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Chern numbers for the index surfaces of photonic crystals:
Conical refraction as a basis for topological materials
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The classification of band structures by topological invariants provides a powerful tool for understanding
phenomena such as the quantum Hall effect. This classification was originally developed in the context of electrons
but can also be applied to photonic crystals. In this paper we study the topological classification of the refractive
index surfaces of two-dimensional photonic crystals. We consider crystals formed from birefringent materials in
which the constitutive relation provides an optical spin-orbit coupling. We show that this coupling, in conjunction
with optical activity, can lead to a gapped set of index surfaces with nonzero Chern numbers. This method for
designing photonic Chern insulators exploits birefringence rather than lattice structure and does not require band
crossings originating from specific lattice geometries.
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I. INTRODUCTION

Chern insulators are two-dimensional materials that are
insulating in their interior but conducting along their edge. The
first such materials to be identified were the integer quantum
Hall states [1], for which the quantized Hall conductance
corresponds to a topological invariant known as the Chern
number [2–4]. The Chern number is related to the number of
conductive edge states at the interface between a topologically
nontrivial insulator and a topologically trivial one [5]. A later
example of a Chern insulator is provided by the Haldane model
[6], which introduced a now well-trodden path to constructing
topologically nontrivial band structures. This model describes
particles hopping on a two-dimensional hexagonal lattice, an
arrangement which produces point degeneracies in the band
structure. These are the celebrated Dirac points, which are
associated with vortexlike singularities in the Bloch functions.
They can be a precursor to a topologically nontrivial gapped
band structure, which arises if the degeneracies are split by a
perturbation in such a way that the windings of the vortices
combine rather than cancel [7].

Topologically nontrivial band structures are not restricted
to theories of electrons but can also be achieved for photons
[8–18], polaritons [19–22], and sound waves [23–25]. The pos-
sibility of topological photonic bands was raised by Haldane
and Raghu [8,9], who showed how the original Haldane model
could be implemented for light in a hexagonal photonic crystal.
Many subsequent works have followed this proposal, showing
how the degeneracies of photonic lattices can be split to achieve
either a Z photonic Chern insulator [9,10,13] or a Z2 photonic
topological insulator [15,16]. Often such works consider situ-
ations where the polarization and propagation decouple as, for
example, for the TE and TM modes propagating in the plane
of a 2D photonic crystal. However, such decoupling does not
occur in an optically anisotropic material or structure, where
the polarization states depend on the wave-vector direction.

The topological classification of photonic materials is usu-
ally based on their dispersion relation, i.e., the band structure,

and the associated Bloch states. Another important quantity,
however, is the refractive index surface. This is related to, but
distinct from, the dispersion relation: it is the surface of wave
vectors corresponding to a particular frequency. In this paper
we study topological effects that derive from the refractive
index surface. We show how the generic features of the index
surfaces of anisotropic bulk materials lead, in periodic systems
based on such materials, to a type of photonic Chern insulator.

Our focus is on two-dimensional photonic crystals formed
from biaxial materials or metamaterials. For such materials
the index surface consists of two ellipsoids that intersect at
conical singularities, which are point degeneracies that are
equivalent to the Dirac points of a dispersion relation. In a
periodic system the index surface consists of many sheets
defined on a two-dimensional Brillouin zone and contains
conical intersections inherited from those of the bulk, as shown
in Fig. 1. These can be split in such a way as to achieve a gapped
set of index surfaces with nonzero Chern numbers, i.e., a form
of optical Chern insulator. Our approach is based on effective
medium theory and exploits the singularities that are generic,
topologically enforced features of optical index surfaces rather
than those of particular lattices. This suggests that similar
Chern index surfaces could be achieved in two-dimensional
photonic structures with a range of lattice geometries.

A related concept of photonic Chern insulators has been put
forward by Gao et al. [26]. That work, however, considers an
optically homogeneous material for which the refractive index
is defined on the sphere of wave-vector directions. We consider
instead a periodic material, and specifically, a two-dimensional
photonic crystal. In this case the refractive index is defined not
on a sphere but on a two-dimensional torus, i.e., the Brillouin
zone. This change in the underlying topology necessitates a
different approach to designing topological materials. We note
also that the topological classification of the index surface
of a periodic structure is implicit in the tight-binding model
of the photonic Floquet topological insulator, as realized on
a hexagonal lattice [13]. The present work places this type
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FIG. 1. Illustration of the formation of topologically nontrivial
index surfaces in two-dimensional photonic crystals. Each panel is a
schematic of a section of a refractive index (isofrequency) surface for
(a) a biaxial dielectric, (b) a biaxial dielectric with optical activity,
(c) a periodic biaxial dielectric, and (d) a periodic biaxial dielectric
with optical activity. Each panel is centered on the wave vector
corresponding to the conical singularity in (a). The periodicity is
taken to be in the plane perpendicular to this wave vector, forming a
two-dimensional Brillouin zone (BZ).

of state within the broader context of the optics of periodic
anisotropic materials and reveals a different approach to its
realization.

