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Near-field relaxation of a quantum emitter to two-dimensional semiconductors:
Surface dissipation and exciton polaritons
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The total spontaneous emission rate of a quantum emitter in the presence of an infinite MoS2 monolayer
is enhanced by several orders of magnitude, compared to its free-space value, due to the excitation of surface
exciton polariton modes and lossy modes. The spectral and distance dependence of the spontaneous emission
rate are analyzed and the lossy surface wave, surface exciton polariton mode and radiative contributions are
identified. The transverse magnetic and transverse electric exciton polariton modes can be excited for different
emission frequencies of the quantum emitter, and their contributions to the total spontaneous emission rate
are different. To calculate these different decay rates we use the non-Hermitian description of light-matter
interactions, employing a Green’s tensor formalism. The distance dependence follows different trends depending
on the emission energy of the quantum emitter. For the case of the lossy surface waves, the distance dependence
follows a z−n, n = 2,3,4, trend. When transverse magnetic exciton polariton modes are excited, they dominate
and characterize the distance dependence of the spontaneous emission rate of a quantum emitter in the presence
of the MoS2 layers. The interaction between a quantum emitter and a MoS2 superlattice is investigated, and
we observe a splitting of the modes supported by the superlattice. Moreover, a blueshift of the peak values of
the spontaneous emission rate of a quantum emitter is observed as the number of layers is increased. The field
distribution profiles, created by a quantum emitter, are used to explain this behavior.
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I. INTRODUCTION

The emission properties of quantum emitters are modified
by their environment [1]. In particular, through excitation of
surface plasmon modes, the spontaneous emission rate of a
quantum emitter (QE) can be enhanced by several orders of
magnitude compared with its free-space value [2,3]. Surface
plasmon polaritons are collective oscillations of electrons and
the electromagnetic field that are excited at the interface
between a dielectric and a conductor, and they are confined at
this interface and propagate along it. Noble metals, such as Au
and Ag, are typically used as plasmonic materials. However,
the main disadvantage of using noble metals is the fact that they
have high losses in the optical region of the spectrum [4]. As
an alternative for materials supporting surface plasmon modes,
but with lower losses, graphene can be considered [5,6].
Graphene is a zero direct band-gap two-dimensional material
of great potential and with good mechanical capabilities [7].
However, it also has a disadvantage, since it exhibits no
plasmonic response in the visible part of the spectrum and acts
only as a quencher when interacting with quantum emitters
emitting in the visible part of the spectrum [8,9].

In addition to surface plasmon modes, there are other
surface modes such as phonon and exciton polariton [10,11]
modes. In previous years, a new family of two-dimensional
materials, the transition metal dichalconides (TMD), such
as MoS2, SnS2 and WeS2, have been the subject of intense
theoretical [12–14] and experimental investigations [15,16].
These materials are direct band-gap semiconductors, with the
conduction and valence band edges at the doubly degenerate
corners (±K points) of the hexagonal Brillouin zone, and can
have relatively high absorption and intense photoluminescence
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[17,18]. We calculate the spontaneous emission rate for a QE
above a MoS2 layer and find that the spontaneous emission
rate is enhanced by many orders of magnitude. We trace
this effect to the near-field energy transfer from the QE to
the surface exciton polariton. In addition to implications for
energy transfer applications, such as photodetectors [19],
photovoltaic [20], and light emitting devices [21–23], our
results show that low-dimensional materials can be used to
study polaritons and exciton-photon coupling phenomena
without requiring a microcavity [24]. Herein we demonstrate
that MoS2 monolayers can support surface exciton polariton
modes, and their influence on the optical properties of QEs is
substantial.

The interaction between quantum emitters (QEs) and
multilayers of TMD materials is of particular experimental
interest. Many applications can benefit from manipulating
these interactions, such as photodetectors [19], electronic [25],
photovoltaic [20], and light emitting devices [21–23]. Investi-
gating the spectral and distance dependence of the interactions
between QEs and TMD layers or monolayers is of absolute
importance for such applications. Various experimental studies
have been performed regarding the investigation of such
interactions, and they report contradicting results concerning
the power law followed by the interaction distance between
the QE-TMD layers, where different QEs are considered for
each case [26–31]. A systematic analysis is needed to account
for the spectral and distance dependence of the QE-TMD layer
interaction. Here we focus on material parameters describing
the semiconducting behavior of MoS2, through the exciton
energies and damping parameters [17,24,32].

We find that transverse electric (TE) and transverse mag-
netic (TM) exciton polariton modes are supported by a MoS2

layer, Fig. 3. The propagation length and penetration depth
of these modes are investigated. The SE rate of the QE is
enhanced several orders of magnitude for emission energies
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close to the exciton energies, especially when the TM exciton
polariton modes are excited, in the presence of a single MoS2

layer, see Fig. 6. The different contributions to the total SE
rate are presented: the lossy surface wave (LSW), TE and TM
exciton polariton modes and radiative emission contribution,
for different QE-MoS2 separations and emission energies of
the QE.

Additional physics appears as one goes beyond the single
layer structure to multilayers. In particular, we show that
the electromagnetic coupling between the layers splits the
degeneracy of the exciton polariton modes, even in the
absence of direct electronic coupling. We find, see Fig. 7,
that the electromagnetic coupling between the layers leads
to a blueshift in the peak of the spontaneous emission rate
with an increasing number of layers. This may provide
an explanation for the different dependences of the emis-
sion rate with the layer number observed in experiments
[29,30].

In Sec. II we introduce the mathematical method for
studying the QE-MoS2 structure. The QE is described as a
two-level system, and the Green’s tensor formalism is used
to describe the light-matter interaction in the non-Hermitian
description of quantum electrodynamics, Sec. II A. The optical
response of the MoS2 layer is modeled by the surface
conductivity, Sec. II B. In Sec. III we give the results. We
start in Sec. III A by analyzing the surface exciton polariton
when a single exciton resonance is considered in the surface
conductivity. When two exciton resonances are considered,
we see that two bands are formed, corresponding to the TE
and TM exciton polariton modes, Sec. III A. The propagation
length and penetration depth of the TE and TM exciton
polariton modes are analyzed. In Sec. III B, the interaction
between a QE and a free-standing MoS2 layer is considered.
The spectral and distance dependence is analyzed, and the
different contributions are studied. The LSW, TE, and TM
exciton polariton modes and radiative emission contributions
to the SE rate of a QE, at different positions and emission
energies, are presented. In Sec. III C we focus on the interaction
between QE and MoS2 planar superlattices. We observe that
the TE and TM exciton polariton modes bands are still split and
that multibands are also formed, due to interlayer scattering.
The SE peak of the QE is blueshifted, and the absolute value
of the SE rate enhancement decreases. Finally, in Sec. IV we
give some concluding results and future steps for research in
the field.

