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Lecture 2: Principles of Magnetic Sensing

J. M. D. Coey

School of Physics and CRANN, Trinity College Dublin

Ireland.

1. Basic Concepts in Magnetism

2. Sensor Principles  
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Magnetic field sources are

- distributions of electric current (including moving charged particles)

- time-varying electric fields

- permanently magnetized material

2.1 Basic concepts in Magnetism 



 

Biot-Savart Law

j

B

Right-hand corkscrew

Unit of H - Am-1

  Magnetic fields

Two sources of H - currents

H

H

1

1

H



m.r

mxx + myy + mzz

∇.B

∂Bx/∂x + ∂By/∂y + ∂Bz/∂z 

Scalar product

The ‘divergence’ of B

(∂/∂x,∂/∂y,∂/∂z) ∇   =



BZBYBx

∂/∂z∂/∂y∂/∂x

ezeyex

jZjYjx

zyx

ezeyex

r  ×  j ∇  ×  B

(yjz - zjy)ex - (xjz - zjx)ey + (xjy - yjx)ez

r× j

B

Right-hand rule

r j

(∂Bz/∂y - ∂By/∂z)ex - (∂Bz/∂x - ∂Bx/∂z)ey +
+ (∂By/∂x - ∂Bx/∂y)ez

Vector product

The ‘curl’ of B



  In a steady state (no time-dependent electric field)

           ∇ × H = j

 ∫(∇ × H)dA = ∫ j dA   Stokes theorem →

∫ H.dl  = I 

I
dl

H
H = I/2πr

The field at a distance 5cm
m from a wire carrying a
current of 1 A is ~ 3 A m-1



  

Unit of B - Tesla

Unit of µ0 T/Am-1

µ0= 4π 10-7 T/Am-1

In free space B = µ0H

1 T = 107/ 4π ≈ 800,000 Am-1

I
dl

H
B = µ0I/2πr

The field at a distance 5cm
m from a wire carrying a
current of 1 A is  4 µT



M (r)

 Ms

The magnetic moment m is the elementary quantity in solid state magnetism.

Define a local moment density - magnetization - M(r,t) which fluctuates wildly on a
sub-nanometer and a sub-nanosecond scale.
Define a mesoscopic average magnetization M, averaging over a few nm and ~ 1µs

   δm = MδV

The continuous medium approximation

M can be the spontaneous magnetization Ms within a ferromagnetic domain

A macroscopic average magnetization is the domain average

       M = ΣiMiVi/ ΣiVi

The mesoscopic average magnetization

Two sources of H - magnets



The magnetic moment

Ampère: A magnetic moment m is equivalent to a current loop.

  Provided the current flows in a plane

                    m = IA Units: Am2

In general:

            m = (1/2)∫ r × j(r) d3r

where j is the current density; I = j.A

so   m = 1/2∫ r × Idl = I∫ dA = m

 -m mAxial vector

 r- rPolar vector

TimeSpaceInversion



Magnetization

The local moment density M is the magnetization

  Units: A m-1

e.g. for iron M = 1710 kA m-1;   for BaFe12O19  M = 380 kA m-1

e.g. for a 2.5 cc BaFe12O19 fridge magnet (M = 380 kA m-1, V = 2.5 10-6 m3),
m ≈ 1 A m2

Magnetization M can be induced by an applied field  or it can arise
spontaneously within a ferromagnetic domain, Ms. A  macroscopic average
magnetization is the domain average

The equivalent Amperian current density is

jM = ∇ x M



M

H H

M

Paramagnet

Diamagnet

Ferromagnet



Ferromagnet with TC > 290K Antiferromagnet with TN > 290K Antiferromagnet/Ferromagnet with TN/TC < 290 K