II. MODEL

We consider the propagation of light, at some fixed fre-
quency ω, through a two-dimensional photonic crystal and
seek to map this problem to a Schrodinger equation with
a topologically nontrivial Hamiltonian. We do this via the
refractive index surface, which is a polar plot of the refractive
index n over all possible wave-vector directions. Since n =
ck/ω, where k is the magnitude of the wave vector, the index
surface is a constant-frequency surface in wave-vector space,
akin to the Fermi surface of a solid. The connection to a
Schrodinger equation follows on noting that the index surface
determines one wave-vector component (propagation con-
stant) in terms of the other two, kz =

√
n2ω2/c2 − k2

x − k2
y , so

for a scalar field we have i∂zψ (kx, ky, z) = kzψ (kx, ky, z) ≡
Hψ (kx, ky, z). The polarization of light may be included by
replacing ψ with a two-component field, formed from the
complex amplitudes of two orthogonal polarization states. In
an anisotropic material there will be two distinct refractive
indices n± for each wave-vector direction, each associated
with a particular wave-vector–dependent polarization. Thus H

becomes an operator acting in both spin (polarization) space
and real space, with spin-orbit coupling terms [27].

The forms of index surface for various dielectrics are well
known [28,29]. We consider here the most general case of
a biaxial material. For such materials the dielectric tensor
possesses three distinct eigenvalues ε1 �= ε2 �= ε3, and the
index surface consists of two ellipsoids. These ellipsoids
intersect at four conical singularities, one of which is shown
in Fig. 1(a). The wave vectors of these singularities are the
optic axes of the crystal, along which light undergoes conical
refraction [30]. Near a singularity the effective Hamiltonian, in
the basis of circular polarization states, takes the Dirac-point
form H = Aσ̂ · (kx, ky, 0), where kx, ky are components of
the wave vector perpendicular to the optic axis [27]. The
quantity A, which plays the role of the Fermi velocity, is the

semiangle of the conical intersection. If we introduce a periodic
modulation in a plane containing the wave vectors kx and
ky then they become defined on a two-dimensional Brillouin
zone, and additional singularities appear in the index surface
[Fig. 1(c)]. Optical activity splits these singularities [Figs. 1(b)
and 1(d)] and, as we show in the following, this can be done
in such a way as to achieve a nonzero Chern number.

A. Effective Hamiltonian: Paraxial approximation

To demonstrate the formation of nonzero Chern numbers for
the index surface we will consider the specific case of a two-
dimensional photonic crystal with periodicity perpendicular
to an optic axis. We will develop an effective Hamiltonian
based on the paraxial approximation to the index surface of
a homogeneous dielectric. As discussed in Refs. [27,30–33],
considering plane-wave solutions to Maxwell’s equations in
such a dielectric leads to an eigenvalue problem

Md± = λd± = d±/n2
±, (1)

where the two-dimensional matrix M depends on the propa-
gation direction k̂ and the dielectric tensor. For each direction
there are two distinct refractive indices n± and two correspond-
ing polarization states. Each of the latter is specified by the
two-component complex vectors d± for which we use the basis
of circular polarizations.

As discussed above, Eq. (1) corresponds to a two-
dimensional Hamiltonian for propagating the fields forward
in z; this Hamiltonian is a matrix whose eigenvalues are
kz,±(kx, ky ) and whose eigenvectors are d±(kx, ky ). Since the
behavior of the homogeneous dielectric is scale invariant we
may introduce the characteristic wave vector k0 = ω/c and
write i∂zψ = k0Hψ , where H is the matrix whose eigenvalues
are

√
n2

± − k̃2
x − k̃2

y , where k̃x = kx/k0. We now specialize to
consider wave vectors which are close to the z direction. Thus
k̃x, k̃y � 1, and we may expand H as a power series in these
quantities. This leads to a paraxial approximation

Hp = h0(k̃x, k̃y )I + h(k̃x, k̃y ) · σ̂ , (2)

where h0 and h are second-order polynomials in the off-axis
components of the wave vector. The forms of these polynomi-
als are given in the Appendix for the case of propagation near
to an optic axis in a material with biaxiality and anisotropic
optical activity.

