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We describe a method to detect and count transient burstlike signals in the presence of a significant
stationary noise. To discriminate a transient signal from the background noise, an optimum threshold is
determined using an iterative algorithm that yields the probability distribution of the background noise.
Knowledge of the probability distribution of the noise then allows the determination of the number of
transient events with a quantifiable error (wrong-positives). We apply the method, which does not rely
on the choice of free parameters, to the detection and counting of transient single-molecule fluorescence
events in the presence of a strong background noise. The method will be of importance in various ultra
sensing applications.

Introduction

The discrimination of rare transient events (bursts) above a
strong stationary background noise with a high level of
confidence is a problem of broad importance in various sensing
applications ranging from ultrasensitive optical detection1–3 in
biological assays4,5 or medical diagnostics6,7 to electromagnetic
sensors8,9 or defense applications.7 In general, transient signals
are considered detectable either if (i) their amplitude is many
standard deviations above the mean value of the noise’s
probability distribution and has a narrow distribution or if (ii)
the waveform (the duration of the transient event) is clearly
distinct from the noise’s characteristic fluctuations in time. Here,
we propose a method, which is applicable if the signal bursts
are neither large in amplitude nor easily distinguishable from
the characteristic fluctuations of the noise. The method is based
on a fast converging iterative algorithm, which determines an
optimum threshold for the detection and counting of bursts. It
provides a user-definable quantitative measure for the probability
of false positive events due to the background noise peaks. The
reliability of the method is demonstrated by Monte Carlo
simulations of the burst detection process. To highlight the
method’s potential, we detect and count single-molecule fluo-
rescence bursts recorded in the presence of a significant
stationary background noise.

Results

We consider a data set describing a time series of counts per
time interval containing rare transient events (bursts) above a
significant background noise with a Poissonian distribution.
Apart from being sufficiently rare, no further assumptions are
made with respect to the amplitude and shape distribution of

the transient events superimposed to the background noise. Note
that the results presented here are applicable for any type of
background distribution as long as its shape is known. Figures
1a and b show as an example a data set representing a time
trace of single-molecule fluorescence bursts as well as the
respective histogram H(n). Here, n is the number of counts per
100 µs time interval (bin). Fluorescence bursts of various
amplitudes are observed above the background noise. Conse-
quently H(n) shows a clearly distinguishable main Poissonian
noise peak and a tail that accounts for the fluorescence bursts.3

Signal bursts cannot be fully separated from the background
noise since both distributions apparently overlap. To optimally
discriminate signal bursts from similar events due to background
noise, a threshold must be determined above which a fluctuation
is counted as a signal burst. The threshold must on one hand
be low enough to miss as few as possible true signal bursts,
and on the other hand, it must be high enough to minimize the
probability of counting a strong fluctuation of the noise as a
signal burst. Wrongly assigned bursts contribute to false positive
events,whichsinviewofapplicationse.g. inmedicaldiagnosticss
must be avoided or at least kept to a quantifiable error.

To determine such an optimum threshold, the probability
distribution of the background has to be recovered. Considering
the normalized Poissonian distribution P(n), we have

P(n)) e-µµn

n!
(1)

where µ is the mean, and σ ) �µ the standard deviation.

Assuming that P(n) can be recovered with some degree of
accuracy, we may consider the probability distribution of the
background alone. This then enables us to determine a threshold
for the burst amplitude, �, by demanding that the absolute
number of time intervals K for which the number of counts n
exceeds the threshold � is smaller than a tolerable small number,
say R. K(�) is determined as
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K(�))Nδ × [1-∫0

�
dn P(n)] (2)

where N is the total number of time intervals in the data set
and δ is a correction factor to account for the difference between
the total number of samples and the number of samples that
actually contribute to the noise distribution, i.e. all bins that do
not contribute to a signal burst. Note that δ can be simply
obtained by comparing the maximum amplitude of both P(n)
and H(n). For � f ∞, the number of false positive events K(�)
approaches zero, as expected. For a finite threshold, �, K(�) is
different from zero but can always be made sufficiently small
by choosing a larger �. We may for example define a threshold
�̂ by the implicit equation

K(�̂))R (3)

which corresponds to the detection of, at most, R false positive
events in the N bins of the time series.

