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A simple model is presented for rectangular cantilevers when vibrating in various media. The mass
of the surrounding medium affected by the motion of the lever is calculated. It depends on the
dimensions of the lever, on the excited mode, and on the density of the medium. Although the
viscosity of the media is not taken into account, the resulting predictions for the resonance
frequencies agree well with experimental data obtained for levers in air and water up to the seventh
harmonic. © 1996 American Institute of Physics. �S0003-6951�96�02045-1�

Tapping-mode atomic force microscopy�TMAFM � and
dynamic force microscopy�DFM� are preferred techniques
to investigate particular soft samples.1–3 Both are designated
as ac imaging modes but they are based on different types of
interaction forces. In TMAFM, the tip of a vibrating cantile-
ver briefly touches the surface at the bottom of each swing.
This imaging mode can be interpreted as a hybrid form of
repulsive contact and attractive noncontact atomic force mi-
croscopy�AFM�.4 In contrast, DFM stands for purely non-
contact mode measurements where the interaction between
tip and sample is dominated by long-range attractive forces.5

In order to extend the applications of scanning probe
methods, it is essential to operate in a liquid environment.
This is necessary to study biological matter under native con-
ditions and to investigate processes at the liquid–solid inter-
face such as electrochemical reactions and self-assembly of
organic molecules. The disruption of soft samples, particu-
larly biological ones, is reduced significantly when imaging
in liquids since van der Waals forces, capillary forces, and
friction forces are reduced.2,6 Much progress has been made
in operating not only contact mode AFM but also TMAFM
and DFM in fluids.4,7–11

It is reasonable to say that local probe methods have
become an important and sensitive technique to investigate
sample surfaces in direct space. However, the imaging pro-
cesses are strongly influenced by distorting interactions be-
tween the probing tip and the sample.12 A reliable interpre-
tation of the measurements can only be obtained if the
dominant interactions between the sensor and its environ-
ment are known. Therefore, it is essential to investigate the
resonance response of AFM cantilevers oscillating in differ-
ent media in order to control their influence on the imaging
processes.

So far, the attempts to model the dynamic behavior of
TMAFM or DFM in various environments were based on a
phenomenological model, replacing the lever by a harmoni-
cally bound sphere.13,14 A description of viscous damping
effects according to Stokes law is possible in this approach
but the considerable shift of the resonance frequency due to
an increased effective mass of the cantilever has not been
explained in a satisfactory manner.15,16

In this letter we present a model which describes the
motion of a rectangular cantilever oscillating in a medium of

known density. The additional mass of the cantilever de-
pends on the ratio of length to thickness of the beam,L/T,
the density�M of the surrounding medium and on the num-
ber of modes. The resulting frequency shift relative to the
lever in vacuum agrees well with experimental data obtained
for two levers of different dimensions suspended into air and
water.

We measured the frequency characteristics of rectangu-
lar Si cantilevers with integrated tips driven by a piezoelec-
tric actuator in different media far from any sample surface.
An HP Spectrum Analyzer No. 3589 A was used to sweep
the piezo linearly through a frequency range of 0–3 MHz
and to analyze the resulting frequency spectrum of the can-
tilever oscillation detected by optical beam deflection tech-
nique. We analyzed the frequency spectra of cantilevers with
lengths of 224 and 445�m corresponding to spring constants
of 0.22 and 29 N/m, respectively. The amplitude of the can-
tilever vibration was chosen to be 10–50 nm which is typical
for ac mode. Measurements were done in dry air�30% r.H.�
at normal pressure and temperature and in nanopure water.17

For operation in liquids we completely immersed both, the
cantilever and the piezoelectric bimorph, into a drop of wa-
ter. The laser beam was coupled into the water through a
glass cover slip to avoid an uncontrolled change in diffrac-
tion of the deflected beam which might be caused by evapo-
rating liquid. This setup is appropriate for nonvolatile liquids
and it has the advantage that fluid cell resonances can be
excluded.

The undamped motion of a homogeneous bar of length
L in vacuum is described by the differential equation for its
amplitudeY (x,t) at positionx and timet

EI
�4Y �x,t �

�x4 �mB

�2Y �x,t �

�t2 �0, �1�

whereE is the module of elasticity for the bar andmB its
mass per unit of length, the rectangular cross section of the
bar has an areaA�WT, given by its widthW and its thick-
nessT, andI�WT3/12 is the centroidal moment of inertia of
the cross section. If the bar is clamped at one end, itsnth
eigenmode vibrates with a frequency

�n
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	n
2

L2 � EI

mB
� 1/2

, n�1,2,..., �2�

with tabulated numbers	n .18,19

Assume that the bar moves in an incompressible medium
M without friction. For vertical speeds of the cantilever ina�Electronic mail: dreier@ubaclu.unibas.ch
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the order of 10�3 m/s, gases at normal pressure and room
temperature will be considered as incompressible. In this
case�1� is still valid, except for a comoved massmM ,n per
unit length, adding to the mass of the bar:mB→mB�mM ,n

�(1��M ,n)mB . The dimensionless quantity�M ,n accounts
for the mass which has to be displaced by the bar when
vibrating in thenth eigenmode.