The paraxial Hamiltonian Hp gives a local approximation
to the index surfaces near the propagation direction, taken to
lie along the optic axis. This local approximation should give
a reasonable account of the topological structure of the index
surface as long as the range of transverse wave vectors does not
encompass any other singularities. The part of the Hamiltonian
proportional to h0 controls the overall curvature of the index
surfaces. In the absence of optical activity, the index surface is
split into two linearly polarized surfaces due to the off-diagonal
components proportional to hx and hy , which vanish at the
optic axis. Optical activity lifts the degeneracy of the two
circular polarizations at these points, and the index surfaces are
gapped everywhere. As we shall see, a nonzero Chern number
in the periodic case requires an anisotropic optical activity. For
definiteness we suppose this to arise from the Faraday effect,
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which is parameterized by an optical activity vector g that is
related to the applied field (see Appendix).

B. Periodic generalization

The Chern numbers of a band structure are integer topo-
logical invariants which characterize the mapping between the
closed two-dimensional Brillouin zone and the states defined
by the Hamiltonian [2,4]. The states for each band |ψ (kx, ky )〉
provide a U(1) Berry connection Ai = i〈ψ |∂ki

|ψ〉 and flux
F = ∂xAy − ∂yAx , whose integral over the Brillouin zone is
2π times the Chern number of the band [34]. The Hamiltonian
Hp discussed above, however, does not define a quantized
Chern number because it is defined on an open disk of wave
vectors k2

x + k2
y < n2

−k2
0 rather than a closed, two-dimensional

Brillouin zone. We must therefore generalize it so as to apply
to a periodic structure.

In order to do this we will consider the lattice version of the
Hamiltonian Hp, for simplicity considering a square lattice in
the x − y plane with lattice constant a. The real-space lattice
Hamiltonian is obtained from Hp by replacing the derivatives,
ki = −i∂i , with finite differences. In wave-vector space this
corresponds to making the replacements

ki → 1

a
sin kia

k2
i → 2

a2
[1 − cos kia], (3)

giving the wave vectors, and hence the Hamiltonian, the appro-
priate periodicity. As we shall see, this periodic Hamiltonian
gives a qualitative description of the topological features of the
index surfaces obtained from plane-wave calculations. It it is
equivalent to a tight-binding model at a particular choice of
hopping parameters. We shall denote it by Hl and introduce
the wave-vector scale in the material k = √

ε2k0 for later
convenience.

The effect of introducing periodicity is illustrated in Fig. 1,
which shows the evolution of the index surfaces of a homoge-
neous biaxial material as optical activity, periodicity, or both
are added. The key feature of the reformulated Hamiltonian Hl

is that, in the absence of optical activity, there are additional
degeneracies in the first Brillouin zone. This is a consequence
of the periodic topology of the Brillouin zone, which requires
the vector field (hx, hy, hz = 0) to have zero net circulation.
We shall now move to classifying the topological character of
the index surfaces of these photonic crystals.

III. RESULTS

A. Topological phases of the lattice model

The topological phases of the lattice model can be deduced
from the degeneracy structure of the Hamiltonian Hl [7]. For
a two-band Hamiltonian such as Hl , the Chern number C

is the winding number of the vector field h(kx, ky ). It can
be computed by summing over the zeros of (hx, hy ) in the
Brillouin zone,

C =
∑

i

vi sgn hz(i), (4)

FIG. 2. Polarization structure of the index surface over the first
Brillouin zone for a biaxial material and a square lattice, predicted
by Eqs. (2) and (3). The arrows show the field (hx, hy ). The zeros
of hx and hy lie along the lines indicated in turquoise (dark gray)
and green (light gray), respectively. In the absence of optical activity
hz = 0, and there are conical singularities at the intersections of the
contours shown. The first Brillouin zone is the square bounded by
the two black lines and the upper and lower green contours. The
parameters are ε1 = 2.25, ε2 = 2.5, ε3 = 2.75, and ka = 1.6π , where
k = ω/(c

√
ε2 ).

where i denotes a zero of (hx, hy ) in the Brillouin zone, at
which the vorticity is vi and the mass term hz(i).