Since this analysis depends on the precise knowledge of the
background probability distribution, we may conclude that the
problem of distinguishing transient events from the background
is reduced to the task of finding a sufficiently good estimate
for the probability distribution of the background alone. The
general shape of the noise distribution function can typically
be determined from a “blank” experiment in which no signal
bursts occur. However, the actual parameters of the distribution
function, its moments, will typically depend on various experi-
mental parameters such as the concentration of analyte mol-
ecules in an optical single-molecule detection experiment.

To find an estimate for the noise distribution function in the
given data set we propose using an iterative method. In the first
iteration step, the original data set is used to calculate an estimate
for the mean, µ1, and the standard deviation, σ1, for the true µ
and σ that characterize the noise. Since µ1 and σ1 are calculated
for the entire data set including peaks well above the noise level,
we expect that µ1 and σ1 will overestimate the true µ and σ.
Naturally, we fail in this first iteration to accurately describe

the contribution of noise P(n) to the histogram H(n). However,
we may still use µ1 to obtain a first estimate for the noise
distribution

P1(n))
e-µ1µ1

n

n!
(4)

which may then be used to calculate a first estimate K1(�) for
the true K(�).

K1(�))Nδ × [1-∫0

�
dn P1(n)] (5)

Similarly, we can define the following quantity:

KH(�))N × [1-∫0

�
dn H(n)] (6)

which is the analog of eq 2 however using the total histogram
H(n) of the time trace of Figure 1b instead of the background
P(n) alone. Now K1(�) is used to calculated a first estimate �̂1

for the true threshold value, �̂, by invoking the analogue to eq
3 for K1(�).

Once a first estimate for the threshold, �̂1, is determined, the
next step consists of counting fluorescence bursts with count
rates above �̂1. Identifying peaks in data sets is generally a
difficult procedure which requires well-designed algorithms.
Here, we use a Labview routine (Peak Detector, Labview,
National Instruments) based on an algorithm that fits a quadratic
polynomial to a sequence of data points above �̂1. The main
inputs of the routine are the threshold �̂1 and the peak width M
that controls smoothing of the data when searching for peaks.
Setting a small M number allows a finer resolution of the search
for transient events but is prone to the detection of multiple
peaks due to fluctuations on top of broader bursts. On the
contrary, a too large value of M prevents the detection of short
bursts. To overcome the limitations of either situation, peak
detection is performed as follows: the number of consecutive
data points is gradually decreased starting from a predefined

Figure 1. Time trace and histogram of a single-molecule fluorescence experiment. (a) Experimental time trace (bin width ) 100 µs, N ) 6 × 105)
showing fluorescence bursts on top of a strong Poissonian background. (b) Histogram of the time trace in logarithmic scale. The fluorescence bursts
lead to a characteristic deviation from Poissonian statistics. The horizontal line shows the threshold level above which signals are counted as bursts.
The grey curve plotted together with the histogram is the best estimate for the noise probability distribution obtained by calculating the mean of
the noise after removing bursts above the optimum threshold (see text). The inset shows a zoom of the calculated histograms for both the experimental
trace and the result of the algorithm.
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maximum Mmax. For each value of M, the number of detected
bursts is stored. The Labview routine outputs the location,
amplitude, and the second derivative of the peaks but does not
give any indication on the actual width of the peak, which can
be significantly smaller than M. Assuming that a second order
fit of the Labview routine approximates the peak, the total width,
M/, of the peak can be derived knowing both the amplitude A
and second derivative S of the peak:

M/) 2 ×�2(A- µi)

S
(7)

