function of the two open parameters
Δ ∈ ½−50; 50� ps−1 and Φ ∈ ½−π; π�. Figure 2(a) shows the
results of 201 × 81 full non-Markovian simulations corre-
sponding to the different parameter sets. Employing the
PT-TEMPO method the entire computation takes less than
8 h on a single core of an Intel i7 processor, while it would
take approximately 1040 h or 43 days employing the
conventional TEMPO method. We find two local minima
on this landscape which are marked by a star and a diamond

in Fig. 2(a). The laser pulse that corresponds to the star
parameter set is a chirped pulse that starts strongly detuned
and finishes on resonance. This can be thought of as an
interrupted adiabatic rapid passage, which has the advan-
tage of being almost independent of an inaccurate pulse
area, but has the disadvantage of being sensitive towards
the detuning of the pulse. The laser pulse that corresponds
to the diamond parameters, on the other hand, starts on
resonance and ends strongly red detuned. In this case, like a
dynamical gate, the fidelity of the protocol is sensitively
dependent on the pulse area, but tolerant towards detuning
inaccuracies, similar to a simple π=2 pulse.
As a second example to demonstrate the performance of

the PT-TEMPO method we consider a set of five individu-
ally detuned quantum dots (each with their own environ-
ment) and aim to find a global optimal laser pulse to
simultaneously drive them to the equator of the Bloch
sphere. The detunings of the quantum dots relative to the
middle dot are chosen to be ½−10;−5; 0; 5; 10� ps−1. We
perform a global optimization search employing a differ-
ential evolution algorithm on 35 pulse parameters. We
parametrize the phase mask function by splitting it into 32
segments and assigning one parameter to the slope of each
segment. In addition to these 32 parameters we also
optimize over all three input pulse parameters τ, Δ, and
Θ. To avoid oscillations in time, the phase mask function is
smoothed out with a 3rd order spline. We expect that a short
π=2 pulse will successfully drive the states of the quantum
dots close to the equator of the Bloch sphere. This is

FIG. 2. The dynamics of a quantum dot as a function of the
detuning and overall phase of a chirped laser pulse. (a) A heat
map indicating the trace distance of the final state to the target
state jyþi. (b)–(e) Dynamics of the quantum dot and the electric
field for the laser pulse parameters marked with the symbols
diamond and star in (a), respectively.

laser
pulse

five
detuned
QDots

FIG. 3. Optimization of a laser pulse driving an ensemble of
five quantum dots (QDots). (a) A sketch of the ensemble taking
the place of the single QDot in the setup from Fig. 1(a).
(b) The phase mask function for the π=2 pulse and the optimal
laser pulse. (c)–(f) Dynamics of the QDots and the electric field
for the π=2 pulse and the optimal laser pulse denoted with filled
circle and asterisk, respectively. The pulse length of both pulses
prior to the pulse shaper is 245 fs, the pulse areas for the
initial pulse and the optimized pulse are 0.5 × π and 7.56 × π,
respectively. The plots in (c) and (e) show the expectation values

hσxyðtÞi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hσxðtÞi2 þ hσyðtÞi2

q
for all five QDots.
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because the shorter the pulse is, the broader is its frequency
distribution, leading to a suppressed detuning dependency.
For the optimization we use a differential evolution with a
population size of eight parameter sets per dimension,
where we set one element of the initial population to a
simple 100 fs π=2 pulse and chose the rest randomly.
The differential evolution algorithm employed 10 400

ensemble simulations, which each entailed the computation
of the full non-Markovain dynamics of 5 independent
quantum dots. Using the PT-TEMPO method on all four
cores of an Intel i7 processor this took only about 11 h, while
the same computation would have taken more than a month
with the conventional TEMPO method. The result of this
optimization is shown in the Figs. 3(b), 3(e), and 3(f).
Surprisingly, the algorithm found an unexpected pulse form
that leads to a root mean square (rms) distance to the equator
of theBloch sphere of 0.10,which is significantly better than
the performance of a π=2 pulse with the same initial pulse
duration of τ ¼ 245 fs [see Figs. 3(c) and 3(d)]. Also, it
performs slightly better than the shortest π=2 pulse with
τ ¼ 30 fs, which yields an rms distance of 0.12. However,
we note that, unlike the π=2 pulse, the performance of
the optimized pulse is sensitively dependent on the exact
detuning of the individual quantum dots.
Conclusion.—We have shown that the PT-TEMPO

method makes optimal control of non-Markovian open
quantum systems a feasible task. It is applicable to small
systems that couple to a structured bosonic environment
and it performs well if the environment correlation function
is smooth and decays to zero within some finite time. The
key idea of the method is to modify the contraction order of
the TEMPO tensor network such that the result of the bulk
of the computation—corresponding to the contraction of
the Feynman-Vernon influence functionals—can be stored
and reused for each new trial system Hamiltonian. Finally,
we note that this idea can be also applied to other tensor
network methods [28,29,33,34,36], opening the way to a
family of efficient methods to design quantum control
procedures for non-Markovian open quantum systems.
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