We therefore discuss first the case of zero magnetic
field, so that hz = 0. Figure 2 shows the field (hx, hy ) =
|h|(cos 2θ, sin 2θ ), along with the zero contour lines of these
components. This field shows the direction of linear polar-
ization θ for the outermost sheet of the index surface. The
intersections of the contour lines are the conical singularities
or Dirac points where the sheets of the index surface are de-
generate. For illustration we take the permittivities ε1 = 2.25,
ε2 = 2.5, ε3 = 2.75 and a lattice spacing to wavelength ratio
of a/λ = 4/5. We use these permittivities for the remainder of
this paper, and this lattice spacing to wavelength ratio except
where otherwise stated.

As can be seen in Fig. 2, the lattice periodicity has intro-
duced additional conical singularities in the index surfaces.
These are at the intersections of the zero contour lines of hx

(turquoise) and hy (green), and for these parameters there are
two such intersections in the first Brillouin zone. In addition to
the Dirac point at �, corresponding to that of the original index
surface, there is a second Dirac point just inside the X boundary
along the line ky = 0. The Berry flux corresponding to each
of these singularities is ±π , so that with two degeneracies
in the first Brillouin zone we can achieve a Chern number
C ∈ {−1, 0, 1}.
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FIG. 3. Chern number C (shading) of a biaxial material on a
square lattice, from the paraxial Hamiltonian model, with optical
activity due to the Faraday effect. The spherical coordinates (θ, φ)
give the direction of the axis of optical activity, i.e., the magnetic field.
The polar angle θ is measured from the optic axis and the azimuthal
angle φ from the x axis of the rotated coordinate system described
in the Appendix. The shadings represent C = 0 (white) and C = ±1
(dark or light gray). The parameters are those given in Fig. 2.

The optical activity due to the Faraday effect introduces
a term hz �= 0 and lifts the degeneracies in the index surface.
The polarization over the index surface then becomes elliptical,
with a circularity determined by the sign of hz. To achieve a
nonzero Chern number the zero contour of hz(kx, ky ) must
separate the two lifted degeneracies so that hz has opposite
signs at each of them and the signs of their Berry fluxes are
the same [Eq. (4)]. Physically, the circular polarization must
swap between the two C points in each sheet around which the
linear polarization winds. Whether or not this occurs depends
on the direction of the optical activity vector.

In Fig. 3 we show how the Chern number depends on the
direction of the optical activity vector. It shows the Chern
number by shading for a range of directions (θ, φ) about and
around the equator θ = π

2 at which the field and optic axis are
perpendicular. We see that nonzero Chern numbers (light and
dark shading) can be achieved for this model when the optical
activity vector lies almost perpendicular to the optic axis. This
region is bounded by two equators: one perpendicular to the
optic axis, which corresponds to gap closing at the � point,
and one at a slightly different angle, which corresponds to the
gap closing at the C point near to X. The existence of a finite
region between these two equators, where the Chern number
is nonzero, is due, primarily, to the displacement of this latter
C point from the zone boundary.

The phase diagram in Fig. 3 does not depend on the strength
of the optical activity, although of course this parameter does
affect the size of the gap. The dependence we have observed
on the remaining parameters of the model is related to the
displacement of the C point away from the zone boundary. In
the model Hl this displacement arises from the interplay of the

linear and quadratic terms in the paraxial Hamiltonian, which
give different contributions to the lattice model that vanish at
different points in the zone [see Eq. (3)]. If we increase the
cone angle A, i.e., the degree of biaxiality, the C point near X

moves into the Brillouin zone along the ky = 0 line, and the
region of nonzero Chern number in Fig. 3 expands. We can also
vary the ratio of the lattice spacing to the operating wavelength
ka, which controls the paraxial approximation, Eq. (2). As this
parameter increases the second-order terms decrease relative
to the first-order ones, bringing the C point near X closer to
the zone boundary and reducing the region of nonzero Chern
number.

B. Simulated index surfaces

In this section we compare the periodic Hamiltonian model
Hl to the index surfaces extracted from a plane-wave calcula-
tion of a two-dimensional photonic crystal [35]. We focus on
the locations of the singularities in a material without optical
activity, since this is the key feature determining the topological
phase diagram when optical activity is introduced. We consider
specifically a biaxial dielectric in which cylindrical air holes
are drilled to form a square lattice.

