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Descriptive Statistics I

What do we mean by 

Descriptive Statistics?

2

Statistical Analysis

Descriptive Statistics Statistical Inference

Organising, presenting 

and summarising data

Observe a sample from a 

population, want to infer 

something about that 

population

Outline

• Population and Sample

• Types of data (numerical, categorical)

• Graphical presentation (tables and plots)

• Measures of the centre of a set of observations

• Measures of variability

• Probability distributions
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Population and Sample

• A population is the set of all individuals that are of interest to 

the investigator in a particular study

• A sample is usually a relatively small number of individuals 

taken from a relatively large population. The sample is only 

part of the available data

• It is very important to understand the distinction between 

what the population is and what the sample is – especially 

when carrying out inference

4

Population and Sample

5

Population

Sample

Population and Sample: Examples

• Want to examine the blood pressure of all adult males with a 

schizophrenia diagnosis in Ireland

• Population is all adult males with a schizophrenia diagnosis in 

Ireland

• Take a random sample of 100 adult males with a 

schizophrenia diagnosis and measure their blood pressure

6
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Population and Sample: Examples

• A medical scientist wants to estimate the average length of 

time until the recurrence of a certain disease

• Population is all times until recurrence for all individuals who 

have had a particular disease

• Take a sample of 20 individuals with the particular disease and 

record for each individual their time to recurrence
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Defining the Population
• Sometimes it’s not so easy to exactly define the population

• A clinician is studying the effects of two alternative 

treatments:

– How old are the patients? 

– Are they male/female, male and female?

– How severe is, or at what stage is, their disease?

– Where do they live, what genetic/ethnic background do they have?

– Do they have additional complications/conditions? 

– and so on…

• When writing up research findings precise information on the 

specific important details that characterise the population are 

necessary in order to draw valid inferences from the sample, 

about the population
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Data

• Data are what we collect/measure/record

• There are many different types of data 

• It is vital to be able to distinguish the type(s) of data that we 

have in order to decide how best to both describe and analyse

this data

9
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Types of Data

• Typically not numerical 

but can be coded as 

numerical values

• Also known as 

qualitative

10

Data

Numerical Data Categorical Data

• Data can take 

numerical values

• Also known as 

quantitative or 

metric

Types of Data

11

Data

Numerical Data Categorical Data

Discrete Continuous

• Values 

vary by 

finite 

steps

• Can take any 

numerical 

value

Numerical Data

• Discrete Numerical Data: values vary by finite steps

– Number of siblings

– Number of doses

– Number of children

• Continuous Numerical Data : can take any numerical 

value

– Birth weight

– Body temperature

– Proportion of individuals responding to a treatment

12
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Types of Data

13

Data

Numerical Data Categorical Data

Discrete Continuous Nominal Ordinal

• Categories 

have no 

particular 

order

• There is a 

natural 

ordering to 

the categories

• Values 

vary by 

finite 

steps

• Can take any 

numerical 

value

Categorical Data

• Nominal Categorical Data (non-ordered) : categories have no 

particular order

– Male/female

– Eye colour (blue, green, brown etc.)

• Ordinal Categorical Data (ordered): there is a natural ordering 

to the categories

– Disagree/neutral/agree

– Poor/fair/good

14

Other Types of Data

• Ranks: Relative positions of the members of a group in some 

respect

– Order that an individual comes in a competition or examination

– Individuals asked to rank their preference for a treatment type

• Rates: ratio between two measurements (sometimes with 

different units)

– Birth rate: e.g.: number of births per 1,000 people per year

– Mortality rate: e.g.: number of deaths in a population, scaled to the 

size of that population, per unit of time

15
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Plotting Data

• As well as sometimes being necessary, it is always good 

practice to display data, using plots, graphs or tables, instead 

of just having a long list of values for each variable for each 

individual

• It is always a good idea to plot the data in as many ways as 

possible, because one can learn a lot just by looking at the 

resulting plots

16

Plotting Data

• How to display data?

• Choice of how to display data depends on the type of data 

• Here are a few of the most common ways of presenting data

17

Tables

• Objective of a table is to organise the data in a compact and 

readily comprehensible form

• Categorical data can be presented in a table

• One way, count the number of observations in each category of 

the variable and present the numbers and percentages in a 

table

• Need to be careful not to attempt to show too much in a table –

in general a table should be self-explanatory

18
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Tables
• Three groups of 10 

patients each 

received one of 3 

treatments (A, B, C) 

• For each treatment 

a certain number of 

patients responded 

positively  

(positive = 1, 

negative = 0) 

• A subset of the total 

data is shown here
19

Patient No.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

Treat A

1

1

1

1

1

1

1

1

1

1

0

0

0

0

0

0

0

Treat B

0

0

0

0

0

0

0

0

0

0

1

1

1

1

1

1

1

Treat C

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

Result

1

1

0

0

0

1

1

0

0

1

0

0

0

0

0

1

1

Tables

• Summarising the data in a table allows easier understanding 

of the data, here is one way the data could be presented:

20

Treatment No. of Positive 

Outcomes

% of Total

A 5 16.7

B 4 13.3

C 7 23.3

Tables

• Here is another way the same data could be presented:

21

Treatment No. of Positive 

Outcomes

% of Total Receiving 

that Treatment

A 5 50

B 4 40

C 7 70
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Pie Charts (Categorical Data)

22

• Pie charts are a popular way of presenting categorical data

Pie Charts (Categorical Data)

23

• Be careful not to divide the circle into too many categories as 

this can be confusing and misleading as the human eye is not 

good with angles!      (rough guide: 6 max) 

X

Bar Charts

24

• Use a bar chart for 

discrete numerical 

data or categorical 

data

• Usually the bars are 

of equal width and 

there is space 

between them
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Bar Charts

25

• Title and axis 

labels

• Axis scale

• Data bars

Bar Charts

26

• Another bar chart for the same data

Bar Charts

27

• Another bar chart for the same data
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Histogram

28

• Histogram is used to 

display continuous 

numerical data

• The total area of all the 

bars is proportional to the 

total frequency

• The width of the bars 

does not always have to 

be the same

Histogram

29

• Another example of a histogram

Box-and-Whisker Plot or Box Plot

30

Upper Quartile 

Lower Quartile 

Median

Outlier 

Inter-
Quartile 
Range 
(IQR)

• Box plot is used to 

display continuous 

numerical data
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Scatter Plot

31

• Scatter plots can be used to investigate correlations or 

relationships between two sets of measurements

Descriptive Statistics

• After presenting and plotting the data, the next step in 

descriptive statistics is to obtain some measurements of the 

centre and spread of the data

32

Measuring the Centre of the Observations

33

• Suppose we have a set of numerical observations and we 

want to choose a single value that will represent this set of 

observations

• How do we choose such a value?