Here, µi denotes the mean obtained at the ith iteration step. Using
this procedure, we find that the actual number of detected peaks
does not depend on Mmax as long as the latter is larger than the
maximum burst width that occurs in the original data set. Each
detected burst is then removed from the data by removing the
respective bins from the data set. After (Mmax - 3) runs (3 being
the minimal width of the Labview routine) of the burst detection
routine, all bursts above �̂1 have been counted and removed.
The remaining data set consists of the background noise plus a
few bursts with amplitudes smaller than �̂1. In the second
iteration step, the truncated data set obtained in the first iteration
is used to calculate new estimates, µ2 and σ2, that better
characterize the probability distribution of the noise. As a
consequence, more bursts are found in this second iteration step
when applying the burst finding algorithm. After i iteration steps,
µi (σi) converges to a stable minimum µ (σ), which then provides
a very good estimate for the parameters describing the true
histogram of the background noise P(n), eq 1. In practice, it is
found that the algorithm converges extremely fast. As can be
seen in the inset of Figure 2, the standard deviation of
the truncated data set is stable already after three iterations. The
resulting best estimate for the noise distribution using the
parameter µ5 is plotted in Figure 1 together with the histogram
of the time trace. A remarkably good agreement is found using
R ) 375 (see below).

Discussion

To investigate the reliability of the proposed algorithm, we
have applied a Monte Carlo simulation of the burst counting

process. To this end, we generate artificial time traces (6 × 105

bins) consisting of a Poissonian noise (µ ) 60, σ ) �µ ∼ 7.75)
with superimposed bursts. The height distribution of the bursts
consists of a Gaussian distribution with variable amplitudes (i.e.
the number of bursts is varied from 10 to 2250) and means
(30, 40, 50) and a constant σ value of 10. The generated bursts
are added to the time trace at random times. In addition, we
use an artificial trace consisting of a Poissonian noise (µ ) 60)
plus bursts of height 120 added to the noise to test the peak
recovery capabilities of the algorithm. For each generated trace,
the burst detection algorithm is applied using different R values
(i.e., a different number of tolerable false positive events). Figure
3a shows the result of such simulations using R values of 1
and 33, respectively. From these simulations, important conclu-
sions can be drawn. First, we observe that the number of
detected bursts deviates from a purely linear behavior when the
number of generated bursts is larger than ∼1500. This behavior
(also observed for a fixed peak height distribution, bottom
triangle) is not a limitation of the present algorithm but results
from the fact that at high burst densities there is a significant
probability of neighboring bursts overlapping and being then
counted as single events. Second, the simulation shows that the
number of detected bursts is smaller than the number of
generated bursts and that this effect is less pronounced when R
is increased. This behavior has different origins. When the mean
of the burst distribution is close to that of the noise distribution,
it has to be expected that the finite overlap between the two
distributions tends to decrease significantly the number of
detectable and detected bursts. More information can be gained
by plotting the σ value (as reported by the simulation) as a
function of R. As seen in Figure 3b and for a large number of
generated bursts, σ deviates strongly from the expected value
of 7.75. This simply means that, at low R values and for bursts
distributions that overlap significantly with the noise distribution,
we fail to reproduce quantitatively the latter. Considering 250
generated bursts (upper panel) and a Gaussian distribution with
a mean of 30, we see for example that σ ) 7.84 at R ) 1. This
relatively bad agreement results in a low number of detected
bursts (Figure 3a, upper panel).

With increasing R, σ approaches the expected value of 7.75
and therefore yields a higher number of peaks to be recovered.
Again, these findings are not a limitation of the algorithm
because we are always able to find an R value (R/) that correctly
reproduces the noise distribution. In a real experiment, the noise
distribution is unknown but R/ can always be determined by
comparing H(n) and P(n). For this purpose, we calculate the
root mean squared error (RMSE) that is a well-accepted
parameter to estimate the goodness of a fit. Because P(n) can
strongly deviate from H(n) at large n values, the RMSE
coefficient is calculated up to µ. Let us point out that the RMSE
calculation could lead to large errors when the histogram H(n)
is poorly defined. This limitation therefore imposes the use of
long enough experimental records for which the noise back-
ground is well defined. For R , R/ (R . R/), it is expected
that the RMSE coefficient is large because of the incorrect value
of σ . However, the RMSE should reach a minimum for R ∼
R/. This is exactly what is found in the simulation, where we
see that the minimum of R corresponds to a σ value of 7.75
(Figures 3 and 4). Considering the experimental trace displayed
in Figure 1, the optimal number of false positive events is found
to be relatively large (375) due to both the high number of peaks
(∼7500) and the considerable overlap of the peak distribution
with the noise. The reliability of the detection method can be
estimated by calculating the ratio R/ to P/ (the number of peaks

