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3 Signal and Noise 

The critical figure of merit for any sensor is the signal/noise ratio.

.

Signal
source

Detector +
electronics

 Intrinsic signal noise

 Noise introduced by detector, filters and amplifier

Electronic noise is an uncontrollable random fluctuation in an electrical signal V(t).
Some noise is unavoidable, some can be eliminated by improving the detector design.

The effect of noise may be reduced by averaging the signal over time.

〈V〉 = lim(1/T)∫-T/2V(t)dt
T/2

T →∞

V

t



A stationary process is one where the noise has a fixed probability distribution,
invariant in time.

A non-stationary process is one where the noise is derived from a time-varying
distribution (e.g. domain structure which evolves with time).

When measuring magnetic fields, the sensitivity of the detector is conventionally
quoted for bandwidth Δf of 1 Hz.   eg in nT/√Hz.       Resolution ≠ accuracy.

To measure rapidly-varying signals, the bandwidth Δf  must be greater than the signal
frequency.  For example, the sensitivity is reduced 1000 fold at 1 MHz

 By averaging the measurement of a steady signal for longer times, the accuracy
increases as  √tm

tt

static signal
time-dependent
signal



Signal/noise ratio

The signal/noise ratio is defined as the ratio of signal power to noise power:

SNR = Psignal/Pnoise

or, equivalently   SNR = (Asignal/Anoise)2       where A is the root-mean-square
amplitude.

It can be expressed on a logarithmic scale in decibels

SNR = 10 log10(Psignal/Pnoise)

or

SNR = 20 log10(Asignal/Anoise)

e.g. A SNR ratio of 0 db means that the amplitude of the signal and the noise
fluctuations are similar; 60 db means that the rms amplitude of the signal is 1000
times that of the noise.



Noise figure

The performance of an amplifier can be discussed in terms of the additional noise at the
output compared to the noise present at the input.

NF = 10 log10(Pnoise-out/Pnoise-in)

NF = 10 log10{(〈V2
noise〉 + 〈V2

amp〉)/〈V2
noise〉}

NF = 10 log10{1 + 〈V2
amp〉)/〈V2

noise〉}

Here Vnoise is the noise present in the source, and Vamp is the noise added by the amplifier.

The noise produced by the source can be
approximated as that due to its impedance  
V2

noise = 4kT`RsourceΔf.

The amplifier noise can then be defined in terms
of a noise temperature, to which the input
impedance would have to be raised for its
thermal noise to match that of the amplifier;

NF = 10 log10(1 + Tnoise/Tsource)

With high-mobility transistors, the
noise temperature may be only a few
K (even without cooling the amplifier)



Noise contours for a low-noise preamp.
There is a sweet spot in the middle

Amplifier noise dominates

1/f noise

capacitive coupling

For thermal noise, the rms value
increases as the square root of the
bandwidth.

A low-noise voltage preamp has a noise
figure of order 1 nV/√Hz; a low noise
current preamp, of order 1pA /√Hz
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3.1.1 Spin valve sensor design (GMR or TMR).

Free layer

Pinned layer

Memory cell

Free layer

Pinned layer

Linear sensor

B
B

R

B

V

B
Transfer curve;

V is linear in B at
constant current

3.1 Detection techniques 

Two pairs of yoke-type
spin valve sensors for a
microfluidic channel
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3.1.2 Bridges.

One bridge can be used to
measure each component of
the magnetic field.

To make the sensor linear
over a wide range of field, a
field-locked loop can be added.
The current in the coil is
adjusted to create a field that
just balances the applied field,
and keeps the bridge at its
null point.

OV

B

B’

B’ =(4/5)3/2µ0NI/a
I
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It is often required to distinguish
local field variations from static
or time-dependent fluctuations
of the ambient field (e.g. due to a
car parking outside)

Compensation is done with a
quadrupole coil, either in a plane
(gradiometer) or along an axis
(magnetometer)

3.1.3 Gradiometers and magnetometers

B

B+ΔB

ΔB/Δx
Δx

B B+ΔB
ΔxΔB/Δx
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It is possible to amplify the field to be sensed using a
flux concentrator.
Two approaches are:

 Soft iron flux concentrator

 Superconducting loop with a constriction

2.5 Flux concentrators.



3.2 Random processes 

Consider a fluctuating quantity V(t) such as the output of a noisy preamp. If V is a
random variable, it is drawn from a probability distribution P(V). The instantaneous
value cannot be predicted, but averages can be precisely defined.

The expectation value of a function of V, f(V), can be defined as an integral over time,
or over the distribution.