• What is meant by the average of a set of observations?

• We will look at 3 measures of the centre of the observations:

– Median

– Mean 

– Mode
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Median

34

Individual ID IQ Score

1 75

2 81

3 79

4 69

5 85

6 98

7 100

8 102

9 76

10 84

• Table contains data for IQ scores for 

10 individuals

• Rank the observations, i.e., write 

them down in order of size beginning 

with the smallest

69, 75, 76, 79, 81, 84, 85, 98, 100, 102

• Median is the observation that has as 

many observations above it as below 

it in the ranked order

Median

35

Individual ID IQ Score

1 75

2 81

3 79

4 69

5 85

6 98

7 100

8 102

9 76

10 84

• When n (total number of observations) 

is odd:

Median = ((n + 1)/2)th observation

• When n is even:

Median = half way between the (n/2)th

observation and the ((n/2) + 1)th

observation

• Here n is even:

69, 75, 76, 79, 81, 84, 85, 98, 100, 102

median = (81 + 84)/2 = 82.5

Mean

36

• The arithmetic mean, often just simply called “the mean” or the 

average, is defined to be the sum of all the observations divided 

by the number of observations:

• The mean is calculated using the actual values of all the 

observations (unlike the median) and is therefore particularly 

useful in detecting small differences between sets of 

observations

• refers to each of the individual observations, there are n of 

these
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Mean

37

• is the mean of the observations in the sample, it is not 

necessarily equal to the mean of the population, which we 

term 

• is used as an estimate of    , the mean of the population

• For the IQ data above, the mean IQ is           84.9

(75 + 81 + 79 + 69 + 85 + 98 + 100 + 102 + 76 + 84)/10 = 84.9

Mean or Median

38

Individual ID IQ Score

1 75

2 81

3 79

4 69

5 85

6 98

7 100

8 102   500

9 76

10 84

• Median is unaffected by outliers 

Here median = 82.5

• The mean, because it takes all values 

into account, is affected 

Here mean = 124.7

• Mean has better mathematical 

properties as it takes all data into 

account

• Median is usually used for descriptive 

statistics

Mean or Median

39

• For symmetric data, the median and the mean are the same

• The median can be a better measure than the mean when the 

data are skewed
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Mode

• The mode is that value of the variable which occurs most 

frequently

• As a measure of the central value of a set of observations, the 

mode is less commonly used than either the mean or median

• Some sets of observations may have no mode and some may 

have more than one mode (unimodal = 1 peak, bimodal = 2 

peaks)

• The mode can be used for categorical measurements

40

Mode - Unimodal

41

Mode - Bimodal

42
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Summary I

• Need to be able to define what the population is and what the 

sample is in the study you are carrying out and in the data you 

are analysing

• Need to be able to determine the type of data that you have

• First in order to be able to describe, plot or put the data 

into tabular form

• Later on to choose the best, most appropriate way to 

analyse your data 

43

Summary II

44

� Descriptive statistics:

― Measures of centrality for your data, choosing the most 

appropriate for your data

― Mode

― Median

― Mean
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Descriptive Statistics II

Overview

2

• Measures of variability

• Range

• Interquartile Range

• Variance

• Standard Deviation

• Probability distributions:

• Binomial

• Normal

• Standard Normal

• Student’s t

Variability

• Statistics may be defined as the study of variability

• If there was no variability there would be no need for statistics

• How do we measure the variability in the data?

3
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Range

• The range of a set of 

observations is the difference 

between the largest and smallest 

observations

• The range for the IQ data is 

102 – 69 = 33 

4

Individual ID IQ Score

1 75

2 81

3 79

4 69

5 85

6 98

7 100

8 102

9 76

10 84

Range

• In small sets of observations, the range can be a useful 

measure of variability

• As the range only uses two observations, the highest and the 

lowest, and ignores the pattern of distribution of the 

observations in between, it can be relatively uninformative 

in larger data sets

5

Inter-Quartile Range and Box Plot

• A box plot shows the distribution of the data based on 

various percentile values

– A rectangular box shows where most of the data lie

– A line in the box marks the centre of the data

– Whiskers, which encompass all or nearly all of the 

remaining data, extend from either end of the box

– Outliers are represented as far out dots or circles, etc.

6
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Inter-Quartile Range and Box Plot

• 25th percentile = lower quartile = median of the lower half of 

the data

• 50th percentile = median of the data

• 75th percentile = upper quartile = median of the upper half of 

the data

• Difference between the upper and lower quartiles is called 

the inter-quartile range (IQR)

7

Inter-Quartile Range and Box Plot

8

Upper Quartile 

Lower Quartile 

Median

Outlier 

Inter-
Quartile 
Range 
(IQR)

Variance and Standard Deviation

• Suppose we have calculated the mean 

• We would like to measure the variability of the observations 

by seeing how closely the individual observations cluster 

around the mean

• The sample variance is defined as:

• is the sample estimate of the population variance 

9
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Variance and Standard Deviation

• The sample standard deviation is given by the square root of 

the variance

• Small standard deviation says the observations cluster closely 

around the mean, larger standard deviation says the 

observations are more scattered

• Standard deviation is often used as it has the same units as 

the mean

10

Probability Distributions

• Consider an experiment: toss a coin

– Coin comes up either a head or a tail

• Another experiment: throw a dice

– Either a 1, 2, 3, 4, 5, 6 will come up

• With each of the outcomes there is a probability associated

– Coin Toss: probability of 0.5 for either a head or a tail

– Throw of Dice: probability of 1/6 for each of 1, 2, 3, 4, 5, 6

11

Random Variables

• A Probability Distribution assigns a probability to each of the 

possible outcomes of a random experiment

• Constant: the value does not change

• Variable: the value can change

• Random variable: a variable whose value depends on chance, 

it is random (stochastic variable)

12
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Discrete Probability Distributions

• A Probability Distribution assigns a probability to each of the 

possible outcomes of a random experiment

• Experiment: Treatment Effectiveness

– do patients respond to the treatment or not? 