In Fig. 4 we compare how the locations of the Dirac points
evolve with the wave-vector scale k, at fixed a, in the two
theories. The solid black lines show the locations predicted
by Hl , while those predicted numerically lie within the shaded
regions of the figure. We see that Hl gives a reasonable account
of the numerical results. As shown in the upper panel, it
correctly predicts the two Dirac points along the line ky = 0 for
all values of ka, i.e., for all degrees of paraxiality. As expected,
there is a Dirac point along ky = 0 at kx = 0 in both theories.
There is also a second Dirac point present in each theory along
this line. For the periodic Hamiltonian model the second Dirac
point is adjacent to the positive kx Brillouin zone boundary;
for the numerical simulations the Dirac point is found on the
other side of this boundary displaced from the zone edge. We
attribute this difference to the different treatments of scattering
in the two methods, and perhaps also to higher-order terms
neglected in Eq. (2). The lower panel of Fig. 4 shows the
positions of Dirac points along the line ky = π/a. While for
small ka the model Hl lacks the two Dirac points seen in the
numerical simulation, there is a critical ka above which this
additional pair emerges. Above this critical ka the model Hl is
in qualitative agreement with the numerical simulation.

In Fig. 5 we compare the index surfaces of the two theories,
along a high-symmetry path through the Brillouin zone, for
ka 
 4π . This degree of paraxiality places us in a regime
towards the top of the vertical scale of the plots in Fig. 4,
in which there are four Dirac points in the Brillouin zone. As
can be seen in this figure, there is a reasonable correspondence
between the forms of the index surfaces of the two theories.
As expected, the shapes of the bands are somewhat different.
Nonetheless, given the correspondence between the numbers
and locations of the Dirac points across most degrees of
paraxiality, the topological phase diagrams of the two models
will be similar to one another. In the regime before the
additional Dirac points emerge in the model Hl the phase
diagram of the numerical simulation will be richer than that
of the model.
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FIG. 4. Comparison of the locations of the Dirac points given by
the paraxial theory and a frequency-domain plane-wave simulation
as k is varied. In both cases Dirac points occur along the lines ky = 0
(top) and ky = π/a (bottom). Solid lines: kx for the Dirac points
from the paraxial theory. Shading: bounds on kx for the Dirac points
from the plane-wave simulations, where the magnitude of the splitting
between the index surfaces is smaller than a�kz = 2π × 10−6. The
dielectric parameters are those in Fig. 2. The plane-wave simulation
has cylindrical air holes in the dielectric background, with a filling
factor of 0.15.

IV. DISCUSSION

In this paper we have explored the refractive index surfaces
of two-dimensional photonic crystals. We have shown how
optical activity can lead to photonic materials characterized
by gapped, i.e., nondegenerate, index surfaces with nonzero
Chern numbers. Our approach is unusual in that it does
not rely on a specific lattice geometry but instead on the
conical intersections that occur generically in the index surface
of optically anisotropic materials. This suggests that such
topological photonic materials can be constructed with a range
of lattice geometries.

For brevity we have referred to our material as a photonic
Chern insulator. However, as can be seen from Fig. 5, it

FIG. 5. Index surfaces along high-symmetry directions of the
first Brillouin zone from the paraxial model (top panel) and a
frequency-domain plane-wave calculation (lower panel). The relevant
high-symmetry points are indicated in Fig. 2. ka 
 4π , and all other
parameters are as in Figs. 2 and 4.

generally lacks a band gap at a particular propagation constant
and so is more accurately described as a photonic semimetal
with topological bands. In a true Chern insulator the topology
of the bulk bands leads, in the presence of an interface, to
the appearance of edge states in the gap. For the semimetal
one does expect that a slow spatial variation of the structure
from one topological phase to another will introduce modes
crossing the bulk bands. However, a generic realistic interface
would allow these modes to mix with the bulk bands and
destroy their localization. Given that our proposal is not
dependent on the particular form of lattice geometry, however,
it should be possible to adapt the lattice to achieve a true
Chern insulator. Furthermore, although one does not neces-
sarily expect conventional edge states, topological semimet-
als are known to have interesting properties in their own
right [36].
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APPENDIX: PARAXIAL HAMILTONIAN

In this Appendix we give the forms of the paraxial Hamil-
tonian Hp for propagation close to the optic axis in materials
with biaxiality and anisotropic optical activity. They extend
the results in Ref. [33] to include all terms up to second order
in the off-axis wave vectors, which is necessary to achieve
a nontrivial topology for the periodic form of Hp. These
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expressions are obtained by rotating the spatial coordinates
so that z lies along an optic axis, expanding the expressions
for kz,± to construct a diagonalized form for the paraxial
Hamiltonian in the eigenbasis of M and transforming the result
out of this eigenbasis. For comparison with Ref. [37] we use
the scaled transverse wave vectors px,y = kx,y/k = k̃x,y/

√
ε2,

where k = k0
√

ε2 = ω
√

ε2/c is the wave vector at frequency
ω in an isotropic material of permittivity ε2. Note, however,
that we use a circular polarization basis rather than the linear
one of Ref. [37].