〈f(V)〉 = lim (1/T)∫-T/2
  f(V(t))dt

〈f(V)〉 = ∫f(V)P(V)dV

Taking f(V) = 1, the distribution P(V) must be normalized, ∫P(V)dV = 1.

The average is   〈V〉 = ∫VP(V)dV   and the variance σ2 = 〈(V - 〈V〉)2〉 
    = 〈V2 - 2V〈V〉 + 〈V〉2〉
    = 〈V2〉 - 〈V〉2

The standard variation σ = [〈V2〉 - 〈V〉2]1/2

T →∞

T/2



The probability distribution contains no information about the time variation V(t)

This can be described by the autocovariance function ΨV(τ)

ΨV(τ) = 〈V(t) V(t -τ)〉 =  lim (1/T)∫-T/2
 V(t)V(t - τ)dt

When the autocovariance is normailized by the variance σ, then it is called the
autocorrelation function.

It ranges from 1 to -1.

The rate at which the autocorrelation function decays as a function of τ, indicates
how fast V(t) varies with time.

T/2

T →∞

Time dependence 



The Fourier transform of the fluctuating quantity V(t) is

V(f) =  lim  ∫-T/2
 exp(2πift)V(t)dt (1)

The inverse transform is

V(t) =  lim  ∫-F/2
 exp(-2πift)V(f)df (2)

The Fourier transform is also a random variable.

The power spectral density S(f) is defined in terms of the Fourier transform V(f)

 S(f)  = 〈|V(f)|2〉  = 〈V(f) V*(f)〉

V*(f) is the complex conjugate i → - i

 S(f)  = lim  ∫-T/2
 exp(2πift)V(t)dt ∫-T/2

 exp(-2πift’)V(t’)t’

The Fourier transform is defined for positive and negative frequency. If it is defined
only for positive frequency, the lower limit is 0, and a factor 2 is introduced in (2).

T →∞

T/2^

F →∞

^F/2

^

^ ^ ^

^

T →∞

T/2 T/2



The power spectrum S(f) is related to the autocovariance function by the Wiener-
Khinchin theorem: Its Fourier transform is equal to the autocovariance ΨV(τ) .

 ∫-∞ S(f)exp(-2πifτ) df = 〈V(t) V(t -τ)〉 (3)

Conversely, the Fourier transform of the autocovariance gives the power spectrum.

∞

As the autocorelation
function decays more
slowly, the the power
spectrum decays faster
and vice versa.

V(t)

S(f)

〈V(t)V(t -τ)〉

Taking τ = 0 in the W-K
theorem gives Parseval’s
theorem
〈|V(t)|2〉 = ∫-∞ 〈|V(f)|2〉 df^∞



As an example of the use of the Wiener-Khinchin theorem, consider a relaxation process
defined by a relaxation time τ0.

The relaxation is defined by an exponentially-decaying autocorrelation function

 ΨV(τ) = ΨV(0) exp [-|τ|/ τ0]

From the W-K theorem ∫-∞ S(f)exp(-2πifτ) df = 〈V(t) V(t -τ)〉  = ΨV(τ)

The inverse relation is S(f) = ∫-∞ ΨV(τ) exp(2πifτ) dτ

= ∫-∞ ΨV(0) exp [-|τ|/ τ0] exp(2πifτ) dτ

= ΨV(0){τ0/(1 + τ0
2f2)}

∞

∞

The power spectral density corresponding to
a single exponential decay is therefore a
Lorentzian spectrum with a corner frequency
of 1/τ0, and a 1/f2 frequency dependence at
higher frequency

log S

log f

1/f2

1/τ0



Probability distributions.

The noise is drawn from a probability distribution. Three common ones are the binomial,
Poisson and Gaussian distributions.

- Binomial distribution;  Applies when an event can have one of two possible outcomes, with
probability P and 1-P, respectively. The probability of finding x ‘heads’ and n-x ‘tails’ in n
trials is

Pn(x) = {n!/(n-x)!x!} Px(i-P)n-x (1)

- Poisson distribution; Applies for rare events, like radioactive disintegrations that seldom
occur. Divide time into small intervals, so that there is either one decay (‘heads’) or zero
decays ‘tails’ in the interval. When n is large and P is small, (1) reduces to

P(x) = exp(-N)Nx/x!

where N = nP is the average number of events.

The average 〈x〉 = N, and σ = √N, so the relative standard deviation is

      σ/〈x〉 =1/√N



- Gaussian distribution.

