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Localization and self-trapping in driven-dissipative polariton condensates
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We study driven-dissipative Bose-Einstein condensates in a two-mode Josephson system, such as a double-well
potential, with asymmetrical pumping. We investigate nonlinear effects on the condensate populations and mode
transitions. The generalized Gross-Pitaevskii equations are modified in order to treat pumping of only a single
mode. We characterize the steady-state solutions in such a system as well as criteria for potential trapping of a
condensate mode. There are many possible steady states, with different density and/or phase profiles. Transitions
between different condensate modes can be induced by varying the parameters of the junction or the initial
conditions, or by applying external fields.
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I. INTRODUCTION

Structures which enable strong coupling between excitons
and photons support hybrid light-matter quasiparticles known
as exciton polaritons. As with cold atoms, above a certain
density a population of polaritons may condense into a single
mode and so form a Bose-Einstein condensate (BEC) [1,2].
Such macroscopic quantum coherence leads to a number of
nonlinear dynamical effects, apparent in the condensate den-
sity, in trapped atomic BECs and superconducting Josephson
junctions. These include Landau-Zener tunneling, population
inversion, and self-trapping [3–9]. The realization of analo-
gous effects for exciton-polariton condensates is important
for optical communications technologies demanding ultrafast
optical switches, long-range coherence, as well as picosecond
quantum computing processes [10,11]. In this direction,
advances in fabrication have led to successful demonstrations
of Josephson oscillations as well as self-trapping in micropillar
cavities [12,13]. The interplay between interactions and
coherence, central to such phenomena, also has an important
role in the formation of localized structures such as gap solitons
[14,15] and vortices [16,17].

The polariton system differs from the atomic one because
polaritons decay, with a lifetime which is typically on the
order of a few picoseconds. The polariton condensate is thus
a nonequilibrium steady state established by a balance of loss
and gain, with the latter provided by stimulated scattering
from an incoherent reservoir. This creates an interesting
phenomenology, blending that of equilibrium condensates,
which are dominated by interactions, with that of systems such
as lasers, which are dominated by dissipation. For example,
in two-mode systems the steady state can have density
oscillations, which correspond to the a.c. Josephson effect
[12,18–23]. Such oscillations also occur in the dissipation-
dominated regime, where they reflect the coexistence of two
condensates of different frequencies, as in a multimode laser
[19]. Indeed at the qualitative level many important phenom-
ena, like gap solitons [14,15], vortices [16], and condensate
localization [17,24,25], occur in both interaction-dominated
and dissipation-dominated condensates.

In this paper we reexamine how the combination of gain,
loss, and interactions affects the behavior of a polariton con-
densate in the simple two-state model of a Josephson junction
[18,19,21]. The two states could correspond to neighboring

local minima of a double-well potential in a coupled photonic
molecule [13], or in a planar structure at a suitable point in a
disorder potential [12]. They could, alternatively, correspond
to two polarization states of a single trap mode [26]. Previous
work on the incoherently pumped system has assumed that
both modes are pumped [18–21,23]. Here we suppose that
the single-particle modes are approximately symmetrical, but
only one is pumped. We find that this model has a rich phase
diagram, with many different steady states. These include
states where the density is symmetrical in the two wells, as
well as states where the condensate becomes trapped in the
pumped well. The appearance of asymmetrical states is similar
to the phenomenon of macroscopic quantum self-trapping, as
previously analyzed for polaritons without gain and loss [26],
and for resonant pumping [27,28]. In these cases, however, the
asymmetry is caused by strong interactions, which prevent a
complete transfer of population between the wells. We show
that this requirement can be relaxed in the nonequilibrium
case, and that the nonlinear gain, as well as interactions, can
induce a form of self-trapping.

Condensation in photonic molecules formed from two
micropillar resonators with asymmetrical pumping has been
investigated by Galbiati et al., [29]. However, although in
this experiment the photonic molecule was symmetrical, the
pumping led to a large detuning between the states of each res-
onator. This was caused by the interaction with the high energy
excitons created by the pump. In this large detuning regime
the Josephson coupling has a negligible effect, and our calcu-
lations do not apply. Our predictions could, instead, be tested
by using asymmetrical photonic molecules, constructed such
that the single-particle states come into resonance when they
are blueshifted by the interaction with the exciton reservoir.

