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6.1 The Earth’s field

"

Magnitude of the Earth’s field in nT

The Earth’s field is best mapped from a satellite equipped with magnetometers.

MAGSAT and OERSTED have mapped the steady field and its short-time
fluctuations in great detail.



Horizontal and vertical
components H, Z of the
Earth’s field, which has
magnitude F, and direction
defined by the declination
(variation) D and
inclination (dip) /.

Any three components
define the field. Four offer
a consistency check.




An Overhauser magnetometer and a fluxgate were placed at the end of an 8 m long
boom on the Danish Oersted satellite, launched in 1999, into a sun synchronous
low-earth orbit. The objective of Oersted was to map the Earth’s field, and the
associated high-energy charged particle environment. The drift of the Earth’s
magnetic poles appears to be accelerating, which may prefigure a reversal.

Overhauser magnetometer, magnitude with resolution < | nT
Three-axis fluxgate with resolution of 3 - 5 nT, orientational precision < 20"

6 particle detectors (electrons 0.03 - | MeV, protons 0.2 - 30 MeV, alphas | - 100
MeV)

GPS to within 2 - 10 cm; 54 W average on-board power from GaAS solar panels.

Deviation of the measured
Earth’s field from a model




In order to separate the stray fields produced by the spacecraft B_(m,r) from the
ambient field B_, the two magnetometers are deployed on the boom at different

distances r, and r, from the spacecraft. m is the magnetic moment created by the

electric currents on board. Spacecraft field
Spacecraft

Uniform ambient
field Ba
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Hence B, =B, + Bsc(mh) |
B,=B, + B, .(m,r,)
but B (m,r,) = CB_(m,r,), where C = (r,/ r|)?
Hence B, - B, = C(B,-B,)
B, = (B, - CB,)/(I - C)



The Earth’s field is varying on different timescales.

The internally-generated field (~99%) exhibits secular
variation in both magnitude and direction, and also reversals.

The externally-generated field due to flux of charged Dedination. D
particles varies on a timescale of minutes or hours.

The scalar variation of the
Earth’s field deduced by
combining observations in
Paris (>=1600) with
measurements of the
remanence of baked clay
(<1600).

’ " '4. l " ,
.‘\ "1 'l

Edmond Halley led three research
voyages from 1698 - 1701 to map

the Earth’s magnetic field.




Position of the Earth’s
magnetic pole deduced
from measurements of
recently formed ingeneous
rocks. Half of the points
have the present polarity,
while the other half are
reversed. On average the
magnetic field is that of a
geocentric axial dipole.




Age Chron
(Ma) =

There is an almost random sequence of
reversals of the Earth’s field.
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Schematic representation @@6\ D\b‘}
of plates separating at a

mid-ocean ridge. The _ o 1N e
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sea-floor basalts measured

across the North Atlantic

led to the ideas of seafloor
spreading and global plate
tectonics.
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Apparent polar wander
paths which are used to
reconstruct the past
positions of plates on the
globe. Data from rocks in
Europe (open circles) and
North America (solid
circles) can be made to
coincide by closing up the
Atlantic ocean.




d=4x10*kg m
T=273 K
T=1300K

T=4000 K
Liquid FeNi
alloy

T=4600 K

d=13x10°kg m~

Internal structure of the
Earth. Radii of the main
structures, mean densities
and temperatures at the
centre and surface are

given.

I
0.55R
Radius, R = 6378 km

0.995R



Poloidal field
A mechanical model of a
self-exciting dynamo.
B
Azimuthal field

Azimuthal currents create
poloidal fields, and vice
versa.

Stretch Twist

Final state

Magnetic field is intensified
in a fluid core by a process
of stretching and twisting
flux lines. u is the fluid
velocity.
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In 1830 simultaneous measurements were made of\the fluctuations, of
the Earth’s magnetic field during a 24 hour period in Paris and in Kazan



Gauss’s magnetic observatory

in Gottingen 1830.



The magnetical observatory
established at Trinity
College, Dublin, in 1835. 1775-1855.

Carl Friedrich Gauss,

external internal

2
Vg, =0
oo
[ —(I+1
o =_> [Alr"+ B'r" VY6, ¢)
[=1 m=0
About 99% of the Earth’s magnetic field has an internal origin. It

changes slowly

About 1% has an external origin. If fluctuates rapidly, on a daily basis



Spherical harmonic coefficients of the Earth’s

magnetic field (1985) in nanoteslas

Order (n)
Coefficient Degree (m) 1 2 3 4
4 169
e 3 835 —426
2 1691 1244 363
1 —1903 2045  —2208 780
[ 0 —29877 —2073 1300 937
1 5497 —=2191 —312 233
2 —309 284 —250
h™ 3 —296 68
4 —298

Potental due to internal sources: g - colatitude, /- longitude

i ; Z ( )Hl P (cos@){g.' cos¢ + hj' sing ]

m—0

Potental jin amperes, g™ and h/" in nT.
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90% of the field is accounted

for by a dipole of magnitude
(42°/my)[g,**+ g,'2+ h 7]