II. MATHEMATICAL METHODS

A. Spontaneous emission rate

The quantum emitters (QEs) considered in this paper are
approximated as two-level systems. Various emitters, such as
atoms, molecules, quantum dots and NV color centers, can
be approximated in this way. The ground state of the QE is
denoted as |g〉, and the excited state as |e〉. The transition
frequencies from the excited to the ground state and the
transition dipole matrix element are denoted as ωT and μ,
respectively. The multipolar Hamiltonian is used to describe
a QE interacting with the electromagnetic field [33,34], and it

has the form

Ĥ = Ĥem =
∫

d3r

∫ ∞

0
dω �ω f̂†(r,ω) · f̂(r,ω) + �ωT σ+σ−

−
∫

dω[μ̂ · Ê(r,ω) + H.c.], (1)

where μ̂ = μσ+ + μ∗σ− is the transition dipole operator
of the two level system, with μ being the transition dipole
moment of the system between its ground and excited states.
The electric field operator has the form

Ê(r,ω) = i

√
�

πε0

ω2

c2

∫
d3s

√
ε′′(s,ω) G(r,s,ω) · f̂(s,ω), (2)

where f̂(s,ω) and f̂†(s,ω) are creation and annihilation opera-
tors for medium-dressed states, which account for the various
modes provided by the environment, such as the LSWs, surface
exciton polariton and radiative modes considered in this paper.

An excited quantum emitter interacts with its environment
through the electromagnetic field and relaxes from its excited
state to the ground state by emitting a photon or exciting any
of the dressed states supported by its environment. The initial
state of the system is denoted as |i〉 = |e〉 ⊗ |0〉, where the QE
is in the excited state and the electromagnetic field is in its
vacuum state. The quantum emitter will not stay indefinitely
excited but will relax to the medium dressed states, and
therefore the EM field will be in a |1(k,p)〉 = f̂

†
i (r,ω)|0〉 state;

p and k are the polarization and wave vector, respectively.
The final state of the entire system therefore has the form
|f 〉 = |g〉 ⊗ f̂

†
i (r,ω)|0〉. By applying Fermi’s golden rule and

summing over all final states, the expression for the SE rate �

is obtained as:

�(r,ω) = 2ω2μ2

�ε0c2
n̂ · Im G(r,r,ω) · n̂, (3)

where n̂ is a unit vector along the direction of the transition
dipole moment μ, and G(r,s,ω) is the Green’s tensor repre-
senting the response of the geometry under consideration to a
pointlike excitation. In order to quantify the influence of the
environment on the QE emission, the normalized SE rate is
defined as:

�̃ = �

�0
= √

ε + 6πc

ω
n̂iIm Gii

S (r,r,ω)n̂i , (4)

where ε is the permittivity of the host medium, �0 is given
by the Einstein A-coefficient �0 = ω3μ2/3πc3

�ε0, and GS is
the scattering part of the Green’s tensor calculated at the QE
position r.

The normalized SE rate for the x and z orientations of the
transition dipole moment of a QE in the presence of an infinite
MoS2 layer are given by the expressions

�̃z = √
ε1 + 3c

2ω
Im

(
i

∫ ∞

0
dks

k3
s

kz1k
2
1

R11
N e2ikz1z

)
, (5a)

�̃x = √
ε1 + 3c

4ω
Im

[
i

∫ ∞

0
dks

ks

k1

(
R11

M + k2
z1

k2
1

R11
N

)
e2ikz1z

]
.

(5b)
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More details on the calculation of the Green’s tensor, when
an infinite MoS2 layer and superlattice are considered as the
environment of a QE, are given in Appendix.

Here RN and RM are Fresnel coefficients for the reflection
from the surface, defined in Appendix. For a single free-
standing layer (ε1 = ε2 = 1), with surface conductivity σ , they
are [35,36]

R11
M = −αk0

kz + αk0
, R11

N = αkz

k0 + αkz

(6a)

R21
M = kz

kz + αk0
, R21

N = k0

k0 + αkz

, (6b)

where α = 2πσ/c and kz =
√

k2
0 − k2

s .

B. Surface conductivity

MoS2 is a direct gap semiconductor with relatively intense
photoluminescence [22]. The resonance part of the two-
dimensional optical conductivity of the MoS2, σres, takes into
account the interaction of light with the lowest energy A and
B excitons and is given by

σres(ω) = 4α0�cv2

πa2
exω

∑
k=A,B

−i

Ek − �ω − i�γk

, (7)

where α0 is the fine structure constant, aex = 0.8 nm is the
exciton Bohr radius, the damping parameters are γA and
γB , and the exciton energies are EA = 1.9 eV and EB =
2.1 eV. v is a constant velocity, which is connected with
the hopping parameter, and for MoS2 we use the value
v = 0.55 nm/fs [17,32]. This optical conductivity includes
only the contribution from the bright direct excitons, which
dominate due to their large oscillator strength. Neither the
dark nor the valley-indirect excitons appear, as they have a
negligible oscillator strength. They are thus not relevant for
the formation of polaritons or energy transfer to the layer,
notwithstanding their important role in luminescence [37].

In Fig. 1 we present the real and imaginary parts of
the surface conductivity for different values of the damping
parameters, γA and γB [24]. The damping parameters, γA

and γB, are connected with the quality of the MoS2 layer
at different temperatures, and for that reason we choose to
investigate a broader spectrum of parameters to account for
the different mechanism of losses [38]. The real part of the
surface conductivity, σres(ω), is connected with the losses; the
higher its values, the more lossy the material. We observe in
Fig. 1 that as the values of the damping parameters increase,
the peaks of the real part of the surface conductivity in Fig. 1
become broader. At the exciton energies, EA and EB , the losses
are largest for the smallest value of the damping parameters,
γA and γB , because they give the linewidth of the resonance,
but away from them the real part of σres increases as the
damping increases. The sign of the imaginary part of the
surface conductivity, σres(ω), determines the type of modes
supported by the MoS2 layer and how dispersive they are.
More details on this will be given in the next section.

At even higher energies, the interband transitions need to
be included in the model describing the surface conductivity.