4 Be
    9.01
 2 + 2s0

12Mg
  24.21
 2 + 3s0

2 He
  4.00

10Ne
  20.18

24Cr
 52.00
 3 + 3d3

   312

 19K
  39.10
 1 + 4s0

11Na
  22.99
 1 + 3s0

3 Li
    6.94
 1 + 2s0

37Rb
  85.47
 1 + 5s0

55Cs
  132.9
 1 + 6s0

38 Sr
 87.62
 2 + 5s0

56Ba
 137.3
 2 + 6s0

59Pr
  140.9
  3 + 4f2

1 H
  1.00

5 B
  10.81

9 F
  19.00

17Cl
  35.45

35Br
  79.90

21Sc
 44.96
 3 + 3d0

22Ti
 47.88
 4 + 3d0

23V
 50.94
 3 + 3d2

26Fe
 55.85
 3 + 3d5

    1043

27Co
 58.93
 2 + 3d7

    1390

28Ni
 58.69
 2 + 3d8

     629

29Cu
 63.55
 2 + 3d9

30Zn
 65.39
 2 + 3d10

31Ga
 69.72
 3 + 3d10

14Si
 28.09

32Ge
 72.61

33As
 74.92

34Se
 78.96

6 C
  12.01

7 N
  14.01

15P
 30.97

16S
 32.07

18Ar
  39.95

39 Y
 88.91
 3 + 4d0

40 Zr
 91.22
 4 + 4d0

41 Nb
 92.91
 5 + 4d0

42 Mo
 95.94
 5 + 4d1

43 Tc
 97.9

44 Ru
 101.1 
 3 + 4d5

45 Rh
 102.9
 3 + 4d6

46 Pd
 106.4
 2 + 4d8

47 Ag
 107.9
 1 + 4d10

48 Cd
 112.4
 2 + 4d10

49 In
 114.8
 3 + 4d10

50 Sn
 118.7
 4 + 4d10

51 Sb
 121.8

52 Te
 127.6

53 I
 126.9

57La
 138.9
 3 + 4f0

72Hf
 178.5
 4 + 5d0

73Ta
 180.9
 5 + 5d0

74W
 183.8
 6 + 5d0

75Re
 186.2
 4 + 5d3

76Os
 190.2
 3 + 5d5

77Ir
 192.2
 4 + 5d5

78Pt
 195.1
 2 + 5d8

79Au
 197.0
 1 + 5d10

61Pm
   145

70Yb
 173.0
 3 + 4f13

71Lu
 175.0
 3 + 4f14

90Th
  232.0
  4 + 5f0

91Pa
  231.0
  5 + 5f0

92U
  238.0
  4 + 5f2

87Fr
  223

88Ra
 226.0
 2 + 7s0

89Ac
 227.0
 3 + 5f0

62Sm
  150.4
 3 + 4f5

      105

66Dy
 162.5
 3 + 4f9

179   85

67Ho
 164.9
 3 + 4f10

132   20

68Er
 167.3
 3 + 4f11

 85   20

58Ce
  140.1
  4 + 4f0

      13

8 O
  16.00

    35

65Tb
  158.9
  3 + 4f8

229  221

64Gd
  157.3
 3 + 4f7

    292

63Eu
  152.0
  2 + 4f7

     90

60Nd
  144.2
  3 + 4f3

     19

66Dy
 162.5
 3 + 4f9

179   85

Atomic symbolAtomic Number

Typical ionic charge
Atomic weight

Antiferromagnetic  TN(K) Ferromagnetic  TC(K)

 Radioactive

The Magnetic Periodic Table

80Hg
 200.6
 2 + 5d10

93Np
  238.0
  5 + 5f2

94Pu
   244

95Am
   243

96Cm
   247

97Bk
   247

98Cf
   251

99Es
   252

100Fm
     257

101Md
     258

102No
     259

103Lr
     260

36Kr
 83.80

54Xe
 131.3

81Tl
 204.4
 3 + 5d10

82Pb
 207.2
 4 + 5d10

83Bi
 209.0

84Po
  209

85At
  210

86Rn
  222

Diamagnet

Paramagnet

BOLD Magnetic atom 

25Mn
 54.94
 2 + 3d5

      96

20Ca
 40.08
 2 + 4s0

13Al
 26.98
 3 + 2p6

69Tm
 168.9
 3 + 4f12

    56

Eight  elements are ferromagnetic, four at RT

Twelve are antiferromagntic, one at RT



Susceptibilities of the elements



B , H and M

 

        We call the H-field due to a magnet; — stray field outside the magnet

        — demagnetizing field, Hd, inside the magnet

Units: Am-1

The equation used to define H is B = µ0(H + M)   i.e. H = B/µ0 - M

The total H-field at any point is  H = H´+ Hm  where H´ is the applied field



The B field - magnetic induction/magnetic flux density

∇.B = 0     Significance; It is the fundamental magnetic field  
       There are no sources or sinks of B i.e no monopoles

   Gauss’s theorem: The net flux of B across any closed surface is zero

Magnetic vector potential              B = ∇ x A
The gradient of any scalar φ, ∇φ may be added to A without altering B

 Magnetic flux          dΦ = B.dA     Units: Weber (Wb)

∫S B.dA = 0

Flux quantum Φ0 = 2.07 1015 Wb



The equation  ∇ x B = µ0 j   valid in static conditions gives:

Ampere’s law       ∫B.dl = µ0 I    for any closed path

Good for calculating the field for very symmetric current paths.