II. MODEL

We model the condensate at the mean-field level, using the
complex Ginzburg-Landau equation for the macroscopic wave
function [16]. This generalizes the Gross-Pitaevskii equation
(or nonlinear Schrödinger equation) to include the loss of
polaritons due to their decay into photons and the gain due
to scattering into the condensate from exciton states at high
energies. In the case of a polariton condensate these processes
can be treated using local terms, because the exciton mass is
very large and gain diffusion is negligible.
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We consider the complex Ginzburg-Landau theory for
a double-well potential in the two-mode limit, where the
polaritons can occupy the ground states of a well on the left
or the right of a barrier. The amplitudes of the macroscopic
wave functions �l,r for the left (l) and right (r) wells thus obey
(h̄ = 1):

i
d�l

dt
= ε

2
�l − J�r + Ul|�l|2�l + i[g − �|�l|2]�l, (1)

i
d�r

dt
= −ε

2
�r − J�l + Ur |�r |2�r − iγ�r . (2)

Here ε is the energy difference between the wells, including
the mean-field interaction with the exciton reservoir [29]. J is
the tunneling strength, and Ul and Ur are the matrix elements
of the polariton-polariton interaction [30] in the localized
basis. The final two terms in Eq. (1) are the net linear gain,
with coefficient g, and the lowest order nonlinear gain, with
coefficient �. For the isolated well condensation occurs for
positive g. In this case the linear gain term generates an
exponential growth that is stabilized by the nonlinear term. The
balance of these terms establishes a steady-state condensate
with density n0 = g/�. We assume that the right well is either
unpumped or pumped below threshold so that the amplitude
there decays with rate γ .

It is convenient to introduce dimensionless fields by
replacing �r(l) → �r(l)

√
n0, so that n0 becomes the unit

of density. We take the corresponding blueshift Uln0 to
be the unit of energy and factor out an overall oscillation
and phase difference between the modes by setting �r(l) =
e−iωtψr(l)e

(−)iθ/2. Thus we obtain a dimensionless form for
the equations of motion

iψ̇l = Elψl − Jψre
iθ + ig[1 − |ψl|2]ψl, (3)

iψ̇r = Erψr − Jψle
−iθ − iγψr, (4)

where the energies include the mean-field shifts due to the
interactions within the condensate,

El = ε

2
− ω + nl,

Er = −ε

2
− ω + Ur

Ul

nr , (5)

and the populations are defined as nl(r) = |ψl(r)|2. Here
J,ε,γ,ω,g are measured in units of Uln0. The dimensionless
g is g/Uln0 = �/Ul and is called α in Ref. [31]. We note
that although this parameter is a dimensionless pump rate
it is independent of the original, dimensionful, pump rate
in the model. It is better understood as a nonequilibrium
control parameter, which is zero in equilibrium, and large when
the dissipative nonlinearity dominates over the interactions,
� � U , as in a conventional laser.

Another theory of the driven-dissipative condensate is
used in Refs. [20,32–34]. In this theory the growth of the
condensate, which is due to in-scattering from a reservoir of
high-energy excitons created by the pump, is modeled by a
linear gain term. Although the nonlinear gain is not explicit
it is nonetheless present, because the linear gain coefficient
depends on the occupation of the exciton reservoir. Solving
for this reservoir occupation on timescales for which it is time

independent gives a gain coefficient g(n), which is a function
of the condensate occupation. Expanding this as a power
series and retaining the first two terms, g(n) = g − �n . . .,
gives the form in Eq. (1). Note that above threshold one must
include at least the first two terms otherwise the solution
is unphysical; below threshold the second can safely be
neglected (as in Ref. [35]).

As well as the interaction within the condensate U , there are
also interactions between the condensate and the population
of high-energy excitons created by the pump [29], which
give rise to energy shifts that are included in the definition
of ε. Thus in order to explore the near-resonant case ε = 0
discussed below one should consider a system where the
bare modes are off-resonance, so that they are brought into
resonance under asymmetrical pumping. We note that in the
off-resonance case relaxation processes provide the dominant
coupling between the wells. These are not present in our
theory; we consider the case, near-resonance, where the
Josephson coupling dominates.