FIG. 1. Real and imaginary parts of the surface conductivity of
MoS2, σres, given by Eq. (7) for different values of the damping
parameters, �γA = 0.3 meV, 0.7 meV, and 3.3 meV and �γB =
0.7 meV, 1.4 meV, and 7.3 meV.

We model these transitions with an expression of the form

Real(σinter) = mσ0θ (ω − ωB)√
1 + 2EBβ + �2

[
1 + 1 + 2EBβ

�2
(1 + EBβ

−
√

1 + 2EBβ + �2)

]
, (8)

where �ωB = EB , � = �ω/EB and β is a mixing parameter,
for MoS2 EBβ = 0.84 [39]. The parameter m is for scaling the
absorption described by Eq. (8). As we will see in Sec. III A,
the effects described by Eq. (8) are not important in the energy
spectrum we focus our analysis on, in particular for energies
close to the exciton resonances EA and EB , 1.7 eV < �ω <

2.2 eV.
The emphasis of this paper is to theoretically investigate

light-matter interactions, thus, we choose to use a theoretical
expression to describe the optical response of the MoS2. This
is done in order to keep the discussion as general as possible.
We choose the material parameters connected with MoS2, and
these can be easily modified to study the interaction between a
QE and any TMD superlattice or thin semiconducting quantum
well. Furthermore, the material parameters for the MoS2 are
connected with the quality of a specific sample, and thus
experimentally, they vary from study to study.

III. RESULTS

A. Surface exciton polariton modes

We start our analysis by considering a single exciton po-
lariton mode, shown in Fig. 2, supported by a two-dimensional
material. The exciton energy is EB = 2.1 eV, and the damping
parameter has a value of �γB = 0.7 meV. We use exactly
the same parameters as when describing the MoS2 layer,
only ignoring the exciton with energy EA. In Fig. 2 the
band structure of the transverse electric (TE) and transverse
magnetic (TM) exciton polariton modes for a free standing
(ε1 = ε2 = 1) single exciton layer are shown. The dispersion
relation of the TE exciton polariton mode is calculated by
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FIG. 2. Dispersion relation, Re(kEP(ω)), for a 2D free-standing
material, when a single exciton is considered, EB = 2.1 eV. The
value of the damping parameter is γB = 0.7 meV. In the inset the
dispersion relation is presented when the interband transitions are
considered, Eq. (8).

setting the denominator of R11
M , Eq. (6a), to zero which gives

kTE
EP = ω

c

√
1 − 4π2σ 2

res/c
2. (9)

The TE mode is supported by the MoS2 layer only when
Im(σres) < 0, whereas for Im(σres) > 0 the TE mode is on the
improper Riemann sheet [40]. kTE

EP is the in-plane wave vector
of the TE exciton polariton mode propagating on the MoS2

layer. The available TM modes are found similarly by setting
the denominator of the reflection coefficient R11

N , Eq. (6a), to
zero, and we get the expression

kTM
EP = ω

c

√
1 − c2/4π2σ 2

res, (10)

which gives the dispersion relation kTM
EP (ω), the relation

between the frequency ω, and the TM exciton polariton mode
in-plane wave vector kTM

EP . The TM exciton polariton modes
can propagate on the MoS2 layer only when Im(σres) > 0,
whereas when Im(σres) < 0 the TM mode given by Eq. (10) is
on the improper Riemann sheet [41,42].

For the case of a single exciton, the imaginary part of the
surface conductivity is negative for energies below the exciton
energy, �ω < 2.1 eV, thus allowing only TE exciton polariton
modes to propagate. On the other hand for �ω > 2.1 eV, above
the exciton energy EB , only TM exciton polariton modes are
supported. As we observe in Fig. 2, the TE modes are very
close to the light line, which means that these modes are loosely
confined to the MoS2 layer. It is only very close to the exciton
energy EB that they start to become dispersive. The TM modes
are clearly more dispersive, and they are tightly confined to
the MoS2 layer.

In the inset of Fig. 2 the TM exciton polariton mode is
presented for energies �ω > EB , in the case when interband
transitions are also included, Eq. (8). We consider the case of
m = 0, 1, and 5 in Eq. (8). We observe that as the value of m is
increased, the dispersion relation, Re(kTM

EP (ω)), starts to bend
back, towards the light line, for high energies, �ω � 2.2 eV.
This is due to the higher losses caused by electron-hole pair

generation. The dispersion relation has similar behavior to
noble metal thin films at higher energies [43]. We observe
that at energies up to 2.2 eV, the dispersion lines, for the
different values of m, are very close. For that reason, in
the rest of this paper we ignore the effect of the interband
transitions, which are small in the energy range we investigate,
1.7 eV < �ω < 2.2 eV.

We turn the discussion now to the case in which we
consider both excitons in the surface conductivity σres, which
matches the physical material parameters of MoS2, Eq. (7).
In Fig. 3(a) we present a plot of the dispersion relation,
Re(kEP(ω)), for the TE and TM exciton polariton modes. Due
to the presence of two excitons with energies EA = 1.9 eV
and EB = 2.1 eV, the TE and TM exciton polariton modes
split into two branches [44]. Again, an analogy can be drawn
with the case of a metallic thin film, which is sandwiched
between two materials with different dielectric permittivities
[43]. Two surface plasmon polariton modes are present in this
case, due to the two different metal-dielectric interfaces. In our
case, the presence of the two excitons, with close energies, is
the reason for the dispersion relation in Fig. 3. It implies that
there is a change of sign for Im(σres), Fig. 1. In particular,
for energies �ω < EA the imaginary part of the surface
conductivity is negative Im(σres) < 0, thus only TE exciton
polariton modes are supported, Fig. 3(a). These modes lie very
close to the light line and are only loosely confined to the MoS2

layer, and only very close to the exciton energy EA do they
become more dispersive. At energies EA < �ω < 2 eV the
Im(σres) > 0, thus TM exciton polariton modes are supported
which are highly dispersive, and the value of the in-plane
wave vector kTM

EP is larger by up to two orders of magnitude
than the free-space wave vector, k0 = ω/c. At the energy
of �ω = 2 eV, Im(σres) ≈ 0, and at this point the imaginary
part of the surface conductivity now changes sign from plus
to minus, due to the interaction between the two exciton
resonances; thus, for energies 2 eV < �ω < EB , we have
Im(σres) < 0, and TE exciton polariton modes are supported.
For �ω > EB , Im(σres) > 0 and TM exciton polariton modes
are again supported. In Fig. 3(a) we consider as damping
parameters the values �γA = 0.33 meV and �γB = 0.70 meV,
and increasing these values shows small influence on the real
part of the in-plane wave vector of the exciton polariton mode
kEP. λEP = 2π/kEP gives the propagation wavelength of the
exciton polariton mode.