Example: the field at a distance r

 from a current-carrying wire
               B = µ0I/2πr

B interacts with any moving charge:

Lorentz force        f =q(E+v x B)



The H field

Significance; The magnetization of a solid reflects the local value of H.

In free space  B = µ0H;     ∇ x B = µ0jc

  In a medium B = µ0µrH  ( linear isotropic media only!)
           B = µ0(H + M)  (general case)

   ∇ x B = µ0(jc + jM) ,

  but   jM = ∇ x M

            Define H = (1/µ0) B - M.

  hence   ∇ x H  =  jc This is useful. We cannot measure jM

∫ H.dl = Ic

Ampere’s law for H



The H field

Significance; The magnetization of a solid reflects the local value of H.

In free space  B = µ0H.

  ∇ x B = µ0(jc + jM) , jM = ∇ x M hence   ∇ x H  =  jc

Coulomb approach to calculate H

H has sources and sinks associated with nonuniform magnetization

                                        ∇.H = - ∇.M

Imagine H due to a distribution of magnetic charges qm. (Am)

Field of a point ‘charge’  H = qmer/4πr2

∫H.dl = Ic

Ampere’s law for H

Magnetization distribution is replaced by

-  surface charge distribution σm = M.en

-   volume charge distribution ρm = - ∇.M



Magnetic scalar potential

When H is due only to magnets i.e       ∇ x H =0
we can define a scalar potential   ϕm    (Units are Amps)
Such that        

H = -∇ϕm The potential of charge qm  is     ϕm = qm /4πr

If currents are present, this cannot be done.

Poisson’s equation ∇2ϕm  = ∇. M



2.4 Boundary conditions
Gauss’s law ∫SB.dA  = 0
gives that the perpendicular component of B is
continuous.

(B1-B2).en=0

It follows from from Ampère’s law

 ∫loopH.dl  = Ic  = 0
(there are no conduction currrents on the
surface) that the parallel component of H is
continuous.
                       (H1-H2) x en=0Conditions on the potentials

Since   ∫SB.dA  = ∫loopA.dl   (Stoke’s theorem)

                          (A1 - A2) x en= 0

The scalar potential is continuous             ϕm1 = ϕm2



Hysteresis

The hysteresis loop shows the irreversible, nonlinear response of a ferromagnet to a
magnetic field M = M(H). It reflects the arrangement of the magnetization in
ferromagnetic domains. The magnet cannot be in thermodynamic equilibrium anywhere
around the open part of the curve! It reflects the arrangement of the magnetization in
ferromagnetic domains.  The B = B(H) loop is deduced from the relation B = µ0(H + M).

coercivity

spontaneous magnetization

remanence

major loop

virgin curve
initial susceptibility



  ∇ . B = 0
  ∇ . D = ρ
 ∇ × H = jc + ∂D/∂t
 ∇ × E = -∂B/∂t

Written in terms of the four fields, these are valid in any medium.
In vacuum D = ε0E, H = B/µ0,
ρ is charge density (C m-3), jc is conduction current density (A m-2)

Maxwell’s equations in a material medium

In magnetostatics there is no time-dependence of B, D or ρ

Conservation of charge ∇.j = -∂ρ/∂t. In a steady state ∂ρ/∂t = 0

Magnetostatics:     ∇.j =  0; ∇.B = 0 ∇ x H = jc
Constituent relations: jc = j(E); P = P(E); M = M(H)



Ferromagnets and ferrimagnets have spontaneous magnetization within
a domain.

The magnetization falls with increasing temperature, first gradually, then
abruptly at the Curie point TC.