– binary outcome (yes or no) as to whether they respond or 

not

• Discrete probability distribution: can easily assign a 

probability to each of the possible outcomes

13

Binomial Distribution

• Binomial Distribution is a discrete probability distribution 

• Gives the probability for the number of successes in a 

sequence of n independent yes/no experiments

• Each of the individual experiments has a probability p of 

success

• Only two possible outcomes: success and failure

• n and p are referred to as the parameters of the distribution 

14

Parameters

• The parameters of a distribution define the distribution –

determine its shape

• Change the values of the parameters and the distribution 

changes

• Distributions are defined by a number of parameters

15
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Binomial Distribution

• Blood groups: B, O, A, AB

• Probability of an individual having blood group B = 0.08

• Probability of an individual not having blood group B, being 

one of O, A, AB = 1- 0.08 = 0.92

• Two random, unrelated individuals

– What is the probability neither have blood group B?

– What is the probability one has blood group B?

– What is the probability both have blood group B?

16
D. Altman, Practical Statistics for Medical Research

Binomial Distribution

• Are the assumptions of the binomial distribution satisfied?

• Only two possible outcomes: 

– Blood group B

– Not blood group B (O, A, AB)

• The individuals are unrelated – independence

• The probability of each person having blood group B does not 

change from person to person(p = 0.08)

17

Binomial Distribution

18
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Binomial Distribution

19

Discrete Probability Distributions

• Many other discrete probability distributions

– Multinomial – more than two possible outcomes 

– Poisson – count data

– Hypergeometric – sampling without replacement

– etc.

20

Continuous Probability Distributions

• When the random variable can take values from a continuum, 

we need to consider continuous probability distributions

• For example

– Height 

– Weight

• With continuous probability distributions (densities) the 

probability of the random variable taking on a particular value 

is zero

• Can only think about the probability for an interval of values

21
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Normal Distribution

• The Normal, Gaussian or bell-shaped distribution is a very 

important continuous probability distribution 

• Many statistical tests are based on the assumption that the 

data are Normally distributed

• The distribution is described/defined by two parameters -

the mean µ and σ the standard deviation 

22

Normal Distribution

• The curve of the Normal distribution is 

– bell-shaped

– symmetric about the mean

– the shape of the curve depends on the standard deviation, 

the larger the standard deviation the more spread out the 

distribution

23

Normal Distributions

Normal(0, 1)

Normal(2, 0.7)

Normal(-3, 2)

Normal(1, 5)

24
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Normal Distribution

µ 2σ−2σ 4σ−4σ

Approx. 95% of 
the area under the 
curve lies within 2 

standard deviations 
of the mean

25

Standard Normal Distribution

• The area under a part of the curve gives a particular 

probability 

• To find out the area/probability we use the 

Standard Normal Distribution 

(mean = 0, standard deviation = 1) 

and look up the area in tables or use a computer

• has a standard Normal distribution: 

26

Standard Normal

Approx. 95% of 
the area under the 
curve lies within 2 

standard deviations 
of the mean

Mean = 0
Standard deviation = 1

27
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Area Under Standard Normal

1.42

P(z < 1.42) = 
0.9222

28

Area Under Standard Normal

1.96

P(-1.96 < z < 1.96) = 
0.95

-1.96

2.5% 2.5%

29

Normal Distribution Example

30

� Here are some data from 

psychological test scores

Patient ID Group Score

01 1 71.2

02 2 68.0

03 1 73.6

04 2 75.6

05 1 62.3

06 2 74.5

04 1 75.4

05 2 65.9

06 1 74.9

.

.

.

.

.

.

.

.

.
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Normal Distribution Example

31

� And the distribution of these scores for each group 

The Standard Normal distribution

32

� Any Normal distribution can be converted to a standard 

Normal by subtracting the mean and dividing by the standard 

deviation

The Standard Normal distribution

33

X  ~ Normal(10, 3)

z = (x – 10)/3

Z  ~ Normal(0, 1)
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Student’s t-distribution

34

� The Student’s t-distribution is another symmetric continuous 

probability distribution

� This distribution is very similar to the Normal Distribution but 

has heavier tails

� Appear in many statistical tests when the sample size is 

relatively small

� Has one parameter: degrees of freedom(df)

Student’s t-distribution

35

Continuous Probability Distributions

36

� Other continuous probability distributions:

� Chi- square distribution: describes the sum of a number of squares 

of standard Normally distributed random variables

� Uniform distribution: all intervals of the same length are equally 

probable
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Summary I

37

� Descriptive statistics:

― Measures of spread:

― range 

― IQR 

― Variance

― standard deviation

� Random variables

� Probability distributions

― Discrete distributions: Binomial Distribution

― Continuous distributions: Normal distribution, 

Standard Normal Distribution
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Study Design

Outline

• Types of Study

• Sampling and Experimental Strategies

• Errors

• Hypotheses

• Results of a Hypothesis Test

• Statistical Significance

• Outcome Measures

• Effect Size

• Power

2

Scientific Studies and Experiments

• Exploratory

- To collect data about the natural world

- To identify associations and dependencies amongst 

the variables of interest

• Investigative

- To test hypotheses

- To investigate causality

3
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Observational Studies

Methodical observation of a system without intervention

• Examples:

- Epidemiology: 

relationship between smoking and lung cancer

- Astronomy: 

relationship between the mass of a star and its 

brightness

4

Controlled Experiments

Manipulate one or more variables in order to determine 

the effect of the intervention

• Examples:

- Medicine: 

clinical drug trials

- Physics: 

relationship between electrical current, voltage and 

resistance

5

• Compares group of patients with group of unaffected 

controls

• Relatively quick and cheap

• Difficult to select an appropriate group of controls

• Can detect correlations but not cause and effect

6

Case – Control Studies
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• Observes a fixed group over a period of time

• Can be retrospective or prospective

• Retrospective studies are cheap and quick, but 
affected by confounding variables

• Prospective studies can be controlled for 
confounding variables but are expensive and time 
consuming

7

Cohort Studies

Randomised Controlled Trials

• Subjects are assigned randomly to different groups

• Possible to control for confounding variables

• Difficult to generalise to background population

• Difficult to investigate variation over time

• Expensive

8

Example

• Background

- It is conjectured that patients with bipolar disorder 

tend to have a cognitive deficit (as measured by 

IQ) compared with unaffected people

• Objective

- To determine whether this is in fact the case

• This is an observational study

9
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Methodology

In our example we will use a case control design

- Select a group of affected people and a group of 

unaffected people and see whether those that 

are affected have a lower than average IQ

10

Sampling and Experimental Strategy 

• Randomisation

- Assign subjects to intervention and control groups 

randomly to minimise the effect of confounding 

variables

- This does not apply to our observational study

• Blinding of subjects

- Subjects do not know which groups they are 

assigned to

- This does not apply to our observational study
11

Sampling and Experimental Strategy 

• Blinding of experimenters

- Experimenters do not know which subject is 

assigned to each group

- We can and should implement this in our study

• Matching

- Match individual cases and controls with similar 

characteristics

- We will not apply this in our study

12
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Sampling and Experimental Strategy 

• Stratification

- Divide groups into sub-groups by particular 

characteristics, eg. age, sex

- In our example we should stratify (at least) by age 

and sex

13

Stochastic Errors 

• Caused by intrinsic variability in the data

- In our study this arises because of natural 

differences in IQ between individuals

• These should be:

- estimated in advance of the experiment

- accounted for in the statistical analysis

14

Measurement Errors

• Caused by limitations in the measurement procedures

• In our study this will depend on:

- uncertainties in the BPD diagnosis

- the precision with which IQ can be measured

- the care with which the measurements are taken

15
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Systematic Errors

• Caused by defective experimental procedures

• In our study these may arise from:

- differences in the calibration of different IQ scales

- differences in diagnostic procedures between 

different clinicians

• Systematic errors are also known as bias

16

Hypotheses

• A hypothesis is a specific conjecture about a system

• A hypothesis should:

- address a question of scientific interest

- relate to the system and not to the experiment

- be specific

- be testable

17

Hypothesis Testing Procedure

1. Define the research hypothesis, H1

2. Define the null hypothesis, H0

3. Define the significance threshold, α

Conduct the Experiment

18
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Example

• In our example:

- Research Hypothesis: 

There is a difference in the mean IQ between 

affected and unaffected people

- Null Hypothesis: 

There is no difference in the mean IQ between 

affected and unaffected people

- Significance threshold: 

We will set this later

19

Testing the Hypothesis

• Given our data, how likely is it that our hypothesis is 

true?

We cannot answer this question!

• Given that an hypothesis is true, how likely is our data?

We can answer this question

20

Possible Outcomes of the  

Hypothesis Test

21

H0 True H0 False

Reject

Don’t Reject
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False Positives and False Negatives

• H0 is true but is rejected

• This is also called a false positive or Type I Error

• H0 is false but is not rejected

• This is also called a false negative or Type II Error

22

True Positives and True Negatives

• H0 is true and is not rejected

• This is also called a true negative

• H0 is false and is rejected

• This is also called a true positive

23

Possible Outcomes of the  

Hypothesis Test

24

H0 True H0 False

Reject

Don’t Reject

False Positive

(Type I Error)

False Negative

(Type II Error)True Negative

True Positive
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Statistical Significance I

• Statistical significance, p:

- The probability of rejecting the null hypothesis 

when it is in fact true (Type I error)

• Significance threshold, α:

- The critical value of p below which we reject the 

null hypothesis

25

Statistical Significance II

• What threshold should we choose for our experiment?

• In theory this should depend on the experiment:

- How do we want to balance Type I and Type II errors?

- What prior evidence is there for our hypothesis?

- How important is it that we get the answer right?

26

Statistical Significance III

• In practice:

- Everyone chooses 0.05

• The critical value should be decided before the    

experiment is performed

• We will choose 0.05 as our significance threshold

27
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Outcomes if H0 is True

• The probability of a false positive equals the 

significance threshold, α

• The probability of a true negative equals 1- α

• This is also called the specificity

28

Outcomes if H0 is False

• The probability of a false negative is denoted β

• The probability of a true positive equals 1- β

• This is also called the sensitivity or power

29

Outcome Probabilities

30

H0 True H0 False

Reject

Don’t Reject

α
Type I Error Rate

1 – β
Power

1 – α
Specificity

β
Type II Error Rate

1 1
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Outcome Measures

• An outcome measure is the effect that we hope to 

observe and should be clearly defined at the design 

stage

• An effect size is the size of the outcome measure that 

we observe

• In general, it represents the strength of a relationship 

between two variables

• Outcome measures and effect sizes should always be 

clearly reported
31

Effect Size

• Some examples:

• Differences in means

• Differences in proportions

• Correlation coefficient

• Odds ratios

• Relative risks

32

Odds Ratio and Relative Risk

Probability of occurrence in Group 1            = p

Probability of non-occurrence in Group 1    = 1 - p

Probability of occurrence in Group 2            = q

Probability of non-occurrence in Group 2    = 1 - q

33
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Odds Ratio

Odds:

O(p)  = p / (1 – p)

O(q)  = q / (1 – q)

Odds Ratio:

OR = Odds(p) / Odds(q)

= p(1 – q) / q(1 – p)

34

Relative Risk

RR = p / q

RR = (1 – p) / (1 – q) x OR

When p and q are almost equal or p and q are small:

RR ≈ OR

When p is much larger than q:

1 << RR << OR

When p is much smaller than q:

1 >> RR >> OR
35

Example

p = 0.05    1 – p = 0.95

q = 0.04    1 - q = 0.96

RR = 1.25;  OR = 1.26

p = 0.95    1 – p = 0.05

q = 0.80    1 - q = 0.20

RR = 1.19 OR = 4.75

36
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Relative Risk and Odds Ratio

Relative risk is easier to understand intuitively 

but can be deceptive

eg:

RR can be close to 1 or far from 1 depending on 

how we define the “event”

37

Example

p = 0.050    1 – p = 0.950

q = 0.025    1 - q = 0.975

RR = 2.00  OR = 2.05

BUT

p = 0.950    1 – p = 0.050

q = 0.975    1 - q = 0.025

RR = 0.97 OR = 0.49

38

Relative Risk and Odds Ratio

• RR is usually used in randomised controlled

trials and cohort studies

• OR is usually used in case-control studies

39
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Example

• In our example:

• The outcome measure is the difference in mean IQs 

between the two groups

• The effect size is the numerical value of this difference

40

Effect Size and Statistical Significance

• Statistical significance does not imply scientific 

significance

• Effect size may imply scientific significance

• Effect size does not determine the significance

• Significance does not determine the effect size

• Effect size tells you something about nature

• Significance tells you something about your experiment

41

Power

• Power depends on (amongst other things):

- Effect size

- Significance threshold required

- Stochastic variability in the data (noise)

- and finally.... sample size

42
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Power

• What power should we choose for our experiment?

• In theory this should depend on the experiment:

- How do we want to balance Type I and Type II errors?

- What are the practical considerations regarding sample size?

43

Power

• In practice:

- Everyone chooses 0.8

• The power should be decided before the experiment is 

performed

• We will choose 0.8 for our power

44

Power versus Type I Errors
• Example: Cheap, simple test for a medical condition

Procedure: toss a coin

Specify outcomes:

Heads   →   positive result

Tails →   positive result

Side →  positive result

• This test has 100% power to detect any medical 

condition

• And 100% Type I error rate
45
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Variation of Power with Type I Error

46

Sample Size = 60

Variability = 10

Effect Size = 5

Type I Error Rate in Our Example

• We will assume a Type I error rate (significance 

threshold) of 0.05...

... based on tradition

47

Variation of Power with Effect Size

48

Sample Size = 60

Variability = 10

Significance= 0.05
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Effect Size in Our IQ Example

• We will assume a difference in the means of 5 IQ 

points...

... based on expert opinion and experience

49

Variation of Power with 

Stochastic Variability 

50

Sample Size = 60

Effect Size = 5

Significance= 0.05

Data Variability in Our Example

• We will assume a standard deviation of 10 IQ points...

... based on experience and preliminary testing

51
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Variation of Power with Sample Size

52

Variability = 10

Effect Size = 5

Significance= 0.05

Sample Size in Our Example

• We will use a sample size of 60 individuals per group...

... based on our other assumptions of a power 

requirement of 0.8

53

Summary of Our Study I

• Scientific Question: Do people with BPD tend to have 

lower IQs than unaffected people?

• Methodology: Case control study

• Experimental Strategy:

- Blinding of experimenters

- Stratification by age and sex

• Null Hypothesis: The difference in the mean IQ 

between case and control groups is zero

54
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Summary of Our Study II

• Outcome Measure: Difference in the Means

• Estimated Effect Size: 5 IQ points

• Estimated Variability: 10 IQ points

• Significance Threshold: 0.05

• Sample Size: 60 per group

• Power: 0.8

55

Summary I
• Types of Study: 

Exploratory, investigative, observational studies, 

controlled experiments

• Methodologies: 

Prospective, retrospective, case–control

• Sampling and Experimental Strategy: 

Randomisation, blinding, matching, stratification

• Errors: 

Stochastic errors, measurement errors, systematic 

errors (bias)
56

Summary II

• Hypotheses: 

Good and bad hypotheses, null and alternative 

hypothesis

• Hypothesis Testing: 

Likelihood of data, rather than likelihood of hypothesis, 

false positives and false negatives, true positives and 

true negatives, Type I and Type II errors

• Statistical Significance: 

Significance threshold, specificity, sensitivity (power)

57
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Summary III

• Outcome Measure: 

Effect size, relationship between effect size and 

statistical significance

• Power: 

Relationship between power, sample size, data 

variability and effect size

58

Take Home Message

“To propose that poor design can be corrected by subtle 

analysis techniques is contrary to good scientific 

thinking”

Stuart Pocock (“Controlled Clinical Trials”, pg. 58) regarding the use of 

retrospective adjustment for trials with historical controls

59
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Hypothesis Testing I

Parametric Hypothesis Testing

• A statistical hypothesis is a statement of belief regarding the 

value of one or more population characteristics

• Note: About a population, not a sample

• A hypothesis test is a test of that belief

• Parametric hypothesis test makes assumptions about the 

distribution of the population, typically a Normal distribution 

assumption

2

Hypothesis Test

• Hypothesis testing typically involves four steps: 

1. Formulation of the hypothesis

2. Select and collect sample data from the population of 

interest

3. Application of an appropriate test

4. Interpretation of the test results

3
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Hypothesis Test: Example

• The average height of males in the population is believed to 

be approximately 175cm

• We want to know if male patients attending particular out-

patient clinics are also this tall on average or are they 

smaller or taller?