The imaginary part of the in-plane wave vector kEP is
connected with the propagation length of the exciton polariton
mode LEP = 1/Im(kEP). In Fig. 3(b) the propagation length
LEP is shown as a function of energy for different values of the
damping parameters, γA and γB [see the legend of Fig. 3(b) for
more details]. We again observe the different intervals where
the TE or TM exciton polariton modes are excited, depending
on the sign of Im(σres). As we have already pointed out, the
TE modes are loosely confined to the MoS2 layer, thus their
propagation length is very large, and its value differs from
the TM exciton polariton modes propagation length by up to
six orders of magnitude. As the damping is increased, the
propagation length LEP decreases. It is also seen that the real
part of the surface conductivity σres, which is connected with
the material losses, increases at the energies of the exciton
resonances with increasing damping, Fig. 1.
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FIG. 3. (a) Plot of the dispersion relation, Re(kEP(ω)), when a free standing MoS2 monolayer, ε1 = ε2 = 1, is considered. (b),(c) Plot of
the propagation length LEP and the penetration depth δEP, respectively. Different values of the damping parameters, γA and γB , are considered.
More details in the legends.

The penetration depth is defined as δEP = 1/Im(kEP
z ), where

kEP
z =

√
k2

0 − k2
EP , and is connected with the extent of the

exciton polariton mode in the direction perpendicular to the
MoS2 layer. In Fig. 3(c) the penetration depth is presented as a
function of energy with damping parameters �γA = 0.33 meV
and �γB = 0.70 meV. Again, the sign of Im(σres) gives the
different intervals where the TE and TM exciton polariton
modes propagate. The TE modes, only loosely confined to the
MoS2 layer, are essentially radiative modes, as we will see
in the next section, and have only a small contribution to the
modification of the emission properties of a QE in proximity
to the MoS2 layer.

B. Spontaneous emission in the presence of a single MoS2 layer

In this section we will investigate the interaction between a
QE and a MoS2 layer. In Fig. 4 we investigate the spontaneous
emission rate when we consider a QE at a fixed position above
a free-standing MoS2 layer, as a function of its emission
energy, and both x and z orientations for the transition
dipole moment of the QE are considered in Figs. 4(a)–4(d),
respectively. The total spontaneous emission is analyzed over
the lossy surface wave, exciton polariton mode and radiative
emission contributions. The damping parameters have the
values �γA = 0.33 meV and �γB = 0.70 meV.

In Fig. 4(a) the QE is positioned at rQE = (0,0,2 nm). Due
to the orientation of the transition dipole moment along x,
TE and TM exciton polariton modes are supported by a MoS2

layer, depending on the sign of the Im(σres), as we have already
discussed in Sec. II B. The contributions of these modes are
obtained by extracting the pole contributions from Eq. (5b),
which for ε1 = ε2 = 1, and have the form

�̃x,EP(ω,rQE) = 3πc

4ω
Im

[
α2k2

0

kTE
z1

e2ikTE
z1 zQE�(−Im(σres))

− kTM
z1

α2
e2ikTM

z1 zQE�(Im(σres))

]
, (11)

where ki
z1 =

√
k2

0 − (ki
EP)2 , for i = TE,TM and where ki

EP

are given by Eqs. (9) and (10), respectively. The LSW
contribution is obtained in the large ks limit of the integrand

of Eq. (5b) [45] and has the form

�̃x,LSW(ω,rQE) = 3c

4ω
Im

[ ∫ ∞

K

dks

( −αk0

iks + αk0

+ 1

k2
0

iαk3
s

k0 + iαks

)
e−2kszQE

]
, (12)

where the lower limit on the integral is used for numerical
reasons to separate the various contributions to the full integral.
In particular, when there are no TM exciton polariton modes
and the TE exciton polariton modes lie very close to the light
line, K 	 k0. When the TM modes are present, the lower
integration limit should be K > Re(kTM

EP ), in order not to
include the pole contribution, given by Eq. (11). The LSWs are
nonpropagating dissipative modes. The radiative contribution
is given by integrating Eq. (5b) over the interval [0,k0].

In Fig. 4(a), for emission energies of the QE below the first
exciton energy, �ω < EA, the QE’s near field can excite LSWs,
and these lossy modes are the main contribution to the total SE
rate of the QE. Exciting the TE exciton polariton mode makes a
small contribution to the total SE rate. As the emission energy
of the QE is increased, in the interval EA < �ω < 2 eV, the
TM exciton polariton mode contribution dominates as the main
channel of relaxation for the total SE rate, although the LSW
still have a considerable contribution. At emission energies in
the interval 2 eV < �ω < EB , the LSW again dominate and
the contribution of the TE exciton polariton modes is small. As
we have already argued, the TE exciton polariton modes are
loosely confined to the MoS2 layer, and thus their contribution
to the normalized SE rate is small, see Eq. (11). Finally, for
emission energies �ω > EB , the TM exciton polariton mode
contribution dominates and the LSW is suppressed, although
its contribution is still considerable.

In Fig. 4(b) we observe that the enhancement of the total
normalized SE rate of the QE placed at rQE = (0,0,10 nm) is
smaller when compared with the case presented in Fig. 4(a).
This is due to the fact that the near field of the QE decouples
from the MoS2 layer as the QE-MoS2 layer distance is
increased. Thus, the LSW contribution to the total SE rate
along the whole spectrum is small. The LSWs can only be
excited at small QE-MoS2 separations. The TE modes also
have a small contribution to the total SE rate, but they can now
compete with the LSWs. However, the TM exciton polariton
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FIG. 4. The total normalized spontaneous emission of a QE, �̃, placed at a fixed position as a function of its emission energy, is analyzed
with respect to the lossy surface wave, surface mode and radiative emission contributions. The transition dipole moment of the QE is oriented
along x (a),(b) and z (c),(d). (a),(c) rQE = (0,0,2 nm). (b),(d) rQE = (0,0,10 nm). The values of the damping parameters considered are
γA = 0.3 meV and γB = 0.7 meV.

modes, in the interval where they are excited, dominate the
total SE rate of the QE. The SE rate is enhanced several orders
of magnitude in those intervals, compared with the free-space
value.