We have also neglected, in writing Eqs. (1) and (2), the
spin of the polariton [36]. The spin projection of the polariton
takes two values, corresponding to right and left circular
polarization states. However, condensates typically show a
high degree of polarization, generally linear polarization in
a direction determined by the crystal. In such cases only a
single polarization state is relevant, and the model can be used
to describe the spatial structure of the condensate, i.e., the
extrinsic Josephson effects. The model could be generalized to
include both polarizations, making the polariton wave function
in each well a spinor. In this case one can have, as well as the
extrinsic effects, intrinsic Josephson effects connected to the
tunneling between the two polarization states. These have been
studied in a model without gain and loss [26] and for the case
of symmetrical pumping [20,21].

III. STEADY-STATE ANALYSIS

We now derive the phase diagram of the double-well
system, examining the steady-state solutions of Eqs. (3)
and (4), and their stability. For simplicity we suppose that
the detuning ε is zero, and the interaction strengths are
identical, Ul = Ur = U . We consider steady states with a
single characteristic frequency ω, which corresponds to the
chemical potential in the equilibrium case. This is justified by
our numerical results, in which the steady states are always
of this class; we have not observed steady states with a.c.
Josephson oscillations. Setting the time derivatives in Eqs. (3)
and (4) to zero, multiplying by ψl and ψr , respectively, and
taking real and imaginary parts, gives:

g(1 − nl)nl = J
√

nlnr sin(θ ) (6)

γ nr = J
√

nlnr sin(θ ) (7)

Elnl = (nl − ω)nl = J
√

nlnr cos(θ ) (8)

Ernr = (nr − ω)nr = J
√

nlnr cos(θ ). (9)

Equations (6) and (7) describe the current flows in the
double well. The term on the left of Eq. (6) describes the
flow of polaritons from the reservoir to the left well, which is
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nonzero if the density there deviates from the value nl = 1 at
which the linear gain is reduced to zero by the gain depletion.
In the steady state this current must flow as a Josephson current
into the right well, which is given by the term on the right-hand
side of Eq. (6). This Josephson current in turn accounts for the
loss from the right well, as described by Eq. (7). Equations
(8) and (9) are the associated pressure balance (quantum
Bernoulli) equations, which state that in the steady state the
two populations must be in mechanical equilibrium through
the Josephson coupling.

Noting the equality of the right-hand sides of Eqs. (8) and
(9) we have

(nl − ω)nl = (nr − ω)nr . (10)

This has a solution corresponding to the normal state, nl =
nr = 0. It has two further solutions, one with nl = nr , and one
with nl �= nr . Thus there are two classes of condensed steady
state: one in which the density is symmetrical, as expected
from the linear eigenstates of the symmetrical double well,
and one in which it is asymmetrical, due to the asymmetry of
the pumping.

A. Delocalized solutions

We consider first the solution in which the condensate
density is equal in the two wells, nl = nr . In this case we
obtain, from Eqs. (6) and (7),

nl = nr = 1 − γ

g
. (11)

This gives a phase boundary γ = g shown in Fig. 1, which
separates the normal state (labeled N), from the symmetrical-
density condensed states (labeled S0 and Sπ ). This phase

0.0 0.5 1.0 1.5 2.0 2.5 3.0
g

0.0
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+ASS0+S
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N

FIG. 1. Phase diagram for the asymmetrically-pumped double-
well condensate, as a function of the dimensionless pump rate g

for the left well and loss rate γ for the right well. The tunneling
strength J = 1, and all energies and rates are measured in units of
the mean-field energy shift of the left well. The solid and dashed
lines mark phase boundaries (see text). The labels indicate the states
present in each region: the normal state with no condensate (N), two
condensed states with equal densities in the two wells but different
relative phases (S0, Sπ ), and a condensed state with unequal densities
in the two wells (AS).

boundary is simply the requirement that the pumping must
be sufficient to overcome the losses in the unpumped well. A
second phase boundary follows on noting that, from Eq. (7),
the phase difference between the wells is given by

γ = J sin(θ ). (12)

Thus the solution requires γ < J . With increasing γ there is a
phase transition, at which this type of condensate breaks down
because the interwell current imposed by the gain and loss
exceeds the Josephson critical current.