\ m =79 1022 A m?

q = tan'[g%@g,'* + h,'%)"]
q=15°

The first ~ eight harmonics
represent the field produced

~ Wn the Earth’s core. Higher

order terms represent the
field produced by magnetized
rocks in the first 30 km of
earth’s crust. (where T > T,)



The humblest student of astronomy, or of any other physical science if he is to
profit at all by his study must in some degree go over for himself, in his own
mind, if not in part with the aid of his own observation and experiment, that
process of induction which leads from familiar facts to obvious laws, then to the
observation of facts that are more remote and to the discovery of laws of higher
orders. And even if this study be a personal act, much more must that discovery
have been individual. Individual energy, individual patience, individual genius
have all been needed to tear fold after fold away which hung before the shrine of
nature, to penetrate gloom after gloom into those Delphic depths, and force the

reluctant Sibyl to utter her oracular responses.

William Rowan Hamilton H




Lt Joseph Kay
1841
1847
1854

Edward Sabine, 1788-1883.
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The internal structure of
the Sun. Radii of the main
structures, mean densities
and temperatures at the
centre and surface are
given.

D

A flux tube which gas been
pushed out through the
surface of the Sun, forming
two sunspots.

d=0.4x1023kg m=
T = 6000 K

T=2x10°K{-

d = 20 x 103 kg m=

T=7x10°K]|"

d =150 x 103 kg m?
T=16x 108K
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INTERMAGNET - A worldewide network
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A record of fluctuations of
the Earth’s magnetic field,
taken at Sitka in Alaska on
1 May 2007. A magnetic
observatory has existed on
this site since 1842. Units of
H, Z and F are nanoteslas,
the units of D are degrees.



Compass

Measurement of the Earth’s field for direction finding is conveniently done with
integrated sensors to detect each of the three components of the Earth’s field.

These may be Hall sensors, which can be integrated on silicon, or GMI sensors. It
is awkward to measure three orthogonal components in a thin-film structure, but
two are easily done.



6.2 Space

The solar wind, which is
deflected by the Earth’s
magnetic field.

Solar wind

Space weather forecasting
can be critical.

Shock wave






Magnetic moments of
planets and moons in the
solar system, plotted
against their angular
momentum. (After

P Rochette.)
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6.3 Prospection and detection

Magnetic surveys have been
used since 1640 is sweden to
detect buried iron ore.

Magnetic signature of a buried
ferrous object, alignhed N-S or E-W



Magnetic surveys along a grid of closely-
spaced points are aften made with a proton
magnetometer , which measures B.. Loss
often with a fluxgate which measures B, or
a three- axis fluxgate that measures B,

The height and spacing of the grid must be
comparable to the depth and spacing of the
buried objects

Airborne surveys should fly as low as
possible, usually <200 m.

It is most valuable to map AB, Both AB,and
AB, (i.e. AB, ) can be inferred from dense
readings of AB,, but not vice versa (unless
both AB, and AB, are known).

The total change in AB, across buried

objects such as spheres and thin dykes
always exceeds that of AB, at all latitudes.

ABt = |Bt - Btol = (ABZZ -l-Ath)”2
fluxgate

|AB| = |B,| - |By| = (B,* +B,?)'?
- (Bzo2 +Bh02)|/2

proton

- d OA=8
F ! ———- AB,=AT
s I BE =
t —_ e S E '
AB; -
Bh
o ABh
B

AB,. = AB,cosa cosl + ABz sinls
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Grey-fone magnetic map of an archaeological site in Greece
‘sronge from — 150NnT (darkest) to + 280 nT (lightest). Coordinates in metres.
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Magnetic anomaly due to a sphere
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Vertical-field anomaly (nT)
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6.3.1 Potential calculations.

In magnetostatics, there are no electric currents (VxH = 0) and no time-
dependence. [VxH = j + 0D/dt]

The H-field can be derived from a scalar potential ¢ [VxVf(r) = 0]

but

H=-Vg,
V.B =0 (no sources or sinks of B)
B = uy(H + M)
V.B =y, (V.H + V. M)
V.H=-V.M

V2p.. = V.M This is Poisson’s equation. Volume charge density p,

Volume charge density p_ = 0q,_/0V

v Units of magnetic charge q,, are Am
P = “Pm

The magnetic potential of a point
charge @, = q./4mr. Units of ¢ are A

Resulting field H = -Vo_ = q_/4mr?



Note that magnetic charges are just a convenient way to calculate the H-field.

They have no physical reality. But there is a nice analogy with electric charge.