When the transition dipole moment of the QE is along z,
the pole contribution to Eq. (5a) comes exclusively from the
TM exciton polariton mode and has the form

�̃z,EP(ω,rQE) = −3πc2

2ω2
Im

[(
kTM

EP

)2

α
e2ikTM

z1 zQE�(Im(σres))

]
,

(13)

where kTM
z1 =

√
k2

0 − (kTM
EP )

2
. The LSW contribution, ob-

tained in the limit ks → ∞ of Eq. (5a), has the form

�̃z,LSW(ω,rQE) = 3c

2ωk2
0

Im

[∫ ∞

K

dks

iαk3
s

k0 + iαks

e−2kszQE

]
, (14)

where the lower limit is determined by the existence of
a TM exciton polariton mode, K > kTM

EP when present,
and by K � k0 when absent. The radiative contribution,

�̃z,0(ω,rQE), is given by integrating Eq. (5a) over the interval
[0,k0].

In Fig. 4(c) we investigate the case for which the transition
dipole moment of the QE is along z, at rQE = (0,0,2 nm),
showing the SE rate as a function of the QE emission energy.
Due to the dipole orientation, only TM exciton polariton modes
are excited in the intervals EA < �ω < 2 eV and �ω > EB ,
and these are the main channels of relaxation of the QE. The
LSWs dominate the total SE rate outside the interval where TM
exciton polariton modes are excited, although they also make
a considerable contribution in the range EA < �ω < 2 eV. In
Fig. 4(d) the distance between the QE and the MoS2 layer
is increased to rQE = (0,0,10 nm). The LSW contribution
decreases as the distance between QE and the MoS2 layer
increases. The total SE rate is enhanced several orders of
magnitude when the TM exciton polariton mode is excited.
In general, the SE rate of a QE has similar characteristics for
the x and z polarizations. The main difference is that, for a QE
with a transition dipole moment along x, TE exciton polariton
modes can be excited. The coupling between a QE and the
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FIG. 5. The total normalized spontaneous emission rate of a QE, with fixed emission energy as a function of its position r = (0,0,zQE), is
analyzed with respect to the lossy surface wave, exciton polariton mode and radiative emission contributions. The transition dipole moment
of the QE is z oriented. (a) �ω = 1.5 eV. (b) �ω = 1.9 eV. (c) �ω = 1.915 eV. (d) �ω = 2.0 eV. The damping parameters have the values
γB = 0.3 meV and γA = 0.7 meV.

MoS2 layer is more efficient for the z orientation. For the
rest of this paper we focus on a QE with z orientation of the
transition dipole moment.

The distance dependence of the interaction between QEs
and a TMD monolayer has been investigated experimentally,
and different theoretical expressions have been used to fit the
experimental results. In Ref. [31] they report a z−4 behavior of
the distance dependence of the interaction between a QE and a
MoSe2 layer, although the authors fit the intensity quenching
rather than the lifetime quenching. On the other hand, Ref. [28]
uses multiple QEs and investigates their lifetime quenching in
the presence of a MoS2 monolayer. The extracted fittings for
the lifetime quenching are between z−3 to z−4.

In Fig. 5 we present the distance dependence of the
spontaneous emission rate of a QE, placed at rQE = (0,0,zQE),
and oriented along z, for fixed emission energies. We analyze
the different contributions to the total SE rate, the LSWs,
TM exciton polariton modes and the radiative emission using
Eqs. (5a), (13), and (14). We consider four values of the
emission energy of the QE, one in the range �ω < EA,
where the LSWs dominate and one in the EA < �ω < 2 eV

range, where the TM exciton polariton modes are excited.
The other two values are at �ω = 1.9 eV, right on the
exciton energy EA, and �ω = 2.0 eV, at the position where
Im(σres) changes sign due to the interaction between the two
excitons.

In Fig. 5(a) the QE emission energy is �ω = 1.5 eV, in
the interval �ω < EA, thus we see that the main contribution
comes from the LSWs very close to the MoS2 layer, but this
channel of interaction dies out quickly and at separations as
small as zQE ≈ 8 nm, the SE rate reverts to its free-space
value. At this energy there is no exciton polariton mode,
due to the dipole moment orientation of the QE. The integral
in Eq. (14) has contributions of the form A1/z

2 + A2/z
3 +

A3/z
4, therefore in order to analyze the LSW contribution, we

use the fitting expression:

f (z) = Azn (15)

and in Fig. 5(a) we show that n = −2.5. This fitting shows
that the behavior of the MoS2 layer is very different from
the case of a graphene layer in the optical part of the
spectrum. The optical response of graphene is constant and
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characterized by a surface conductivity of σGraph = σ0 =
e2/2�. The distance dependence of the SE rate of a QE
is then given by �̃ ∝ 1/z4, Eq. (14), which is a universal
scaling law of the distance dependence between a QE and
a graphene monolayer, in the optical part of the spectrum
[8,9,30]. In Fig. 5(b) the QE energy is �ω = EA = 1.9 eV,
and we observe a behavior similar to Fig. 5(a), but now
the fitting of the LSWs, which have the largest contribution
to the total SE rate, gives n ≈ −2 and the QE reverts to
the radiative value of the SE at distances of 10 nm. We
furthermore observe that the radiative SE rate of the QE is
enhanced very close to the MoS2, which is an effect of con-
structive interference with the image dipole, due to the dipole
orientation.

In Fig. 5(c) the emission energy of the QE is �ω =
1.915 eV, and we observe that the main contribution to the
SE rate close to the MoS2 layer again comes from the LSWs.
At this energy a TM exciton polariton mode is excited and
thus adds a new path of relaxation for the QE. The TM
exciton polariton mode has a considerable contribution at
small separations between the QE and the MoS2 layer and
dominates at intermediate distances, 6 nm < zQE < 100 nm.
In order to better understand the influence of the TM
modes on the SE rate, we use a fitting expression of the
form:

g(zQE) = A exp(−2zQE/B), (16)

where B is the fitting parameter of interest, connected with
the penetration depth of the TM exciton polariton mode,
δEP = 1/Im(kEP

z ). The value of the fitting parameter in Fig. 5(c)
is found to be B = 40 nm which is the same as the value plotted
in Fig. 3(c) where δTM = 40 nm. The distance dependence
of LSWs is described by Eq. (15) with n ≈ −2. The LSW
contribution to the SE rate is calculated using the approximate
expression Eq. (14). When the TM modes are also present,
it becomes more challenging to distinguish between the
propagating TM exciton polariton and the nonpropagating
LSW nature of the relaxation. In Fig. 5(d) the emission
energy is �ω = 2 eV, and at this energy there is a change
of sign of the Im(σMoS2 ) from positive to negative values
while the ratio Re(σres))/Im(σres) � 1, thus we can safely
ignore the imaginary part. We then have a situation identical to
graphene and the LSWs, which dominate at small QE-MoS2

layer separations, follow a behavior given by Eq. (15) with
n ≈ −4.