When fluctuations result from the sum of a large number of independent random events,
we have a ‘normal’ (Gaussian) distribution of the fluctuating quantity x

 P(x) = (1/√2πσ2) exp{-(x - µ)2/2σ2}

The distribution is normalized, with mean µ = 〈x〉 and standard deviation σ.

The error function is the partial integral of the
Gaussian distribution. 
(1/2)erf(y/√2σ2) = (1/√2πσ2)∫0y exp (-x2/2σ2)dx.

The Fourier transform of a Gaussian is itself a
Gaussian with the inverse of the variance.

(1/√2πσ2)∫∞∞ exp(-x2/2σ2)exp(ikx)dx

= exp-k2σ2`/2

The power spectral density contains all the characteristics of the Gaussian noise signal



Gaussian noise



Gaussian
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  Binomial

+ + + + + +

   Poisson



Noise in a magnetoresistive sensor has two origins

 electrical noise

 noise of magnetic origin, associated with domains or magnetic modes.

The frequency spectrum of the time sequence is V(f)

The average power dissipated in the fluctuations (in unit resistance) during
a measuring time tm that tends to infinity is

3.3 Noise mechanisms 



The power spectrum of the fluctuating signal is defined as

The voltage spectrum is conventionally quoted for a bandwidth Δf = 1 Hz
units are V2/Hz

Four types of noise:  ✦  Johnson (thermal) noise

✦  Shot noise

✦  1/f (flicker) noise

✦  Random telegraph noise



e.g. The rms voltage fluctuations across a 1 MΩ resistor in a 1 kHz bandwidth at
room temperature (kBT ≈ 1/40 eV = 4 10-21 J) is 4µV.

log Sv

-15

-14

-13

f

This often sets the noise
floor. It can be reduced by
reducing the sensor
resistance or cooling

 

 

 

V2 ∝ RT

1927



e.g. The rms voltage fluctuations across a 1 MΩ resistor in a 1 kHz bandwidth at
room temperature (4kBT ≈ 1/10 eV = 16 10-21 J) is 4µV.

log Sv

-15

-14

-13

f

This is white noise. It often sets
the noise floor. It can be reduced
by reducing the sensor resistance,
or by cooling



Shot noise depends on the discrete nature of the electrons in the electric current. The
current is a random sequence of electrons.



 γHV2/Ncf

No of carriers

few grain
boundaries

few grain
boundaries

many grain
boundaries



Noise spectrum of a
50 Ω resistor, with
and without a passing
current.

1/f
noise

Johnson noise



1/f noise
shot noise



Dutta-Dimmon-Horn model

A phenomenological model based on a distribution of 2-level fluctuators.
Assume a distribution in energy D(E). Each fluctuator involves an exponential time decay
of the  autocorrelation function.

If τ0 = τ’exp(E/kT)
 S(f) = ∫ΨV(0){τ0/(1 + τ0

2f2)}D(E)dE
Superposition of the 1/f2 Lorentzian tails gives a 1/f spectrum

D(E) ∝ 2πfSV(f,T)/kT



Magnetic 1/f noise

In ferromagnets, the fluctuators may have a magnetic origin, especially when there
are many domains present, and the system has a large magnetoresistance.

Normalized noise power for a nickel thin film Flux noise power for a spin glass (Tf = 1.50 K)

Domain-related noise can be controlled by micromagnetic engineering, such as use of a
yoke-shaped soft magnetic free layer, or hard bias with permanently-magnetized elements.



Resistance fluctuations of a
La0.67Ca0.33MnO3 thin film.



Types of noise
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-12



3.4 Thermodynamics 

Thermodynamic quantities in equilibrium can be expressed in terms of the partition
function Z. If P (X) is the probability of observing the system in a state X with energy E(X)

Z = Σi exp(-Ei(X)/kT)

P(X) = (1/Z)exp -(-Ei(X)/kT)

F  = -kT ln (Z)

M = -(1/µ0)∂F/∂H

χ = -(1/µ0)∂2F/∂H2

Generalized susceptibility χ(f) = χ’(f) - i χ”(f)

Total fluctuation theorem kT χ = 〈M2(X) 〉 - 〈M (X) 〉2



Fluctuation dissipation relation

SM = kT χ”(f))/πf

Kramers-Kronig relation

 χ’(0) = (2/π) ∫0∞ (1/f)χ”(f)df



Reduction strategy for 1/f noise

In order to reduce the 1/f noise from a sensor, the approach is to modulate the
signal at a high enough frequency (~ kHz) for the i/f noise to be reduced below the
Johnson noise limit.

3.5 Noise reduction 

Reduction strategy for Johnson noise

Cool the resistor



3.6 Experimental methods 