Nickel

TC

Magnetic materials

1290  588Nd2Fe14B

  8561020SmCo5

  380  740BaFe12O19

  480  860Fe3O4

14431360Co

  830  843Ni80Fe20

  488  628Ni

17101044Fe

Ms kAm-1TC  (K)Material



Iron Fe bcc; a0 = 287 pm

The most important ferromagnetic material.
Main constituent of the whole Earth, 5 wt % of crust.
Usually alloyed with 6 at% Si and fabricated in
300 µm rolled laminations (isotropic or grain
oriented), castings or reduced powder,
Mainly used in electrical machines (motors, transformers) and
magnetic circuits.
Production 5 Mt/yr for magnetic purposes (8 B€)

Js = 2.0 T (Si-Fe) Ms = 1.71 MA m-1 (Fe)
TC = 1044 K   (Fe)
K1 = 48 kJ m-3 (Fe)
λs = -8 10-6



Permalloy Fe20Ni80     fcc; a0 =
324  pm

Multipurpose soft magnetic material, with
near-zero anisotropy and magnetostriction
Sometimes alloyed with Mo, Cu …
Sputtered or electrodeposited films, sheet,
powder.
Uses: magnetic recording; write heads, read
heads (AMR), magnetic shields, transformer
cores
 Js = 1.0 T         Ms = 0.8 MA m-1

K1  ≈ 2 kJ m-3  λs = 2 10-6 

TC = 843 K
Compositions near Fe50Ni50 have larger Js but
greater anisotropy



Cobalt  Co hcp; a = 251 pm, c = 407 pm

Highest-TC ferromagnet, anisotropic,
expensive (¤50 /kg), strategic.
Useful alloying addition
Sputtered nanocrystalline thin films
(with Cr, Pt, B additions) are used as
media for hard discs

Js = 1.8 T          Ms = 1.44 MA m-1

K1 = 530 kJ m-3

TC = 1360 K



Magnetite, Fe3O4  spinel; a0 = 839 pm

Most common magnetic mineral, source of rock
magnetism, main constituent of lodestones..
A ferrimagnet. with Fe2+ and Fe3+ disordered on B -sites
above the Verwey transition at Tv = 120 K, ordered
below; A-B superexchange is the main magnetic inter-
action

[Fe3+]tett {Fe2+ Fe3+}oct O4

    ↓              ↑       ↑
                        -5 µB    + 4 µB  +5 µB   =   4 µB

A half-metal. Fe(B);  ↓ electrons hop in a t2g band
Used as toner, and in ferrofluids.
Potential for spin electronics..

Js = 0.60 T                  m0 = 4.0 µB / fu
K1  = -13 kJ m-3         λs = 40 10-6 

TC = 843 K
          [A]{B2}O4

A
B



BaFe12O19; Hexaferrite        magnetoplumbite; a = 589 pm c = 2319 pm

An hcp lattice of oxygen and Ba, with iron in octahedral
(12k, 4f2 , 2a) tetrahedral (4f1) and trigonal bipyramidal (2b)
sites.
Brown ferrimagnetic insulator. All magnetic ions are Fe3+.
Also SrFe12O19 and La/Co substitution.
Structure is 12k↑2a↑2b↑4f1↓4f2↓

TC = 740 K.

Low-cost permanent magnet, the first magnet to break the
‘shape barrier’. 98% of all permanent magnets by mass are
Ba or Sr ferrite. Found on every fridge door and in
innumerable catches, dc motors, microwave magnetrons,
…
80g manufactured per year for everyone on earth

Js = 0.48 T .  K1 = 450 kJ m-3
.
  Ba = 1.7 T

m0 = 20 µB / fu



   Samarium-cobalt SmCo5       hexagonal; a = 499 pm  c = 398 pm

Versatile, high-temperature permanent magnet.
Cellular intergrowth with Sm2Co17 in
Sm(Co, Fe, Zr, Cu)7.6 alloys provides
domain-wall pinning
Dense sinterered oriented material.
Uses: specialised electrical drives
Expensive (≈150 ¤/kg)

 Jr = 1.0 T            (BH)max
 = 200 kJ/m3

K1  = 17 MJ m-3  Ba
 = 30 T

TC = 1020 K

R-T exchange is direct, between the 5d and 3d shells
This is antiferromagnetic; on-site coupling of 5d and 4f spins is
ferromagnetic, hence moments couple parallel for light rare
earths (J = L - S) and antiparallel for heavy rare earths (J  = L +
S).
Useful alloys are of Pr, Nd, Sm with Fe, Co, Ni



