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We recently demonstrated a direct single-step label-free 
quantitative immunoassay in serum, investigating malaria 
vaccines [1]. Our method exhibits 1 pg mass sensitivity at 
concentrations of approx. 100pg/ml, on par with the gold-
standard multi-step enzyme-linked immunosorbent assay 
(ELISA). The nanomechanical assays perform faster and 
enable simultaneous mass uptake studies of multiple targets, 
due to epitope-specific recognition [1]. In nanomechanical 
assays parallel measurement points are represented over 
time (5s time resolution), thus providing additional temporal 
information compared with the ELISA output of averaged 
single end-point measurements. This commentary elucidates 
the additional advantages of label-free differential assays over 
the classical immunosorbent assay. 

DIffeReNtIAL NANoMeCHANICAL 
MeAsuReMeNts CoMPARIsoN to GoLD-

stANDARD eLIsA

Protein physisorption in eLIsA assays
In most ELISA tests, the individual assays are designed by 
physisorbing receptor proteins or antibodies to non-treated 
polystyrene surfaces of microtiter plates through passive 
adsorption [2]. These plates are provided with different surface 
properties ranging in hydrophobicity and charge [3, 4]. Soluble 
proteins orient hydrophobic amino acids towards their core, 
while polar and charged amino acids face the surrounding 
solution and ions in order to maintain their folding and 
consequent 3D structure [5]. Soluble proteins facilitate binding 
to a hydrophobic surface by partially orienting their internal 
hydrophobic amino acids against the surface to become 
more hydrophobic. This way, the surface binding energy is 
maximized. However, hydrophobic interfaces may partially 
denature proteins that bind to them [6], therefore great care has 
to be taken to minimize this effect [7, 8].

The overall protein sequence and amino acid properties are 
crucial to anchor specific epitopes to the assay interfaces. 
Indeed, on high-binding hydrophobic ELISA plates [2], 
alanines within alpha helical structures will be oriented towards 
the polystyrene surface, which can hamper the correctly folded 
structure in protein loops.

Protein immobilization in nanomechanical assays
In contrast, on nanomechanical sensors the malaria vaccine 
candidates with the PE-peptidomimetics [9-11] were coupled 
via lysine’s residuals or primary amines to a self-assembled 
monolayer (SAM) that becomes even more hydrophilic after 
conversion. The coupling was providing a pin-point covalent 
attachment [7, 12]. Proteins that were bound this way retained 
their 3D folding better, since solutions and ions have three-
dimensional access. In more detail, from the commented 
study, UK39, exhibits several alanines that are more likely to 
be located inwards (away from H2O) in the properly folded 
loop [10] and one primary amine for covalent coupling. 
AMA49-C1 exposes 4 lysines and one primary amine [9, 11] 
to allow covalent coupling to the NHS-activated dithiobis(1-
succinimidyl undecanoate (DSU) SAM on gold interfaces (see 
[1] Figure 1).

The binding of vesicle membranes integrated with delicate 
membrane receptors to DSU monolayers also proved favorably 
for the subsequent nanomechanical analysis [13]. The 
membrane proteins did not lose their integrity. Specific binding 
of T4 phages to the embedded FhuA receptors, anchored at 
their NH2 containing residues, could be demonstrated and also 
verified image via SEM imaging [13].

We would define this direct coupling to an amino reactive 
surface bound monolayer as an “active immobilization”, in 
contrast to the passive immobilization on high-bind ELISA 
plates. Indeed, depending on how ELISA sandwich assays are 
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designed, the proteins or antibodies that act as receptors for 
diagnostic targets, are passively bound to the surface.

Differential nanomechanical analysis
The micron-sized nanomechanical sensors are normally 
actuated at higher modes and their mechanics follows the 
harmonic oscillator model in a liquid environment [14]. The 
minimum detectable mass is given if one takes the minimum 
measurable frequency change. The sensors are exposed 
synchronously to the same sample and multiples of individual 
functionalizations [15] allow for averaging of the specific 
mechanical response. A minimum of two mechanically 
equivalent sensors is required [16], we currently use 18 in 
parallel [15]. Synchronised differential readout with in-situ 
reference probes is mandatory to avoid convolution with 
external environmental factors. Such differential analysis 
also eliminates thermal experimental drifts, flow-induced 
disturbances, and unspecific interactions as present in serum 
samples (see Figure 1) [1, 13, 15-23].