As noted in the introduction, previous work on the
incoherently-pumped junction has focused on the case of
symmetrical pumping [18–21]. As we find here, in some
parameter regimes there are d.c. Josepshon-like states, in
which the tunneling leads to a single condensate, and there
is a fixed phase relationship between the wells. Polarization
splittings give rise, similarly, to an intrinsic Josephson effect,
fixing the polarization direction of each mode and leading to
polarization locking in extended systems [20,21]. In general
such d.c. Josephson states break down if the interwell (for
the extrinsic Josephson effect) or interpolarization (for the
intrinsic effect) currents exceed the Josephson critical current.
For symmetrical pumping, this leads to a transition to an a.c.
Josephson-like state [18,19,21]. Here we find instead that it
drives a localization transition, forming a d.c. Josephson-like
state with an imbalanced density.

In general Eq. (12) has two solutions, so that there
can be two symmetrical density condensates, with interwell
phase differences in (0,π/2) or (π/2,π ), respectively. The
condensate energy ω for these two solutions follows from
Eq. (8),

ω = n ∓
√

J 2 − γ 2. (13)

For small γ /J one solution has θ ≈ 0, and one has θ ≈ π .
These values correspond to those expected from the linear
regime [19], i.e., condensation in the symmetrical or anti-
symmetrical orbital. The condensate energy, Eq. (13), is then
the expected single-particle energy shifted by the mean-field
interaction. Increasing γ introduces interwell currents, shifting
the phase difference away from the limiting values of 0 and
π and increasing (decreasing) the energy of the ground-state
(excited-state) condensate.

In conventional equilibrium Josephson junctions, where
J > 0, the π state is unstable, since it corresponds to an energy
maximum. However, in the driven-dissipative condensate both
phase states can be stable. The stability can be determined by
linearizing Eqs. (3) and (4) about the steady-state solution.
The details are given in the Appendix, and the results have
been incorporated on the phase diagrams shown in Figs. 1
and 2. We see that both phase states are stable near the onset
of condensation at γ = g, but as g increases the higher-energy
solution, labeled Sπ , eventually becomes unstable. For small
J , corresponding to a condensate in which the interactions
dominate over the tunneling, the Sπ state is restricted to a small
region near the onset of condensation (see Fig. 2), whereas for
larger J there is a large region where both solutions are stable
(see Fig. 1). Thus we predict that polariton condensates can
realize two phase states in a single junction, so long as the
interactions are not too strong compared with the tunneling.
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FIG. 2. Phase diagram for the asymmetrically-pumped double-
well condensate with tunneling strength J = 0.35, for comparison
with Fig. 1. The labels indicate the states present in each region:
the normal state with no condensate (N), two condensed states with
equal densities in the two wells but different relative phases (S0, Sπ ),
and two condensed states with unequal densities in the two wells
(AS, AS2).

B. Asymmetrical-density solutions

The second class of solution has nl �= nr and corresponds
to the situation in which the condensate density occupies
predominantly one of the two wells. For such a localized or
trapped solution Eq. (10) gives the condensate frequency

ω = nl + nr . (14)

This corresponds to the mean-field energy shift for the total
occupation of the wells and contrasts with the corresponding
result for the symmetrical-density solutions, Eq. (13). The
densities may be determined by equating the left-hand sides
of Eqs. (6) and (7), giving

nr = g

γ
(1 − nl)nl. (15)

Using this result, along with Eq. (8), in Eq. (6), leads to a cubic
for the left-well density

n3
l − n2

l + γ 2nl + γ 2

(
J 2

gγ
− 1

)
= 0. (16)

The interwell phase θ is then determined by inserting
the calculated densities and condensate frequency into
Eqs. (6)–(9), so completing the solution. Note that this fully
determines the interwell phase for each solution of Eq. (16)
(up to the trivial addition of multiples of 2π ); in contrast to
the symmetrical-density case there is only one steady state for
each nl �= nr .