Neomax, Nd2Fe14B      tetragonal; a = 879 pm,  c =  1218 pm

The highest-performance permanent magnet.
Discovered in 1983 by Sagawa (sintered) and by

Croat and Herbst (melt spun)
Dy, Co .. substitutions
Dense sinterered oriented material, melt-spun

isotropic flakes.
Voice-coil actuators, spindle motors, nmr

imaging, flux sources ….
Cost ≈ 30 €/kg, Production 50 kT/yr  (1.5 B€)

 Jr = 1.4 T       (BH)max
 = 200-400 kJ/m3

K1  = 4.9 MJ m-3  Ba
 = 7.7 T

TC = 878 K



Exchange interactions.

The interaction responsible for magnetic order is exchange.
Basically it is a Coulomb interaction between the charges of
electrons on adjacent ions 1, 2, subject to the symmetry constraints
of quantum mechanics. It written in terms of their spins.

Heisenberg-Dirac Hamiltonian    H = -2 J S1.S2

 J > 0,  ferromagnetic

 J < 0,  antiferromagnetic.

Curie or Néel temperature Tc ≈ 2Z J S(S+1)/3kB



Exchange interactions.

The magnetic coupling in a ferromagnet can be represented by a
‘magnetic stiffness’ A

A  ~ 10 pJ m-1

lex ~ 2 - 3 nm



Demagnetizing field
The H-field in a magnet depends M(r) and on the shape of the magnet.
Hd is uniform only in the case of a uniformly-magnetized ellipsoid.

  (Hd )i = - Nij Mj       i,j = x,y,z

Nx + Ny + Nz = 1

Demagnetizing factors for some simple shapes

                          Long needle,  M parallel to the long axis     0
Long needle,  M perpendicular to the long axis 1/2

Sphere, M in any direction 1/3

Thin film,  M parallel to plane  0
Thin film,  M perpendicular to plane                                    1

General ellipsoid of revolution (a,a,c)              Nc = ( 1 - 2Na )



Daniel Bernouilli
1743

S         N

Gowind Knight 1760

Shen Kwa  1060

N < 0.1
The shape barrier.

New icon for permanent magnets! ⇒



Hd Hd

Working point.



Measuring magnetization with no need for demagnetization correction

Apply a field in a direction where N  = 0

H = H´+ Hm                       (Hd )i = - Nij Mj

H ≈ H’ - N M



It is not possible to have a uniformly magnetized cube

When measuring the magnetization of a sample H is the independent variable,
M = M(H).



Response to an applied field H′
Susceptibility of linear, isotropic and homogeneous (LIH) materials

M = χ’H’ χ’  is external susceptibility

It follows that from H = H’ + Hd , dividing by M, that

1/χ = 1/χ’ - N

Typical paramagnets and diamagnets:

     χ ≈ χ’    (10-5  to  10-3 )

Paramagnets close to the Curie point and ferromagnets:

    χ >> χ’             χ diverges as T → TC     but χ’ never exceeds 1/N.
M M

H H'Ms /3 H’ H

M

  H’

Ferromagnetic sphere,
χ’ =3

 M = χH  χ  is internal susceptibility



Permeability

In LIH meida     B = µH µ = B/H      Units: TA-1m

Relative permeability                    µr = µ/µ0

B = µ0(H + M)            gives                µr = 1 + χ

µ0 is the permeability of free space.

• In practice it is often easier to measure the mass of a sample than its volume. Measured
magnetization is usually σ = M/ρ, the magnetic moment per unit mass (ρ is the density).

• Likewise the mass susceptibility is defined as χm = χ/ρ

• Molar susceptibility is χmol = M χm /1000  M  is the molecular weight (g/mole)



Examples.



Susceptibilities of the elements



Soft and hard magnets. 

The area of the hysteresis loop represents the energy loss per cycle. For efficient soft
magnetic materials, this needs to be as small as possible.

M (MA m-1)

-1            0                 1     H (MA m-1)

1

-1

M (MA m-1)

-50            0                 50     H (A m-1)

1

-1

For a useful hard magnet.
Hc > Mr/2

Load line H = -NM



Hd

Any macroscopic magnet
exhibiting remanence is in a
thermodynamically-metastable
state.

Hd

Energy product.  

Working point.