Figure 2. Visualization of the Ki(�) and KH(�) (black, solid). Already,
the second estimate of K(�) (black) obtained by calculating the mean
of the time trace of Figure 1 provides a good estimate for the threshold.
After five iterations, all fluorescence bursts are eliminated (K5(�), black,
dashed-dotted). The inset shows the development of σi for i ) 1, 2,
3, 4, and 5. Calculations were performed for a number of false-positives
of 375 and a maximum peak width of 150 (see text).
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recovered at this particular R value). For the experimental trace
analyzed here, we find a value of 0.05, which is reasonably
good. Of course, an increase in the number of peaks or a
decrease in the mean of the peak distribution would lead to
lower degree of confidence. For instance, the ratio R/ to P/ is
about 0.2 (129/639) for a peak distribution with a mean of 30,
a standard deviation of 10, and a number of generated peaks of

810. For this particular R value of 129 (Figure 3), the algorithm
leads however to an almost perfect representation of the noise
distribution (Figure 4).

As mentioned previously, the method is applicable to any
noise distribution as long as its shape is known (Poissonian,
Gaussian, . . .). For practical use, the method has to be used as
follows: the number of peaks P is found from the iterative

Figure 3. Monte Carlo simulations of the burst detection process. (a) Number of bursts recovered by applying the burst detection algorithm plotted
against the number of artificially generated bursts (from 10 to 2250). The distribution of the generated bursts is Gaussian (with means of 30, 40,
and 50 (squares, circles, and upper triangles) and a standard deviation of 10) and is added to a Poissonian noise with a mean of 60. Also shown
is the result for a distribution that consists of a fixed peak height of 120 (bottom triangles) added to a Poissonian noise with a mean of 60. The
simulations are performed for a number of false-positive events R of 1 and 33 (upper and lower panel, respectively). The number of detected peaks
increases with R, yielding a better estimate of the number of bursts in the distribution (see text). (b) Standard deviation plotted as a function of the
number of false-positive events R for a Gaussian burst distribution with mean 30 and 50, respectively: (upper panel) 250 generated peaks, (lower
panel) 810 generated peaks. For a large number of generated peaks and bursts distributions that considerably overlap with that of the noise, the
algorithm fails to correctly describe the noise distribution (expected σ of �60 ∼ 7.75), resulting in a low number of detected peaks for R ) 1.

Figure 4. Goodness of the fit of the noise distribution. (a) Root-mean-square error (RMSE) as a function of the number of false positive events
calculated for both the simulations (upper panel; see Figure 3) and the experimental trace of Figure 1 (lower panel). For the simulations, the RMSE
reaches a minimum for a σ value of ∼7.75 (the value used in the simulation for the noise distribution). (b) Comparison between the histogram of
the noise (as calculated with the algorithm for different number of false positive events R) and the histogram of the artificial trace used in the Monte
Carlo simulation (circles, Gaussian with µ ) 30, σ ) 10, number of peaks 810). For R ) 129, a perfect agreement is found.

Transient Event Detection over Background Noise J. Phys. Chem. B, Vol. 112, No. 23, 2008 7143



procedure presented above (allowing the determination of the
moments of the noise distribution). This calculation should
be repeated for different R values (wrong-positives). Finally,
the goodness of the fit (the RMSE coefficient calculated up to
the mean of the noise distribution) can be plotted against R and
a minimum for R can be precisely determined.

Conclusion

We have introduced an algorithm that is able to faithfully
recover transient events in the presence of significant stationary
noise. The method is based on the determination of an optimal
detection threshold that avoids the detection of false positive
events while recovering as many of the signal bursts as possible.
We have demonstrated that the proposed algorithm detection
allows counting of single-molecule fluorescence bursts in
presence of a strong background noise. It is important to stress
that the algorithm relies on robust statistical assumptions,
allowing the counting of peaks with a minimum and quantifiable
error. In the algorithm presented in this paper, no assumption
is made on the shape or height of the burst-height distribution.
Moreover, the only free parameter of the algorithm is the initial
width M, that can be determined by finding the maximum width
of the peaks in the trace. However, this can also be avoided by
using a large value for M at the expense of larger computing
times.
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