For completeness we present the full spectral and distance
dependence of the SE rate of a QE in the presence of a MoS2

layer, in Fig. 6. This is a contour plot of the normalized total SE
rate of a QE, as a function of the QE position rQE = (0,0,zQE)
and its emission energy �ω. The transition dipole moment of
the QE is along z. The olive green line represents the boundary
of the parameter space where �/�0 > 10. We observe that
at emission energies where one can excite the TM exciton
polariton mode supported by the MoS2 layer, at 1.9 eV <

�ω < 2 eV and �ω > 2.1 eV, the SE rate is enhanced up to
10 times, compared with its free-space value, for distances
up to 40 nm. At small distances, the SE rate is enhanced due
to the excitation of the nonpropagating LSWs. The values of
the damping parameters considered are �γA = 0.3 meV and
�γB = 0.7 meV.

FIG. 6. Contour plot of the total normalized SE of a QE, as a
function of its position, rQE = (0,0,zQE), and emission energy �ω.
The transition dipole moment of the QE is z oriented. The values of
the damping parameters that are considered are γA = 0.3 meV and
γB = 0.7 meV.

C. Spontaneous emission in the presence
of a superlattice of MoS2 layers

In this section we investigate the influence of the presence
of a superlattice composed of multiple MoS2 layers on
the emission properties of a QE. There are contradicting
experimental reports regarding the influence on the SE rate of
a QE interacting with TMD layers, as the number of layers is
increased. In particular, in Refs. [26,30], the authors report that,
as the number of MoS2 layers is increased, the SE rate of the
QEs decreases. The authors of Ref. [30] use a bulk dielectric
permittivity to describe the optical response of the MoS2, and
they attribute the decreasing behavior to dielectric screening
[46]. In particular, they found that, by increasing the thickness
of the MoS2 slab, the field intensity created by a dipole source
on the slab drops. The screening effect is connected with the
difference between the parallel and perpendicular dielectric
permittivities of the MoS2 slab; more details can be found
in Ref. [30]. Also, the real part of the dielectric permittivity
has larger values compared with the imaginary part, further
increasing the screening effect [46]. Their analysis is focused
on a single emission energy of the QE. On the other hand,
in Ref. [29], the authors report an opposite behavior where,
as the number of layers of SnS2 is increased, the SE rate
also increases. This discrepancy is attributed to the fact that
the MoS2 material exhibits a band inversion from indirect, as
a bulk material, to direct as a monolayer, while SnS2 is an
indirect band gap material down to a monolayer. Furthermore,
in Refs. [26,29,30], the emission profile of the QEs investigated
is different for each case.

Our analysis follows a different path. Instead of using a
slab for approximating the MoS2 layer, and describing its
optical response through an anisotropic dielectric permittivity,
we treat the MoS2 as a 2D material, whose optical response
is given by Eq. (7). We describe the interaction between a QE
and a MoS2 superlattice using Eqs. (A2) and (A3). Multiple
scattering between the MoS2 layers creates a number of modes,
depending on the number of layers. We analyze and investigate
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FIG. 7. (a) Total normalized spontaneous emission of a QE, placed at a fixed position, rQE = (0,0,10 nm + D), as a function of its emission
energy, considering different numbers of MoS2 layers. The transition dipole moment of the QE is z oriented. The dashed vertical lines correspond
to the peak emission energies of the quantum dots in Refs. [26,30]. (b),(c) Dispersion relation ks(ω) showing log (|RN |), for Im(σres) > 0, and
log (|RM |), for Im(σres) < 0, considering multiple MoS2 layers. (b) Two layers. (d) Three layers. D is the thickness between the lower and
upper MoS2 layers, here D = 2 nm. The dispersion relation of the TM exciton polariton mode of a single MoS2 layer is presented with a red
dashed line. The damping parameters have the values γB = 0.3 meV and γA = 0.7 meV.

the influence these modes have on the total SE rate of the QE.
We choose to investigate free standing MoS2 superlattices for
simplicity. The inclusion of the substrate will slow down the SE
rate due to the difference between the substrate and superlattice
dielectric permittivities. The main relaxation path for a QE
is associated with the exciton polariton modes, provided by
the MoS2 superlattice. Their existence is unaffected by the
inclusion of a substrate.

In Fig. 7(a) we present the SE rate as a function of
emission energy considering the interaction between a QE
and a monolayer and, double, triple, and quadruple MoS2

layers. Again we consider the case where the transition dipole
moment of the QE is oriented along z. The position of the QE
is fixed at rQE = (0,0,10 nm + D), where D is the distance
between the top and bottom layers. We consider a fixed value
of this thickness, D = 2 nm, and the distance between the
layers is kept equal. So as the number of layers is increased
the distance between them is decreased. In Fig. 7(a) we observe
that, as the number of layers increases, the peak value of the
normalized SE rate blueshifts and the absolute value of its
enhancement decreases. The shift is smaller when the lower
TM exciton polariton mode is excited. In Refs. [26,30] the
authors experimentally found that the SE rate of CdSe/CdZnS
quantum dots, with peak emissions at 1.95 eV and 2.15 eV,
decreases when interacting with an increasing number of MoS2

layers. As can be seen in Fig. 7(a), this is consistent with our
observation and hence may be due to the coupling between
the layers through the electromagnetic field. However, our
theory does not account for the direct electronic coupling
between layers, which may also play a role. In order to give
an explanation for this effect we present in Figs. 7(b) and 7(c)
the dispersion relation for two superlattice examples.

As we have already discussed, the TE and TM exciton
polariton modes are obtained as poles of the generalized
Fresnel reflection coefficients. For a superlattice nanostructure
more details are given in Appendix. In Figs. 7(b) and 7(c) we
present a contour plot of the logarithm of the absolute value of
the reflection coefficients RN (ks,ω), for EA < �ω < 2.0 eV
and �ω > EB , and RM (ks,ω), for �ω < EA and 2.0 eV <

�ω < EB , as a function of the in-plane wave vector ks and

the energy �ω. The generalized reflection coefficients R are
calculated by solving Eq. (A4). The TM mode has the largest
contribution to the SE rate, see Fig. 7(a). The dispersion
relation lines are given by the dark color lines in the contour
plot. We observe that as the number of layers increases,
more branches emerge in the energy range where TM modes
are supported by the MoS2 superlattice, and the number
of branches is equal to the number of layers. These extra
branches are connected with the multiple scatterings in the
MoS2 superlattice. In the same figure we present with a red
dashed line the dispersion relation of a single MoS2 layer for
direct comparison.