4

Null and Alternative Hypotheses

• The null hypothesis, denoted H0, is a claim about a population 

characteristic

• Initially we assume the null hypothesis is true

• The opposite hypothesis is termed the alternative hypothesis

and is denoted by H1

• Need to turn the research/clinical question into a statistical 

hypothesis that we can test

5

Hypotheses: Example

• For our example data set, the research question could be: “Are 

male patients who attend out-patient clinics of average 

height?”

• Null hypothesis: the mean height of male patients is the same 

as the average height of males:  

H0: µ = 175cm

• Alternative hypothesis: the mean height of male patients is not 

the same as the average height of males: 

H1: µ ≠ 175cm

• µ = the population mean height of male patients attending the 

particular type of out-patient clinics

6
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Hypotheses: One-Sample z-Test

• To test the null hypothesis we will use a one-sample z-test

• Assumptions of the one-sample z-test:

– Independent random sampling

– Large sample size (rough guide at least 30)

– Normally distributed population

– Standard deviation of the population known

7

Hypothesis Testing: Significance Level

• The significance level is the probability of wrongly rejecting 

the null hypothesis H0, if it is in fact true

• Usually  α = 0.05, this is just a convention, sometimes  α = 0.01 

is used. The level is based on the importance of the decision 

being made and the consequences of falsely accepting or 

rejecting H0

• We will use a significance level: α = 0.05 

8

Hypothesis Test: Example

• We collect data on the heights of 30 male patients from out-

patient clinics

• Here is a subset of the data and a plot of all the data

9

Patient ID Height (cm)

01 148

02 197

03 173

04 192

05 174

.

.

.

.

.

.

Patients’ Heights
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Hypotheses: Example

• For our example data set, the sample mean: 

= 180.1

• Is this just by chance? Did we pick a sample that just happens 

to be taller than the general male population? Or are male 

patients taller than the average male population?

• To answer these questions we test our null hypothesis 

10

Sampling Distribution of the Mean

• In order to test the hypothesis we first need to understand 

what we mean by the sampling distribution of the mean

• If we take repeated samples of size n from a population, we 

would expect the means of each of these samples to vary

• These means will have their own mean and standard 

deviation

11

Sampling Distribution of the Mean

12

Sample 3: Mean = 170.4    SD = 16

Sample 5: Mean = 176.5    SD = 17.2

Sample 2: Mean = 175.4    SD = 12.9

Sample 1: Mean = 181.4    SD = 14.1

Sample 4: Mean = 176.3    SD = 12.9
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Sampling Distribution of the Mean

13

Mean of 5 sample means = 176    

SD of 5 sample means = 3.9

Sampling Distribution of the Mean

14

Mean of 25 sample means = 175.6    

SD of 25 sample means = 2.5

Sampling Distribution of the Mean

15

Mean of 200 sample means = 174.9    

SD of 200 sample means = 2.7
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Sampling Distribution of the Mean

16

Mean of 500 sample means = 175    

SD of 500 sample means = 2.7

Sampling Distribution of the Mean

17

Mean of 1000 sample means = 174.8    

SD of 1000 sample means = 2.7

Sampling Distribution of the Mean

• If the true population mean and standard deviation are     and      

respectively, then the sample means will have a mean of     and 

a standard deviation of       , also called the standard error of 

the mean

• For large samples the distribution of the sample means will be 

Normal

18
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Sample Means When H0 is True

19

Extreme, low probability values for µ
when H0 is true 

Sample 

means with higher 

probability when H0 is 

true

µ when H0 is true

Hypotheses: One-sample z-Test

• Start with a normal variable that has a given mean and 

standard deviation

• Transform this normal variable so that it has a mean of 0 and 

standard deviation of 1

• The transformed variable has a standard normal distribution: 

Normal(0, 1)

20

Hypothesis Testing: P-Value

• We have obtained sample data from the population 

– Sample of male out-patients’ heights

• We now evaluate the probability that we could have observed 

this data if the null hypothesis were true

• This probability is given by the P-value

• The smaller the P-value the more unlikely this is 

• We evaluate this probability using a test statistic

21
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Hypothesis Testing: Test Statistic

• For the male patients’ heights:

Sample mean:       = 180.1

Standard error of the sample mean =             = 

22

Patients’ Heights

Hypothesis Testing: Test Statistic

Test Statistic      =     Observed Value – Hypothesized Value

Standard Error of the Observed Value

23

Sample Mean Hypothesized Mean

Standard Error of the Mean

Test Statistic

Hypothesis Testing: Test Statistic

2424

H0 : µ = 175

0 1.9

180.1
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Hypothesis Testing: Test Statistic

2525

H0 : µ = 175

Reject Reject

0

Extreme 5% regions

1.9

180.1

1.96-1.96

Hypothesis Testing: Normal(0,1)

2626

Reject Reject

1.96-1.96

Fail to Reject 

Region

• Standard Normal Distribution: Normal(0, 1)

– The rejection region for H0 and the fail to reject region for 

H0 for a z-test at a two-sided significance level of 5%

Hypothesis Testing: Test Statistic

• A test statistic is calculated from the sample data

• It is used to decide whether or not the null hypothesis should 

be rejected

• The general form for the test statistic is the following:

Test Statistic      =     Observed Value – Hypothesized Value

Standard Error of the Observed Value

• The test statistic expresses the distance between the observed 

value and the hypothesized value as a number of standard 

errors

27
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Hypothesis Testing: Significance Level

• What’s the probability of observing the test statistic 1.9, or a 

more extreme test statistic, given the null hypothesis is true?

• This is the P-value

• Use the z tables to compute this probability

28

Hypothesis Testing: Normal(0,1)

2929

1.9-1.9

The probability of seeing a test 

statistic = 1.9, or a more 
extreme test statistic, given the 
null hypothesis is true is given 

by the area under the curve to 
the right of the test statistic

Two sided hypothesis: 

consider values more 
extreme in either 
direction – smaller and 

taller patients

P-value: 

Sum of these two 
areas = 0.06 

Hypothesis Testing: Significance Level

• Is this P-value large? Do we reject H0?