If a body is uniformly magnetized, V.M = 0 in the
bulk. The only contribution arises from the
surfaces.

fv V.M d°r =fs M.e_d’r (divergence theorem)

The surface charge density is 0., = M.e_

In general the H-field can be calculated from the magnetization via the potential

O = -(1/47) [, (V.M)/r dr



Point dipole

The potential of a point dipole -q. +q_,  or

is ¢, = (m/4mr?) cosb

A@

m

H_= -0, /or = (m/4nr®) 2cosB
Hy = -(1/r)dp, /08 = (m/47wr?) sinB

or in terms of components || and L to m

H, = (m/4znr’) (3cos®d - 1)
H, = (m/4nr’) (3cosH sinb)



Line dipole

Transverse magnetic moment A A m

The longitudinal component produces
no stray field

H_= (M4mr?) cosO
Hy = (M4mr?) sinf



The magnetic field produced by a point dipole of moment m Am? is quite
inhomogeneous In polar coordinates, it is

H = 2m cos 6/4m?, Hy = m sin 8/4mr, H,=0

The field due to an extended line dipole of length L and dipole moment & Am per unit length is
significantly different:

H =2 cosB/4mr? H, = A sin 8/4 1 r?, H=0
The magnitude of H, V(H_? + Hg*+ H_?), is now independent of 8 and its direction makes an angle 2¢
with the orientation of the magnet.

o .

Comparison of the magnetic field produced by a) a point dipole m and b) a line dipole A.



Magnetic circuits made of long cylindrical segments may be used to generate uniform fields. An open
cylinder or a design with flat cuboid magnets and a soft iron return path is used to for nuclear magnetic
resonance (NMR). Permanent magnet flux sources supply fields of order 0.3 T with homogeneity of |

part in 105 in a whole-body scanner:
P 12
=y
\ | 1 Al ’"//
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=)
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Designs for magnetic cylinders which produce a uniform transverse field.
Figure (c) shows a design where the direction of magnetization of any segment at angular position & in
the cylinder is at 2& from the vertical axis. According to the equations for the line dipole, all segments
now contribute to create a uniform field across the airgap in a vertical direction. Unlike the structure of
Fig (a), the radii r, and r, can take any values without creating a stray field outside the cylinder. This
ingeneous device is known as a Halbach gylinder, The field in the airgap is

By =B, In(ry/ry)

In practice it is convenient to assemble the device from n trapezoidal segments, as illustrated in fig. (d )
forn=8.




A large Halbach cylinder, manufactured by Magnetic Solutions Ltd.



Uniformly-magnetized infinite sheet

Inside the film H|, = H, = -N\M; = 0;

Integrating H.dl around the dashed path H' = H°. Hence H°, = 0.

Inside the film, B', = u,(H', + M')); but H, = - N M where N, = |, hence B' =0
From Gauss’s law, the perpendicular component of B is continuous at the interface; B°,= 0

Since B = u,H, both B° and H° are zero!

A magnet must be block-shaped to produce a stray field. .




A convenient way to consider the H-field created by magnetized material is
as originating from magnetic charge.

In the bulk, the charge density is p., =-V.M. There is no bulk charge
density when M is uniform.

At the surface, the charge density o, = M.e_
Units of magnetic charge q_, are Am

The magnetic potential ¢ = q_/4mr

Resulting field H = -Vo_ = q_/4mr?




Magnet‘i:: North

Mcosi

Profile P(vé K
Mcosicosd
Mcosisind
Mcosisind
M. makes an .angle ! M tani’ = Msini/Mcosisind
with the horizontal.
. = tani/si
Plan Section along OP in (a) tani/sind
(a) (b) M2 = M?(cos?i sin2d + sinZi)

M’ = M(I - cos?i cos2d)'?

M| = Mcos(0 - 7’) M’ = Msin(0 - 1)
Integrating over long strips ABy = -(u1o/4m)2b(xM, + aM'})/(a* + x?)
AB, = (ug/4m)2b@@M |, + xM')/(a? + x2)
AB, = -(uo/4m)2b[(a2 + x2) (M7, + M2,) + 4axM M’ J/(a? + x2)



Magnetic anomaly due to a thin sheet

AB
There is an anomaly provided i
there is a component of M
perpendicular to the edge.

AB(2)

X4 \
AB(H/ 0 X2 X
— 880

The form of the anomaly is similar whether AB,, AB,, AB, is measured.
It is of the form AB = C(fa - fgx)/(a* + x?)

Here C « M; f, g are functions of the angles 6 and i
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Magnetic anomaly due to a thick sheet

Again there is an anomaly
provided there is a component of
M perpendicular to the edge.

AB

The anomaly can be obtained by
integrating over a series of thin \ N
sheets.



Scaling

H = (m/47nr3)[2cosbe, + sinfe]
H, = 2Ma3/4qr

lfa=0.Im,r=4a, M=1 MAm"’!
H, =2M/l16xt = 40 kAm-' (50
mT)

Magnet-generated fields are
limited by M. Scale-independent



Mapping the field due to a permanent magnet.

A Hall probe was scanned 0.5 mm above the top surface of a ferrite magnet
magnetized along Oz, and the ‘ash tray’ profile of B, determined.
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Very precise
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