The peak in the SE rate enhancement of a QE for a single
layer is at �ω = 1.95 eV, Fig. 7(a). The main channel of
relaxation of the QE, in the presence of the MoS2 superlattice,
is the TM exciton polariton mode. We choose to focus on the
lower branch of the TM exciton polariton mode, related to the
first peak of the normalized SE rate in Fig. 7(a). The peak
value for the single layer is connected with the penetration
depth, δTM

EP = 1/Im(kTM
z ), where kTM

z =
√

k2
0 − kTM

EP ≈ ikTM
EP

and since kTM
EP � k0, we find δTM

EP = 1/Re(kTM
EP ). In Eq. (13),

the exciton polariton contribution to the SE rate depends on
a factor c2/ω2, thus for the same value of kTM

EP , there is a
decrease in the absolute value of the normalized SE rate with
increasing energy, explaining the trend we observe in Fig. 7(a).
In Figs. 7(b) and 7(c), we show the position of the peak value of
the SE rate of the QE interacting with a single MoS2 layer, and
the blue arrow indicates the blueshift of the energy at which
the peak value of the SE rate emerges in Fig. 7(a) when the
double layer is considered. For the single layer, the peak of the
SE rate is at �ω = 1.95 eV at kTM

EP = 0.1 nm−1, δTM
EP = 10 nm,

while for the double layer the peak is at �ω = 1.97 nm and
for the triple layer it is at �ω = 1.98 nm. Thus the dispersion
relations give an explanation for the blueshift of the peak value
of the normalized SE rate.

Therefore, to investigate the interaction between a specific
QE and a MoS2 superlattice, one must take into account the
reduced interaction between QEs-MoS2 superlattice as one
starts increasing the number of layers. While the emission
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FIG. 8. Contour plots of the logarithm of the field intensity,
log10 (|Gzz(r,s,ω)|2), created by a QE, placed at s = (0,0,D +
10 nm). The transition dipole moment of the QE is along z, and
its emission energy is �ω = 1.915 eV. (a) Single layer, (b) double
layer, (c) triple layer. The damping parameters have the values
γB = 0.3 meV and γA = 0.7 meV.

properties of the QE do not change, its environment is
modified as there is a redistribution of the available modes.
The dispersion relation plays a crucial role in explaining this
effect, giving us the available modes that can be supported.

To further analyze this effect, in Fig. 8 we present contour
plots of the logarithm of the absolute value of the electric field,
Ez(r,ω) ∝ Gzz(r,rQE,ω), created by a QE placed at rQE =
(0,0,10 nm + D), in the presence of a MoS2 superlattice, D =
2 nm in our case. The emission energy of the QE has been
selected to be at the maximum value of the SE rate for a single
MoS2 layer, �ω = 1.95 eV. The scale of the color maps in
Fig. 8 is the same in all panels, for direct comparison. We
observe that the field intensity decreases as the number of the
MoS2 layers increases. This is due to the poorer coupling of
the near field of the QE to the MoS2 superlattice. We observe

also that the extent of the field in the x direction decreases
as the number of layers is increased. The propagation length
for the single layer is LTM

EP = 373 nm while for the double
layer it is LTM

EP = 300 nm, and, as the number of layers further
increases, the propagation length further reduces.

The opposite behavior can be observed when the QE
emission energy is at the maximum value of the SE rate
for a MoS2 superlattice, e.g., for the three-layer superlattice.
Then the SE rate of the QE decreases with decreasing the
number of layers. For this example of the trilayer, at the
resonance �ω = 1.98, the normalized SE rate is �̃ = 718,
compared with �̃ = 444 for the two layer and �̃ = 102 for a
monolayer.

IV. CONCLUSIONS AND FUTURE WORK

In this contribution we have investigated the spectral and
distance dependence of the SE rate of a QE in the presence
of a MoS2 layer and superlattice. A MoS2 layer supports
transverse electric and transverse magnetic surface exciton
polariton modes. The TM modes are strongly confined to the
MoS2 layer and have long propagation lengths. The TE modes
are only loosely confined to the MoS2 layer.

The total SE rate of the QE in the presence of a MoS2 layer
is analyzed with respect to the different contributions, namely,
the lossy surface wave, surface exciton polariton and radiative
emission. In the main part of the discussion we showed that the
existence of TE and TM exciton polariton modes is connected
with the surface conductivity of the MoS2, specifically with
the sign of its imaginary part. For energies at which the TM
exciton polariton modes are excited, the SE rate of a QE is
enhanced by several orders of magnitude, compared with its
free-space value. For all emission energies of the QE, the
main contribution to the SE comes from the LSW at small
separations, but their contribution dies out fast as the separation
is increased. When the TM modes are excited, they dominate at
intermediate distances, 6 nm to 100 nm. For distances at which
the LSWs are not excited or above the penetration depth of the
TM exciton polariton modes, the QE radiates to the far field.

Next, the interaction between a QE and a MoS2 superlattice
is investigated. We observe a blueshift of the peak value of the
SE rate of the QE, as a function of its emission energy, as we
increase the number of MoS2 layers from one to four. Using the
dispersion relation plot, this blueshift is explained. It is seen
that the number of layers determines the number of branches of
the exciton polariton modes available. The blueshift of the SE
rate is connected with the blueshift of the dispersion line for the
MoS2 superlattice, compared with the single layer. For a QE
with emission energy corresponding to the peak energy of the
SE rate of a monolayer, as the number of layers is increased the
coupling decreases and the field intensity distribution around
the superlattice decreases. The opposite behavior is observed
if the emission energy of the QE is on resonance with a MoS2

superlattice.
Although the results presented in this study focused on

MoS2 as a material, they are quite general and can be applied
to any material whose optical properties are determined by
exciton generation. Thus, they can be applied to any of the
rest of the TMD family. Furthermore, we have chosen to
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concentrate on a theoretical investigation of the MoS2 and
not to fit existing experimental data. This is due to the fact that
the material parameters are strongly influenced by the quality
of the material sample itself.