• The answer to these questions depends on the significance 

level: α = 0.05

• H0 should be rejected if the P-value < α

• H0 should not be rejected if the P-value >= α

30
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Hypothesis Testing: Interpreting P-value

• The P-value is 0.06 for the analysis carried out on the heights 

of the male patients

• Thus at a significance level (α) = 0.05 we fail to reject the null 

hypothesis that the mean height of the male patients 

attending the out-patient clinics is equal to 175cm

31

Failing to Reject the Null Hypothesis

• The null hypothesis is never accepted

• We either reject or fail to reject the null hypothesis

• Failing to reject means that no difference is one of the 

possible explanations but we haven’t shown that there is no 

difference

• The data may still be consistent with differences of practical 

importance

32

Hypothesis Testing: Errors

H
0

True H
0

False

Reject False Positive

(Type I Error)

Don’t Reject False Negative

(Type II Error)

33

• Associated with every hypothesis test are errors:

• Type I Error: (false positive) 

is the error of rejecting H0 when it is actually true

• Type II Error: (false negative) 

is the error of failing to reject H0 when it is false

True Positive

True Negative
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Hypothesis Testing: Errors

34

• The probability of a Type I Error is predetermined by the 

significance level α

• The probability of a Type II Error is denoted β

• The power of a statistical test is defined as 1-β and is the 

probability of rejecting H0 when H0 is false

• A good test is one which minimises α and β

Confidence Intervals

• Remember we are interested in some aspect of a population

• We take a random representative sample from this population 

and collect some data from this sample

• Suppose we consider the mean of the data

• The mean of the sample (    ) is a point estimate of the 

population mean (    )

35

Confidence Intervals

• If we took another random sample from the population and 

collected data for this second sample we may get a different 

sample mean

• We would like to consider the range within which the true 

population mean would be expected to lie, not just the point 

estimate 

• We can use confidence intervals to do this

36
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Confidence Intervals

• A confidence interval for a population characteristic (doesn’t 

have to be the mean) is an interval of plausible values for that 

characteristic of interest

• Associated with each confidence interval is a confidence level

• If we took repeated samples and calculated confidence 

intervals, the confidence level says what proportion of those 

would be expected to contain the true population parameter

• Usual choices are 95%, 99% etc. 

37

Area Under Standard Normal

38

1.96

P(-1.96  < z < 1.96) = 0.95

-1.96

2.5% 2.5%

Confidence Intervals

39

Sample mean 
Population mean 

Standard deviation of the sample 

mean, also known as the standard 

error of the mean
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Confidence Intervals

• Looking up the z-tables we can write down the 

following:

• Replace z:

• Re-arranging:

40

Confidence Intervals

• Which gives us our 95% confidence interval: 

• All we need to know is the sample mean and the  

standard deviation to obtain the confidence interval

41

Confidence Intervals

• Example:  we want to estimate an interval of possible values 

for the mean systolic blood pressure of patients

• We take a random sample of 30 patients and record their 

systolic blood pressure

42

• Mean systolic blood 

pressure = 135.5

• Standard deviation of 

the systolic blood 

pressure = 9
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Confidence Intervals

• General formula:

• For the blood pressure data:

• A 95% confidence interval for the population mean 

systolic blood pressure is:  (132.3, 138.7)

43

Confidence Intervals

• Suppose we increase the sample size to 100 and measure the 

systolic blood pressure on this random sample of size 100 

44

• What do we expect to 

happen to the 

confidence interval? 

Should it become 

narrower or wider?

Confidence Intervals

• Interval should become narrower

• The 95% confidence interval for the systolic blood pressure 

based on 100 samples is: (133.5, 137)

45
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Interpreting Confidence Intervals

• A 95% confidence interval:

– if samples were repeatedly taken from the population of 

interest

– calculate confidence intervals for each sample

– 95% of the time, these intervals would contain the true 

population value of the parameter of interest 

46

Interpreting Confidence Intervals

47

• 50 samples each of size 30, true population mean = 0, 95% CI

Interpreting Confidence Intervals

48

• 50 samples each of size 100, true population mean = 0, 95% CI
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Interpreting Confidence Intervals

49

• 50 samples each of size 100, true population mean = 0, 99% CI

Interpreting Confidence Intervals

50

• 50 samples each of size 100, true population mean = 0, 80% CI

Interpreting Confidence Intervals

• Confidence intervals and hypothesis tests are related and 

provide complementary information

• For every hypothesis test, we can also consider an equivalent 

statement about whether or not the hypothesized value is 

contained in the confidence interval

51
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Two Sample Hypothesis Test

• Group 1: Students received extra tuition before a test

• Group 2: Students did not receive extra tuition before a test

• Research Question: 

Does extra tuition help students to achieve better test scores or 

do they perform similarly to those who don’t receive extra 

tuition?

52

Hypothesis Generation

• Null hypothesis: the population mean test score is the same in 

both groups :  

H0: µ1 = µ2

or equivalently

H0: µ1 − µ2 = 0

• Alternative hypothesis: the population mean test score is not 

the same in both groups : 

H1: µ1 ≠ µ2

or equivalently

H0: µ1 − µ2 ≠ 0

• µ1, µ2 = the population mean test score for those receiving extra tuition and 

those not receiving extra tuition, respectively

53

Two Sample Hypothesis Test

• Two groups of students’ 

test scores were collected

• Here is some of the data

54

Student ID Group Test Score

01 1 71.2

02 2 68.0

03 1 73.6

04 2 75.6

05 1 62.3

06 2 74.5

07 1 75.4

08 2 65.9

09 1 74.9

.

.

.

.

.

.

.

.