In an optimized nanomechanical differential assay, the 
chemical, topographic, polar, charged receptor interface of a 
sensor used as a reference, should mimic the actual molecular 
epitope as best as possible. Therefore, the assay should allow 
to specifically distinguish between the peptidomimetics PE-
UK39 and PE-AMA49-C1.

After the peptides are covalently bound to the sensor’s 
functionalized DSU monolayers, the whole PE-amino acids 
vaccine candidates’ epitopes are presented to the fluid. 
Differential readout allows to subtract all interactions that occur 
at the hydrophobic end or at the phosphatidyl-ethanolamine, so 
only the interactions at the peptide loops are measured as the 
purely peptide-specific recognition pattern.

When using human serum albumin (HSA) on the sensor 
surfaces as a reference, there are several additional epitopes 

available, apart from the targeted ones. In fact, HSA must 
denature slightly when being physisorbed, and can be bound to 
by different molecules in serum. Such detection on the surface 
has nothing to do with UK39. Even if a decrease in binding is 
noticed, as in the case of HSA passivation on ELISA surfaces, 
some recognition patterns can be attributed to serum proteins 
including primary and secondary immunoglobulins.

Since we are interested in the pure signal towards UK39 or 
AMA49-C1 in the malaria vaccine study, it is better to decorate 
the reference sensors of each assay with PE-UK39 (if one 
wants to measure AMA49-C1) or PE-AMA49-C1 (if one 
wants to measure UK39).

A schematic of the differential nanomechanical measurement 
is represented in Figure 1.

Comparing the assay result of UK39 − AMA49-C1 
nanomechanically allows to directly measure the minute details 
of the antigenic epitopes themselves. This direct comparison of 
several targets in one well is not possible on an ELISA plate, 
where individual wells have distinct functionalizations, and 
where the remaining surfaces besides the antigen-receptor will 
be passivated as much as possible with HSA to avoid unspecific 
interactions. However, with only HSA as a reference, interactions 
that are not specifically related to the UK39 (or AMA49-C1) 
peptide can result. Once the first antibodies or antigens are 
bound, the secondary antibodies in the ELISA assay cannot 
differentiate whether primary layer antibodies are bound to UK39 
or to a different epitope. This can lead to an overestimation or 
an underestimation of the actual signal and is normally optimized 
during the ELISA assay validation to minimize such effects.

The same applies to nanomechanical assays where, evaluating 
only an individual sensor, would also lead to an under-/
overestimation of specific interactions. This effect can only 
be minimized when the sensor surfaces in a measurement are 
directly compared in-situ via multiple sensors.

figure 1 - Differential mass assay. Schematic of two silicon cantilevers functionalized with gold, self-assembled monolayers 
and AMA (green) or UK39 (red) peptides. The epitope-specific antibody recognition (panel a) (red antibodies towards UK39 
and grey antibodies as unspecific interactions) generates a frequency shift based on the different sensor functionalizations 
(panel b). Taking the characteristics of the fluid around the sensors and the sensors’ dimensions into account, the frequency 
shifts are converted into a mass addition towards one or the other epitope (panel c) [15, 17, 20, 22, 23].
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In nanomechanical assays we cannot exclude, by measuring 
masses bound in liquid on one sensor only, whether they are 
strictly related to the diagnostic target, to other unspecific 
proteins, or to variations in the hydrodynamic environment. 
Therefore, the contribution to the signal based on molecular 
recognition absolutely requires differential analysis. As 
mentioned above it is better to utilize receptor layers that are 
overall similar but differ slightly in the molecular recognition 
pattern. This is key to the resulting sensitive mass differences 
in UK39 – AMA49-C1 (AMA) measured in serum (see Figure 
2). Furthermore, as mentioned earlier, all environmental effects 
(e.g. temperature or viscosity changes) are subtracted.

Label-free nanomechanical differential assays have been 
demonstrated over the last decades in the field of genomics 
[24-26], proteomics [1, 27, 28], microbiomics [29, 30] and 
hemostasis [20, 21]. One should never turn a blind eye towards 
technological developments, whether these will be picked 
up as complementary technology and become mainstream is 
depending on many factors.
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