Magnetostatic energy and forces
Energy of ferromagnetic bodies

• Magnetostatic (dipole-dipole) forces are long-ranged, but weak. They determine the
magnetic microstructure.

M ≈ 1 MA m-1
,  µ0Hd ≈ 1 T, hence µ0HdM ≈ 106 J m-3

   Products B.H, B.M, µ0H2, µ0M2   are all energies per unit volume.

• Magnetic forces do no work on moving charges f = q(v x B)

• No potential energy associated with the magnetic force.

  Γ = m x B           εm = -m.B

In a non-uniform field,    f = -∇εm     f = m.∇B
Force

 

! 

" 

m 

B 

 

Torque and potential energy of a dipole in a uniform field



Reciprocity theorem 

The interaction of a pair of dipoles, εp, can be considered as the energy 
of m1 in the field B21 created by m2 at r1 or vice versa.

εp = -m1.B21 = -m2.B12

Extending to magnetization distributions:

So        εp = -(1/2)(m1.B21+ m2.B12)

m1

B21

m2

B12

ε = -µ0 ∫ M1.H2 d3r = -µ0 ∫ M2.H1 d3r



Magnetic energy terms

Self energy of a magnet in its demagnetizing field   Em = -(1/2)∫µ0HdMd3r

Em = (1/2)∫µ0Hd
2
 d3r

Self energy of a uniformly magnetized sample     Em =  (1/2)µ0NM2V

Energy associated with a magnetic field   Em = (1/2)∫µ0H2d3r



Energy product of a permanent magnet

Aim to maximize energy associated with the field created around the magnet,
from previous slide:

Can rewrite as:

where we want to maximize the integral on the left. Since B = µ0(H + M),

Energy product: twice the energy stored in the stray field of the magnet is

-µ0 ∫i B.Hd d3r
Optimum shape, N = 1/2 



Thermodynamics

First law:    dU = HxdX + dQ

(U,Q,F,G are in units of Jm-3)

dQ = TdS

Four thermodynamic potentials;

U(X,S)        internal energy

E(HX,S)       enthalpy

F(X,T)  = U - TS Helmholz free energ
dF = HdX - SdT

G(HX,T) = F - HXX Gibbs free energy
dG = -XdHX - SdT

Magnetic work is HδB or µ0H’δM

dF  = µ0H’dM - SdT 
dG = -µ0MdH’ - SdT

S = -(∂G/∂T)H’     µ0 M = -(∂G/∂H’)T’

Maxwell relations

(∂S/∂H’)T’ = - µ0(∂M/∂T)H’  etc. 

 

M 

H’ 

G!

F!"

 



Magnetostatic Forces

Force density on a uniformly magnetized body at constant temperature

                                                 Fm= - ∇G

Kelvin force

General expression, for when M is dependent on H is

V =1/d    d is the density



Anisotropy.

shape, magnetocrystalline, induced, strain

The ferromagnetic axis lies in some particular direction determined by
shape or some intrinsic anisotropy related to crystal or atomic structure.

Ea = K1sin2θ + K2sin4θ + ......

The shape contribution is derived from the energy expression 
 Em =  (1/2)µ0NM2V

The magnetization lies along the direction for which N is smallest - the
axis of a long bar.

The magnetocrystalline contribution for uniaxial crystals is given by a
similar expression with different K1 ......



Shape anisotropy.

The shape contribution is derived from the energy expression 
 Em =  (1/2)µ0NM2V

N  is the demagnetizing factor for the easy direction - the axis of a long
bar. (1/2)[1 - N ] is the demagnetizing factor for the perpendicular
direction (assuming an ellipsoid)

Hence ΔEm = (1/2) µ0M2V{(1/2)(1 - N ) - N }

so Ksh = (1/4)µ0M2(1 - 3N )

The biggest it can be is (1/4)µ0M2 J m-3

�~ 2 105 J m-3 for µ0M = 1 T



Magnetocrystalline anisotropy

The magnetocrystalline contribution is ultimately caused bu spin-orbit
coupling which connects the crystal structure (electron orbits) and
magnetic moment direction.



Anisotropy due to texture

Directional order of atomic constituents in a binary alloy can be induces
by deposition on a magnetic field or by post depositional annealing.