In the following, a simple expression for�M ,n will be
derived. For moderate and largen, the nth eigenmode re-
sembles a sinusoidal function havingn nodes, including the
one at the clamped end. The distance between two neighbor-
ing nodes is roughly 2L/(2n�1)�
n/2, where
n is the
wavelength associated with moden. Consider (n�1) cylin-
ders of heightW and radiusL/(2n�1) with their axes lo-
cated at the node lines across the bar�Fig. 1�. The cylinders
can be visualized by letting rotate a rectangle of size
WL/(2n�1) along its side with lengthW about each of the
nodes. The mass of fluid contained in these cylinders is given
by LmM ,n , and even forsmall amplitudes it is this amount of
fluid which has to be accelerated in order that the lever can

perform its vibration. Summing up the contributions of all
the cylinders, the correction factor for thenth eigenmode is
found to be given by

�M ,n�
mM ,n

mB
�

WL�M

A�B

�

3

�n�1��1/4

�2n�1�2 �
L

T

�M

�B
gn , �3�

wheremB has been expressed in terms of the area,A, and of
the density of the bar,�B . An nth cylinder associated with
the clamped end contributes roughly a quarter of its volume
to the comoved mass; hence the factor 1/4 in the numerator
of the factorgn . The additive mass is reduced by an overall
factor of 1/3 to account for fluid motion from above the lever
to below. Numerically, this factor follows from replacing the
cylinders by a ‘‘double cone’’ obtained by rotating an isos-
celes triangle with baseW and heightL/(2n�1) instead of
a rectangle. Consequently, the factor�M ,n is seen to depend
on the ratio (L/T), on the ratio of the densities involved,
(�M /�B), and—through the factorgn—on the mode under
consideration. Since, for increasingn, the volumes of the
cylinders get quadratically smaller while their number in-
creases only linearly withn, the comoved mass will decrease
for eigenmodes with higher frequencies.

As a result, the frequencies of the bar in a medium of
density�M are given by

�n
M�

�n
vac

�1��L/T ���M /�B�gn

, n�1,2,..., �4�

if the derivation of�M ,n is assumed to hold forall values of
n. To sum up, the motion of the lever affects a layer of fluid
which is approximatelyhalf a wavelength 
n thick. Thus, its
thickness may easily exceed the thickness of the cantilever
by a factor of 10–50.

Figure 2 shows experimental data and theory for two
different cantilevers in air and in water. Their resonance fre-

FIG. 1. Scheme of a rectangular cantilever oscillating at it’s fifth harmonic
in a medium. The dotted areas represent the cylinder shaped comoved mass.

FIG. 2. Resonance frequencies obtained from theory and experiment plotted vs thenth harmonic oscillation of rectangular cantilevers in gaseous and liquid
environments. Error bars for results in air and for the long cantilever (L�445�m� in water are of the size of the symbols representing the experimental data.
The errors of the calculated values for water (L�224 �m� are comparable to those of the experimental results.
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quencies are plotted versus thenth harmonic oscillation. Ex-
perimental data are represented by discrete symbols. The full
and the dashed lines represent numerical values calculated
from Eq. �4� for a lever withL/T
40, whereas the dash–
dotted and the dash–dot–dotted line corresponds toL/T

200. To guide the reader’s eye, the calculated frequencies
have been connected by smooth curves.

To calculate the frequency of thenth eigenmode using
Eq. �4� the thicknessT of the cantilever must be known. On
the data sheet attached to the cantilever wafer,20 only point
probes of the geometric parameters are listed. To get a more
precise value for the thickness of an individual cantilever the
relation18 T�2��12�B /EL2�0 /	n

2 is used, where�0 is the
fundamental frequency of the levelmeasured in air. The ac-
curacy of theory and experimental data is mainly limited by
the errors made in determining the resonance frequency.

The overall trend of the calculated resonance frequencies
agrees well with the measured values. Note that in Fig. 1 the
dependence of the correction�M ,n�(L/T)(�M /�B)gn on
the dimensions of the lever (L/T�40 and 200�, on the den-
sities�air and water�, and on the mode (n ranges from 1 to 7�
is checked. The agreement is better for levers in air than in
water. This does not come as a surprise since the motion has
been assumed to be frictionless: when changing from gas-
eous to liquid environment, theQ value gets reduced by a
factor of 20–30 due to viscous damping effects. TheQ fac-
tor has been determined from the relationQ��0 /��, where
�0 is the frequency corresponding to amplitude maximum
and�� is the full width at 1/�2nd maximum of the ampli-
tude curve. In addition, the model predicts that the comoved
mass vanishes for large values ofn since �M ,n→0. How-
ever, it seems reasonable to think of a boundary layer being
attached permanently to the vibrating cantilever. Including
this layer in the model would reduce the discrepancy be-
tween the observed and calculated resonance frequencies for
increasingn.

Finally, we would like to mention a possible influence of
the comoved mass on a sample surface. The radius of the
cylinders is aboutL/(2n�1) and, thus, exceeds the length
of the probing tip for smalln. Consequently, an indirect

interaction between the cantilever and the sample surface
mediated by the comoved mass is likely to occur. This effect
might be important when monitoring objects loosely attached
to the surface.
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