The cubic Eq. (16) implies that the asymmetrical conden-
sate can appear continuously or at a first-order transition.
The potential continuous transitions correspond to a real root
becoming physical when the occupation nl crosses zero from
below, which we see from the final two terms in Eq. (16)
occurs at

γ = J 2/g. (17)

This result is plotted on the phase diagram in Fig. 1: It
gives the continuous transition between the normal state and
an asymmetrical-density condensate in the top-left quadrant.
To the right of this curve there is a real-valued and positive
solution for the condensate density. The potential first-order
transitions occur when a pair of complex roots become real.
The discriminant of the cubic, Eq. (16), is a quadratic in
the pump parameter g, giving a pair of potential first-order
phase boundaries, which meet at a critical point which is at
γ = 1/

√
3. We will discuss these results further in the next

subsection.

C. Phase diagram

To complete the derivation of the phase diagram we
combine the results of the previous subsections with a linear
stability analysis of the steady states, whose details are given
in the Appendix. The results are shown in Figs. 1 and 2, in
which the curves are the phase boundaries at which stable,
physical steady-state solutions appear or disappear.

We discuss first Fig. 1, which corresponds to J = 1, so
that the tunneling strength is equal to the interaction energy
scale of the left well. We see that for γ < J = 1 there is a
continuous transition, crossed as the parameter g increases
from zero, from the normal state to a symmetrical-density
condensate. The phase boundary is γ = g, as predicted by
Eq. (11). For larger γ > J = 1 the transition is instead from
the normal state to an asymmetrical-density condensate and
follows the boundary given by Eq. (17). The continuation of
this curve into the region γ < J does not correspond to a
phase boundary: The solution which crosses zero density with
increasing g or γ in this region, and so becomes physical, does
not become stable. It becomes stable along the phase boundary
shown as the dashed curve, where also the higher energy of
the two symmetrical-density solutions, labeled Sπ , becomes
unstable. Above this is another, horizontal, phase boundary
at γ = J , as predicted by Eq. (12), at which the remaining
symmetrical-density solution disappears.

As noted above, further asymmetrical-density solutions are
possible when the discriminant of Eq. (16) is positive, so that
there are three real roots for the density. Considering also
the stability of these solutions we find, for this value of J ,
the small curved region shown in the figure, lying inside the
symmetrical-density regime. In this curved region there is
an additional asymmetrical density solution, which appears
and then disappears with increasing g at fixed γ at the two
first-order phase boundaries shown. The phase boundary for
smaller g corresponds to the discriminant of Eq. (16) reaching
zero, and that for larger g corresponds to the state becoming
unstable.

For comparison, we show in Fig. 2 the phase diagram
for J = 0.35, corresponding to an interaction strength ap-
proximately three times the tunneling strength. The ranges
of the axes have been adjusted so that the ground-state
symmetric-density condensate, S0, occupies the same area in
the two figures. As noted above, the other symmetric-density
state is suppressed by the strong interactions and now occurs
only over a small regime just to the right of the boundary
γ = g. The strong interactions instead favor the asymmetric
states: There is now a significant area of the phase diagram
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FIG. 3. Numerically calculated left well population for J = 1
showing the three distinct states N, S, and AS predicted in Fig. 1. The
time evolution is shown in Fig. 5 for the highlighted points at g = 1.5
for the modes S and AS corresponding to γ = 0.75, 2.5, respectively.

where an asymmetric state coexists with the S0 state, and there
are small regions where two asymmetric solutions coexist. The
first-order transition at which an asymmetric state appears with
increasing g now lies partially inside the normal region, and
this state survives over a much wider range of parameters.