Considering first a biaxial dielectric without optical activity,
characterized by principal dielectric constants ε1 < ε2 < ε3,
we find

h0,B = − Apx + 1
4 [2 + ε2(α − β ) − 12A2]p2

x

+ 1
4 [2 + ε2(α − β ) − 6A2]p2

y,

hx,B = − Apx + 1
4 [ε2(α − β ) − 6A2]p2

x − 1
4ε2(α − 3β )p2

y,

hy,B = − Apy + 1
2 [ε2(α + β ) − 3A2]pxpy,

hz,B =0. (A1)

Here α = ε−1
1 − ε−1

2 and β = ε−1
2 − ε−1

3 are measures of the
spread of the principal dielectric constants of the biaxial
material and A is the biaxial cone semiangle, defined as
A = 1

2ε2
√

αβ. Sufficiently close to the optic axis direction this
Hamiltonian takes a Dirac-point form.

Optical activity introduces an antisymmetric contribution
to the inverse of the relative permittivity tensor ηik = (ε−1)ik ,
corresponding to a contribution ε0 E = i D × g in the consti-
tutive relation, where g is the optical activity vector [29,31].
In the case of the Faraday effect the optical activity vector is
proportional to the applied field, gi = γijHj , and independent
of the wave vector. In the paraxial Hamiltonian this introduces
additional terms in h0 describing the field’s effect on the
overall dispersion relation, as well as terms in h3 describing the
anisotropic splitting between the circular polarization states.
The expressions for these components are

h0,F = h0,B − 3
8ε2

2

[
g′2

3 + 2g′
3(g′

1px + g′
2py )

+ (
g′2

1 − g′2
3

)
p2

x + 2g′
1g

′
2pxpy + (

g′2
2 − g′2

3

)
p2

y

]
(A2)

and

hz,F = 1

2
ε2

(
g′

3 +
[
g′

1 + 3A

2
g′

3

]
px + g′

2py

− 1

2

{
g′

3

[
1 + 3

4
ε2(α − β )

]
+ 3Ag′

1

}
p2

x + 3

2
Ag′

2pxpy

− 1

2

{
g′

3

[
1 + 3

4
ε2(α − β )

]}
p2

y

)
. (A3)

Here g′ is the optical activity vector in the rotated basis, where
z lies along the optic axis. The relation to the optical activity
vector in the principal axes coordinate system (where ε is
diagonal) is g′ = Rg with

R =

⎛
⎜⎜⎜⎝

√
β

α+β
0 −

√
α

α+β

0 1 0√
α

α+β
0

√
β

α+β

⎞
⎟⎟⎟⎠. (A4)

For completeness we note that, in the case of a chiral
medium, the optical activity vector is related to the wave-vector
direction, gi = �ij k̂j , by a symmetric tensor �ij [29,37]. This
modifies the components h0 and h3 as follows:

h0,C = h0,B − 3
8ε2

2

{
�′2

33 + 4�′
13�

′
33px + 4�′

23�
′
33py

+ [4�′2
13 + 2�′

33(�′
11 − �′

33)]p2
x

+ 4(�′
12�

′
33 + 2�′

13�
′
23)pxpy

+ [4�′2
23 + 2�′

33(�′
22 − �′

33)]p2
y

}
(A5)

and

hz,C = h3,B + 1

2
ε2

(
�′

33 +
[

2�′
13 + 3A

2
�′

33

]
px + 2�′

23py

+
{
�′

11 + 3A�′
13 −

[
1 + 3

8
ε2(α − β )

]
�′

33

}
p2

x

+ (2�′
12 + 3A�′

23)pxpy

+
{
�′

22 −
[

1 + 3

8
ε2(α − β )

]
�′

33

}
p2

y

)
, (A6)

were the tensor �′ is related to the corresponding tensor in the
principal axes basis by �′ = R�R−1.
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