Domains

Micromagnetic energy, wall width and structure



Micromagnetic energy

exchange anisotropy (leading term)         magnetostatic              Zeeman

Minimizing Etot gives the mesoscale magnetic structure of the sample
(monodomain, multidomaindomains or vortex)



Domain walls

Minimizing Etot for two oppositely magnetized regions gives the domain wall width
δw= π√(A/K1)

A ~ 10 pJ m-1;   K ~ 105 jm-3; δw  ~ 30 nm.



Superparamagnetism

Fine particles, blocking

Ea = Ksin2θ

Δ = KV

the ratio Δ/kT is critical

Néel relaxation τ = τ0exp(Δ/kT)

Here τ0 is an inverse attempt frequency, 10-9s-1

If Δ/kT  = 25, τ = 70 s.



Flux - Faraday’s law

MR - Lorentz force

Hall effect - Lorentz force

AMR - Spin-orbit scattering

GMR - spin accumulation

TMR - spin-dependent tunelling

MO - Faraday effect

SQUID - Flux quantization

NMR - magnetic resonance

GMI - high-frequency permeability

2.2 Sensor Principles 
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1. Overview of sensor types
Sensor Principle Detects Frequency Field (T) Noise Comments

Coil Faraday’s law dΦ/dt 10-3 - 109 10-10 - 102 100 nT bulky ,absolute

Fluxgate saturation H dc - 103 10-10 -10-3 10 pT bulky

Hall probe Lorentz f’ce B dc - 105 10-5 - 10 100 nT thin film

MR Lorentz f’ce B2 dc - 105 10-2 -10 10 nT thin film

AMR spin-orbit int H dc - 107 10-9 -10-3 10 nT thin film

GMR spin accum.n H dc - 109 10-9 -10-3 10 nT thin film

TMR tunelling H dc - 109 10-9 -10-3 1 nT thin film

GMI permability H dc - 104 10-9 -10-2 wire

MO Kerr/Faraday M dc - 105 10-9 -102 1 pT bulky

SQUID lt flux quanta Φ dc - 109 10-15 -10-2 1 fT cryogenic

SQUID ht flux quanta Φ dc - 104 10-15 -10-2 30 fT cryogenic

NMR resonance B dc - 103 10-10 -10 1 nT Very precise
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2.2.1 Inductive sensors

Inductive sensors detect an emf in a coil proportional to the rate of change of
flux, according to Faraday’s law:

E  = -dΦ/dt
They provided an absolute measurement of
B  = Φ/nA, as in a search coil with an integrating
voltmeter, or the rotating coil gaussmeter

Inductive read/write heads were widely used until 1990 in magnetic recording



Magnetic circuits

∇B = 0

BmAm= BgAg      (1)

Hmlm= -Hglg        (2)

Soft iron

Magnet

reluctance

P = 1/Rm



Ideal M(H) loop

Ideal B(H) loop

B = µ0(H + M)

BH = µ0(H2 - MH)
.     = µ0M2(N2 - N)

Maximizing (BH)max → N = 1/2

slope i/R
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2.2.2 Fluxgates

Fluxgates depend on the nonlinear saturation of the magnetization of a soft
magnetic core. Two identical cores (or a single toroidal core) have oppositely
wound ac field windings.  A parallel applied field leads to saturation of one of
the cores, producing an ac signal linear in H.

Fluxgates are bulky but sensitive, reliable and  impervious to radiation. Used,
for example, in space.
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2.2.3 Hall sensors

B j
VH

VH/t = R0 jB        R0= (1/ne)

E/j = ρxy = R0B

Hall voltages linear in field are produced in semiconductor plates,
especially Si and in 2-deg GaAs/GaAlAs structures. These are four-
terminal devices, and the current source and high-gain amplifier are
often integrated on a chip.
Used for secondary field measurements – each probe must be calibrated
— and as proximity sensors. About a billion are produced each year.

Effect discovered by Edwin Hall in 1879 

t

I
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2.2.4 Classical magnetoresistance

The simplest Lorentz force device is a semicoductor or semimetal
which exhibits classical positive B2 magnetoresiatance. High-mobility
semiconductors such as  InAs and InSb show large effects (~ 100 % T-1).
Field is applied perpendicular to the semiconductor slab, and it is
possible to achieve a desired resistance by patterning a series of
metallic contacts.

The sensors are nonlinear, two-terminal devices providing a good
response in large fields. They are used as position sensors in brushless
dc permanent magnet motors.