IV. NUMERICAL RESULTS

In this section we numerically solve Eqs. (1) and (2) so
as to study the steady states and transient behavior of the
on-resonance double-well system. We determine the steady-
state densities by evolving from an initial state chosen to be
ψl(0) = 1, ψr (0) = 0. We take the dimensionless J = 1 for
comparison with Fig. 1. The three distinct regimes, corre-
sponding to the normal state (N), condensation with equal
densities in the wells (S), and condensation with unequal
densities (AS), are apparent in Figs. 3 and 4, which show
the populations of the left and right wells after the transient.
These results are clearly consistent with the phase boundaries

FIG. 4. Numerically calculated right well population for J = 1
showing the three distinct states N, S, and AS predicted in Fig. 1. The
time-dependent solution at γ = 0.9 and g = 2.5 is shown in Fig. 6 in
order to demonstrate control over condensate mode as a function of
initial conditions.

obtained above. In particular we see the transition between the
normal state and an asymmetrical condensate at γ = J 2/g and
that between the normal state and a symmetrical condensate
at γ = g. There is also a discontinuity corresponding to
switching between these solutions, close to the line γ = J .
Above this line, as argued previously, the symmetrical solution
breaks down, because the Josephson current is unable to
compensate for the unbalanced pumping. As shown in Fig. 1,
the asymmetric solution is in fact stable below this line (i.e., for
smaller γ ) giving a region of parameter space in which both
steady states are stable. In this parameter regime the steady
state is selected by the initial conditions for the condensate
mode. This is consistent with the numerical results, where the
discontinuity lies in the region of phase coexistence.

The appearance of imbalanced densities for a condensate in
a double-well potential resembles the self-trapping of equilib-
rium condensates [3]. However, self-trapping in equilibrium is
an effect of interactions and occurs only when the interaction
strength dominates over the tunneling Un � J . In contrast we
see that in nonequilibrium condensates asymmetrical densities
can be caused by an inhomogeneous pumping. Since the phase
boundary γ = J is independent of the interaction strength,
the transition to asymmetrical condensation can be induced
by increasing the dissipation γ , even when the interactions U

are negligible. The effect is instead driven by the dissipative
nonlinearity �.

As an example of trapping by dissipation we follow the
trajectory marked with the arrow in Fig. 3, increasing the
dissipation through the transition at fixed g. In practice, this
could be achieved by reducing the pumping: recall that the
dimensionless decay rate is the physical decay rate in units
of the mean-field energy shift. It might instead be achieved
by using an additional weak pumping of the right well
to manipulate its decay rate (it may also be necessary to
manipulate the bare detuning, to offset the change in reservoir-
induced blueshift). As the dimensionless loss in the right well
increases the steady-state transitions from a symmetrical to an
asymmetrical density profile. Thus the output of the unpumped
well can be switched by controlling its loss. The dynamics of
the populations at the two extreme values of γ highlighted in
Fig. 3 is shown in Fig. 5. For small γ the population imbalance

FIG. 5. Time dependent populations for the left (gray) and
right (black) wells for the parameters corresponding to the points
highlighted in Fig. 3. As loss (γ ) increases the steady state switches
from a symmetric density mode (S, solid curves) to an asymmetric one
(AS, dashed curves). The initial state is taken to be nl = 1, nr = 0.
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FIG. 6. Time dependent populations for the left (gray) and right
(black) wells in the two-state region of Fig. 1: γ = 0.9 and g = 2.5.
Depending on the initial conditions either the symmetric density mode
(S) or the asymmetric one (AS) is reached. The initial states have
nl = 1 (S, solid curves) or nl = 2 (AS, dashed curves), and nr = 0.

introduced in the initial condition oscillates between the two
wells, and these oscillations decay towards a steady state with
equal densities. Close to that steady state these oscillations can
be interpreted as due to the Josephson plasmon of the junction,
which is damped by the gain and loss; its frequency and decay
rate follows from the stability analysis in the Appendix. With
increasing γ the oscillations disappear, and the condensate
rapidly reaches a steady state which is trapped in the left well.
This dissipative method differs from previous self-trapping
mechanisms which use the interaction energy Un to control
the trapping of condensates [37].

