PY5021 - 7 Imaging

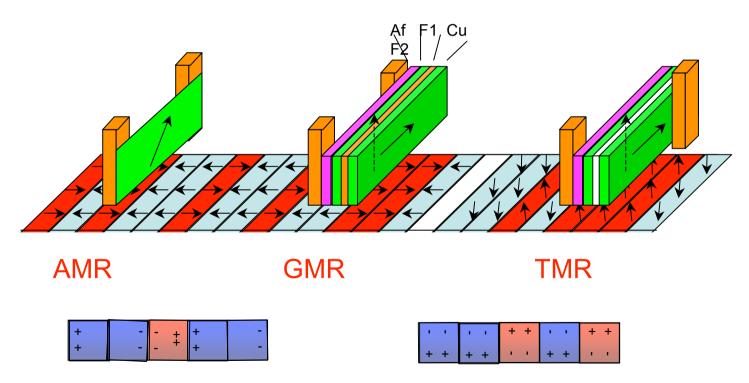
J. M. D. Coey

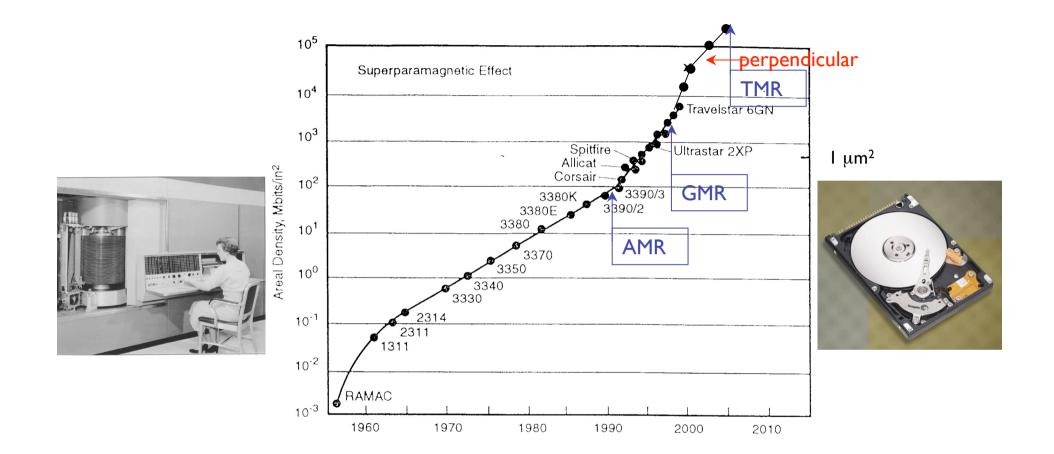
School of Physics and CRANN, Trinity College Dublin

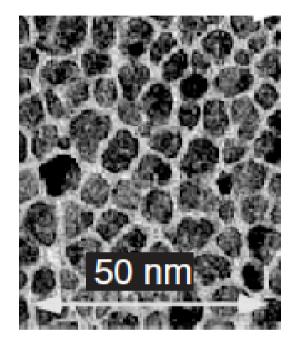
Ireland.

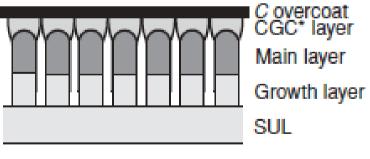
- I. Magnetic recording
- 2. Scanning probe methods
- 2. Medical imaging

Comments and corrections please: jcoey@tcd.ie

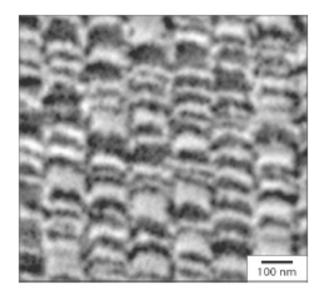


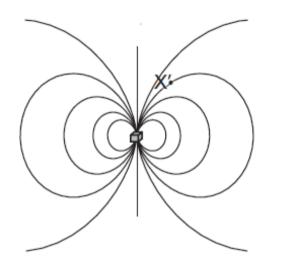

www.tcd.ie/Physics/Magnetism

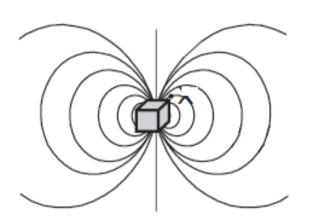

Sensor	Principle	Detects	Frequency	Field (T)	Noise	Comments
Coil	Faraday's Iaw	dΦ/dt	10 ⁻³ - 10 ⁹	10 ⁻¹⁰ - 10 ²	100 nT	bulky ,absolute
Fluxgate	saturation	Н	dc - 10 ³	10 ⁻¹⁰ -10 ⁻³	10 pT	bulky
Hall probe	Lorentz f'ce	В	dc - 10 ⁵	10 ⁻⁵ - 10	100 nT	thin film
MR	Lorentz f'ce	B ²	dc - 10 ⁵	10 ⁻² -10	10 nT	thin film
AMR	spin-orbit int	Н	dc - 10 ⁷	10 ⁻⁹ -10 ⁻³	10 nT	thin film
GMR	spin accum.n	Η	dc - 10 ⁹	10 ⁻⁹ -10 ⁻³	10 nT	thin film
TMR	tunelling	Н	dc - 10 ⁹	10 ⁻⁹ -10 ⁻³	1 nT	thin film
GMI	permability	Н	dc - 10 ⁴	10 ⁻⁹ -10 ⁻²		wire
MO	Kerr/Farad ay	Μ	dc - 10 ⁵	10 ⁻⁹ -10 ²	1 pT	bulky
SQUID It	flux quanta	Φ	dc - 10 ⁹	10 ⁻¹⁵ -10 ⁻²	1 fT	cryogenic
SQUID ht	flux quanta	Φ	dc - 10 ⁴	10 ⁻¹⁵ -10 ⁻²	30 fT	cryogenic
NMR	resonance	В	dc - 10 ³	10 ⁻¹⁰ -10	1 nT	Very precise


7.1 Magnetic recording

The reading of magnetic records depends on sensing the stray fields from magnetized regions on the hard disc. The stray field can be calculated from the magnetic charge density, as indicated in the last lectures.




(* continuous granular composite)

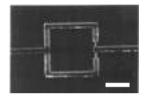

Tracks are not infinitely wide

Perpendicular tracks on a hard disc imaged by high-resolution magnetic force microscopy. The width of the tracts is determined by the width of the write head. The recording density here is 300 bits μ m⁻² or 250 Gbit/square inch. (Courtesy of Nanoscan AG.)

Scaling

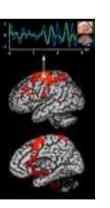
Х

The dipole field of a block of magnetic material is scale-independent. Fields at X and X' are the same. 7.2 Scanning probe methods


Magnetic force microscopy Measures $B\nabla B$ via the force on a resonant cantilever.

Scanning Hall probe microscopy Measures B in a sensitive high-mobility semiconductor plate.

Scanning SQUID microscopy Measures Φ in a small superconducting loop.


7.3 Medical imaging

SQUID sensors for magnetometers, nondestructive testing, geophysical prospection... incluing high- T_{sc} SQUIDS and microsquids

SQUID sensor arrays for magnetocardiography and magnetoencelography (MEG)