R

B

B j

V

I
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2.2.5 Anisotropic magnetoresistance (AMR)

j

thin film

Discovered by W. Thompson in 1857

ρ = ρ 0 + Δρcos2θ

Magnitude of the effect Δρ/ρ < 3%
The effect is usually positive; ρ||> ρ⊥

AMR is due to spin-orbit s-d scattering

High field sensitivity is achieved in thin
films of soft ferromagnetic films such
as permalloy (Fe20Ni80).

θ  M

B

 0              2             4  µ0H(T)

2.5 %

AMR of permalloy
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Planar Hall effect

Planar Hall effect is a variant of AMR;   ρ|| ≠ ρ⊥ ρ|| is when j || M ….

θ    M

jx

E|| = ρ|| jxcosθ       E⊥= ρ⊥jxsinθ

Components of electric field parallel and
perpendicular to the current are  
Ex = E||cosθ + E⊥sinθ,  Ey = E||sinθ - E⊥cosθ

Ex = j(E||ρ⊥ + Δρcos2θ)    Ey = jΔρsinθcosθ

Hence

    VpH = j wΔρ sinθ cosθ

The biggest effect is when θ changes from 45
to 135 degrees.

w
B

VpH
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2.2.6 Giant magnetoresistance.

Peter Grunberg and Albert Fert;

109 GMR
sensors
per year

80% MR

Discovery of GMR 1988

Implementation in hard disk drives 1998

Nobel Prize 2007

j

Fe/Cr stack
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Iaf

Free

pinned

GMR spin valve

Exchange-biased stack 5 nm Ta

5 nm Ta

10 nm IrMn

2.9 nm Cu
2.5 nm CoFe

1.5 nm CoFe

3.5 nm NiFe

-100 -50 0 50 100

0

2

4

6

8

10

 !
R

/R
%

Field(mT)

Exchange biased GMR spin valve



Af   F1  Cu  F2

AMR      GMR  TMR

perpendicular

1µm2

GMR

TMR

AMR

1 µm2

I af

Free

pinned

TMR spin valve

Exchange-biased stack
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SiO2/Si-Substrate

Ta 5 

Ru 30

Ta 5 
NiFe 5
IrMn 10

CoFe 2

Bottom
Electrode

 AAFM
Pinned Layer

 Free Layer 

MgO 

Capping Layers

Ru0.8
CoFeB 3
MgO 2.5

CoFeB 3
Ta  5
Ru 5

AFM

Magnetoresistance is > 100%,  10 times
as great as for GMR spin valves

2.2.7 Tunnel magnetoresistance.
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2.2.8 Giant magnetoimpedance.

GMI sensors are soft ferromagnetic wires (sometimes permalloy-plated copper wires}
or films. An ac current is passed along the wire, and L is measured as a function of
applied field.  At high frequency, the skin depth < wire diameter. Permeability depends
on f and H.

Very high  field sensitivity, 104 % mT-1 is achievable
Used in Wii games, three-axis compasses ….. 

H

jac

30 micron CoFeSiB

ΔL
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2.2.9 Magneto-optic sensors.

Optical fibre field sensors, based on magneto-optic Faraday effect.
They are bulky, and used for large fields.
 
Rotation sensors based on Sagnac effect.
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2.2.10 Superconducting quantum interference devices.

SQUIDs detect the change of flux threading a flux-locked loop.  The flux
is generally coupled to the SQUID via a superconducting flux
transformer.  The device is sensitive to a small fraction of a flux quantum.
SQUIDSs offer ultimate field sensitivity. They generally operate with a
flux-locked loop.

Φ0 = 2 10-15 T m2

X

X

Superconducting flux transformer

dc SQUID
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2.2.11 Nuclear magnetic resonance.

 

B  

µ  

Bµ!= "  

Torque ! cause µ to precess about B with the Larmor frequency
e

eB

m
# =  

 

Torque creates precession at the Larmor
frequency fL= γB/2π

Protons (in water for example) can be
polarized by a field pulse, and then allowed
to precess freely (fid) at the Larmor
frequency in the field to be measured. fL in
the Earth’s field is ~ 2 kHz.

Rb or Cs vapor can be magnetized by
optical pumping with circularly-polarized
light, and the nuclear precession
measured. The Rb-vapour
magnetometer provides an extremely
precise, absolute value of the magnitude
of the field.
These magnetometers have been
packaged on a chip.