Self-trapping could also be induced by varying the initial
conditions for those values of γ and g where both sym-
metrical and asymmetrical steady states are stable. In these
regimes (similarly to equilibrium self-trapping [4]) the initial
conditions for the condensate mode determine whether the
steady state has a symmetrical or asymmetrical density. A
specific example given in Fig. 6 demonstrates this for the
highlighted point in Fig. 4. For the corresponding values of
γ and g, we look at two different initial conditions for which
the left well is altered from ψl(0) = 1 to a value further above
threshold ψl(0) = 2. In the latter case, the Josephson current
does not become sufficient to populate the wells symmetrically,
and we see the steady-state mode change from the symmetric
to asymmetric one. One can also switch between these steady
states, as well as the different phase states of the symmetrical
condensate, by driving the wells externally. This could be
used to implement optical switches and memories, with the
desirable feature that the output of one switch (the intensity
from one of the wells) can form the input of another. The
possibility of manipulating the initial conditions so as to induce
self-trapping for polariton condensates has already been shown
experimentally in Ref. [13], considering self-trapping as a
transient phenomenon in the absence of gain. The present
work shows how such concepts can be extended to apply to
the steady states of driven-dissipative condensates.

In experiments the initial conditions for a driven-dissipative
condensate might be controlled by using a resonant seed

pulse to prepare the initial state. If the pump is then rapidly
switched on then the state selected will be determined by
these initial conditions. An alternative possibility would be
to slowly increase the pumping, in which case we expect
the system to adiabatically follow a particular state in the
phase diagram. Large changes in pumping, however, would
require a corresponding change in the bare detuning, in order
to maintain the modes near resonance. In practice it would not
be possible to keep the modes exactly resonant, as assumed
above. However, we have checked numerically that this is
not essential. We find that for small nonzero detunings the
transition from a symmetrical to asymmetrical density mode
survives, although it becomes one from a weakly to a strongly
asymmetrical mode.

V. SUMMARY

To summarize, we have studied the steady states and
dynamics of a two-mode polariton condensate, such as the
Josephson junction in a double-well potential, for the case
where one mode is pumped. We have shown that such
asymmetrical pumping provides a mechanism by which
condensates can become localized in one well which, in
contrast to conventional self-trapping, does not rely on strong
interactions, being caused instead by nonlinear gain. This
will help open up the study of condensate localization and
self-trapping in driven-dissipative condensates, which we
predict can occur in both strongly and weakly interacting
regimes. As we have shown, a simple two-mode polariton
condensate supports a variety of coherent steady states,
distinguished by both their density and phase profiles. It would
be interesting to extend our work to systems such as lattices of
junctions and so explore the nonlinear dynamics of spatially
extended driven-dissipative condensates. Another interesting
direction would be to consider the use of time-dependent
parameters to control the trapping [38,39]. The possibility of
realizing multiple steady states in a two-mode condensate,
and switching between these states with applied fields, may be
useful for optical switches and memories.
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APPENDIX: STABILITY ANALYSIS

In the main text we present results for the stability of
the steady states of Eqs. (3) and (4). This is determined by
setting ψl(r)(t) = ψ0

l(r) + δl(r)(t), where ψ0
l(r) are the steady-

state fields. The equations-of-motion, to first order in δ, can be
written in the block form

i
d

dt

(
η

η∗

)
=

(
A B

−B∗ −A∗

)(
η

η∗

)
= M

(
η

η∗

)
, (A1)
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where

η =
(

δl

δr

)
,

A =
(−ω + 2nl + ig(1 − nl) −Jeiθ

−Je−iθ −ω + 2nr − iγ

)
,

B =
(

nl(1 − ig) 0

0 nr

)
.

Here nl(r) denotes the steady-state densities and θ the steady-
state phase difference, obtained by solving Eqs. (6)–(9), and,
as in those equations, we have set ε = 0,Ur = Ul . We see
that the solutions of Eq. (A1) are of the form η = η0e

−iνt ,
where the complex frequencies ν are the eigenvalues of the
matrix M . One eigenvalue has zero decay rate and frequency
and corresponds to the expected (undamped) phase mode of the
condensate. The remaining eigenvalues describe the excitation
spectrum in terms of the frequencies 	(ν) and decay rates
λ = −
(ν) of small fluctuations; the latter are positive for a
stable steady state.
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