This study made a contribution to explaining all the contra-
dictory results regarding the spectral and distance dependences
of QEs in the presence of MoS2 layers. Specifically, we
presented a zn, n = 2,3,4, distance dependence of the SE
rate of a QE, which is connected with the LSWs at the
different emission energies. Also we observed the existence
of exciton polariton modes and how they modify the emission
properties of QEs and the strength of the interaction, where the
distance dependence follows the expression ∼exp (−2z/δT M

EP ).
Moreover, we explained that the coupling of a QE with a MoS2

superlattice depends on its emission energy. The peak value
for the SE rate of a QE blueshifts depending on the number of
MoS2 layers, due to the different mode distributions supported
by these structures. While the emission properties of the QE
remain the same, the modes provided by the environment
change as the number of MoS2 layers changes. Depending
on the emission energy of the QE, the SE rate can increase or
decrease as the number of MoS2 layers is increased. Dielectric
screening can explain certain results for certain emission
energies of the QE.

Multilayer devices based on MoS2 and graphene can be
the precursors of an all-optical device. Graphene’s optical
properties can be tuned by changing its chemical potential,
but it has small absorption in the visible part of the optical
spectrum. Combining graphene with TMD layers allows one
access to the best of both materials for applications such as light
harvesting and light emitting devices [47,48]. In general the
total absorption of these two materials can be further enhanced
by also including layers of QEs. The emission properties of the
QEs can be chosen depending on the nature of the application.
For light harvesting devices we need the emission energy of the
QEs to maximize the nonradiative energy transfer to the MoS2

layer, where the generated electron-hole pair will be harvested.
On the other hand, for LEDs we need to maximize the far field
emission of the SE rate of the QEs. Both of these effects can be
further investigated for devices composed from patterned 2D
nanostructures, like ribbons and disks, where the redistribution
of the available modes gives rise to sharp resonances [49,50].
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APPENDIX: GREEN’S TENSOR
FOR A MoS2 SUPERLATTICE

A multilayer planar geometry is considered, which consists
of a number of N layers, indexed by their layer number
i = 1, . . . ,N where each layer has thickness di and dielectric
permittivity εi . The layers are of infinite extent in the xy plane,
and the z axis is perpendicular to the surface of each layer.

The method of scattering superposition is used [51,52]
where the Green’s tensor splits into two parts:

G(r,s,ω) = Gh(r,s,ω) + Gs(r,s,ω), (A1)

where Gh(r,s,ω) is the homogeneous part that accounts for
direct interaction between the source and target points at s and
r, respectively, and is nonzero when both points are in the same
medium and there is no discontinuity between them. Gs(r,s,ω)
is the scattering part, it is always present, and accounts for
the multiple reflections and transmissions taking place at the
interfaces.

The general form of the scattering part of the Green’s tensor
has the form:

Gs(r,s,ω) = i

8π2

∫
d2ks

1

kzik2
s

∑
T

R
±(ij )±
T T(ks ,±kzi,r)

⊗ T∗(ks ,±kzj ,s). (A2)

A summation is implied for each pair of ± indices. These
indices show the direction of propagation of the electro-
magnetic modes, the first index for the acceptor and the
second for the donor. Also the summation over T is over the
M and N modes which are connected with the transverse
electric and transverse magnetic modes, respectively. The form
of M and N can be found in Ref. [52]. For planar geometries
there are no hybrid modes. The boundary conditions imposed
on the system of multilayers are the continuity condition
and the radiation condition. The first condition is given by
continuity equations at each interface:

ẑ × [G(ij )(r,s,ω) − G((i+1)j )(r,s,ω)]|z=di
= 0, (A3a)

ẑ × [∇ × G(ij )(r,s,ω) − ∇ × G((i+1)j )(r,s,ω)]|z=di
= −i

4π

c
k0σ ẑ × ẑ × G((i+1)j )(r,s,ω), (A3b)

where σ is the surface conductivity of the two-
dimensional material; for our case it is the MoS2 layer,
Eq. (7).

By applying these boundary equations, an inhomogeneous
system of 2N−1 equations is defined which have 2N−1

unknowns, the generalized R
±(ij )±
M(N) coefficients. These coef-

ficients are sufficient to uniquely determine the problem under
consideration through the exact knowledge of the scattering
part of the Green’s tensor. In order to find the generalized

coefficients, a matrix equation is solved which has the form

�M(N) · R(i)±
M(N) = V (i)±

M(N), (A4)

where � is the characteristic matrix of the system of equations
from the boundary conditions at the interfaces, R(i)± is the
column of the generalized coefficients R

±(ij )±
M(N) , and V (i)± is the

free term vector whose terms are given by the homogeneous
part of the Green’s tensor.
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We will consider in more detail the case where a 2D
material MoS2 is sandwiched between two planar half spaces
with dielectric permittivities ε1 and ε2. The z direction is
perpendicular to the boundary between the two half spaces
[52,53]. Using Eq. (A1) the Green’s tensor has the form

G
(11)(r,s,ω) = G

(11)
h (r,s,ω) + G(11)

s (r,s,ω), (A5a)

G
(21)(r,s,ω) = G(21)

s (r,s,ω), (A5b)

where the first of the two labels in the superscript (i1) denotes
the field point, while the second denotes the source point. The
scattering terms have the following expression

G(11)
s (r,s,ω) = i

8π2

∑
K

∫
d2ks

1

kz1k2
s

R+11−
K K(ks,kz1,r)

⊗ K∗(ks,−kz1,s) (A6a)

G(21)
s (r,s,ω) = i

8π2

∑
K

∫
d2ks

1

kz1k2
s

R−21−
K K(ks,−kz2,r)

⊗ K∗(ks,−kz1,s), (A6b)

where ks =
√

k2
i − k2

zi is the in-plane propagation constant,
kzi is the perpendicular propagation constant in medium i,
and ki = ω

c

√
εi is the wave number in medium i (i = 1,2).

The above expressions involve a summation over K which
represents M and N, the transverse electric (TE) and transverse
magnetic (TM) modes, respectively.

Imposing the continuity conditions, Eq. (A5), at the
boundary between the two half spaces, z = 0, we obtain
the generalized Fresnel coefficients, which have the form
[35,36]

R11
M = kz1−kz2−2αk0

kz1+kz2+2αk0
, R11

N = k2
2kz1 − k2

1kz2 + 2αk0kz1kz2

k2
2kz1 + k2

1kz2 + 2αk0kz1kz2

(A7a)

R21
M = 2kz1

kz1+kz2+2αk0
, R21

N = 2k1k2kz1

k2
2kz1 + k2

1kz2 + 2αk0kz1kz2
,

(A7b)

where α = 2πσ/c.
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