.
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Two Sample Hypothesis Test

55

Independent Two Sample t-test

• We carry out an independent two sample t-test for means

– Two samples must be independent and random

– The underlying populations must not be skewed

– The standard deviation in the two samples must be the 

same

56

Independent Two Sample t-test

• Test statistic:  

57

Sample difference in means

Hypothesized value

Standard error of the 

sample difference in 
means
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Two Sample t-test

• t = 2.2, P-value = 0.03

• P-value < 0.05, therefore we reject the null hypothesis and 

conclude that the extra tuition does have an impact on the test 

scores of the students

• 95% confidence interval: (0.24,  8.6) 

• Confidence interval also leads to the same conclusion as it does 

not cover 0

58

Summary I

• Hypothesis test is a statement of belief regarding the value of 

one or more population characteristics

• Parametric hypothesis test – makes assumptions about the 

population 

• Setting up the hypothesis:

– Null hypothesis 

– Alternative hypothesis

– Significance level

• Sampling distribution of the mean 

– standard error of the mean

59

Summary II

• One sample Z-test

– Assumptions

– Test statistic

– P-value

– Rejecting or failing to reject the null hypothesis

– Type I, Type II errors and power

• Confidence Interval

– Relationship between confidence interval and hypothesis 

testing

• Independent 2 sample t-test

60
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Hypothesis Testing II

Overview

• Hypothesis tests for

- Comparing Proportions: Chi squared test

- Paired Data

• When the Assumptions don’t hold

- Transforming Data

- Non-parametric tests

• Exact Tests

- Fisher’s Exact Test

- Permutation Test

2

Comparing Proportions

• We have examined how to compare means: t tests

• One of the next most common comparisons we might want to 

make is between proportions

3
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Comparing Proportions

• Suppose we have two groups of individuals and some event 

happening or not in the group (e.g. responding to a treatment), 

a binary outcome

• How do we examine whether the proportion of individuals 

responding is the same in each group?

4

Comparing Proportions

• Categorical data are very common: when we can categorize 

individuals/objects/cells etc. into two or more mutually 

exclusive groups

• The number of individuals that fall into a particular group is 

called the frequency

• The data can be displayed in frequency tables/contingency 

tables or cross tabulated

• When there are only two categories for one of the variables, we 

can consider proportions

5

Comparing Proportions

• Suppose we have two groups of individuals

• The individuals in Group 1 have received a treatment

• The individuals in Group 2 have received a placebo

• The trial was set up to be a blind trial

• After a period of time the individuals will either have responded 

to the treatment/placebo or not

• We want to examine whether the proportion of individuals that 

respond is the same in Group 1 and Group 2

6
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2x2 Contingency table

7

Respond Don’t 

Respond

Group 1 20 40 60

Group 2 35 35 70

55 75 130

2x2 Contingency table

8

Respond Don’t 

Respond

Group 1 a b 60

Group 2 c d 70

55 75 130

Cells of the Table

2x2 Contingency table

9

Respond Don’t 

Respond

Group 1 a b M1

Group 2 c d M2

M3 M4 130

Marginal Totals
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2x2 Contingency table

10

Respond Don’t 

Respond

Group 1 a b a + b

Group 2 c d c + d

a + c b + d N = a + b + c+ d

Overall Total

Comparing Proportions

• Want to know if the proportion of individuals responding is the 

same in each of the groups

• Another way of asking the same question is:                      

whether the row and column variables are independent or not

• The null hypothesis is that responding to the treatment is 

independent of whether the treatment was received or the 

placebo

11

Chi Squared Test

• This hypothesis is tested using a Chi squared test

12
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Chi Squared Test

• The observed is the count that we have observed in our data

• The expected is what count we would expect to observe:

Expected cell frequency =   row total   X  column total

N

13

Chi Squared Test

• Cell a:

• Observed = 20

• Expected = (60 X 55)/130 = 25.38 

14

Respond Don’t 

Respond

Group 1 20 40 60

Group 2 35 35 70

55 75 130

Chi Squared Test

• Cell b:

• Observed = 40

• Expected = (60 X 75)/130 = 34.62

15

Respond Don’t 

Respond

Group 1 20 40 60

Group 2 35 35 70

55 75 130
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Chi Squared Test

16

Respond Don’t 

Respond

Group 1 20 40 60

Group 2 35 35 70

55 75 130

Chi Squared Distribution

17

Chi Squared Test

• The test statistic is compared with a Chi Square distribution 

having a particular number of degrees of freedom and a p-value 

is obtained 

• For the example data the test statistic is = 3.67 and the 

corresponding p-value is = 0.055

• Thus we would fail to reject the null hypothesis

18
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Chi Squared Test Assumptions

• Random sample

• Independent observations in the cells

• Expected cell counts need to be >= 5

19

Paired Samples

• Sometimes we may have two groups of data which are 

not independent samples

• One of the most common scenarios is when measurements are 

taken before and after some intervention on the same 

individuals

• For example individuals treated with a new drug 

• Blood metabolite measurements are taken before and after 

the drug has been taken

• Test to see if the drug has changed the mean blood 

metabolite measurement

20

Paired Samples

• Cannot treat the groups as independent as the same individuals 

are in the before and after groups

• The data are paired

• H0: There is no difference between the means

H0:  µ1 - µ2 = 0

• H1: There is some difference between the means

H1:  µ1 - µ2  ≠ 0 

21
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Paired sample example

• Measurements of a blood metabolite taken before and after a 

treatment

• The measurements are not independent

• Can now carry out a 1 sample t test for the hypothesis:

H0:  µ= 0

µ is the population mean difference

22

Individual 1 2 3 4 … … n

Before 40.1 19.1 21.2 18.4 … … 26.3

After 45.1 22.4 29.1 19.0 … … 33.3

Difference 5 2.7 7.9 0.6 … … 7.0

Paired sample example

• We have reduced the data to one sample by calculating the 

difference of each pair

• Some statistical programs will allow you to specify that the data 

are paired so the difference won’t need to be calculated 

beforehand

• NOTE: we are still assuming that the people are independent, as 

in the usual t test

• There are other paired data tests e.g. McNemar Test

23

Parametric Tests

• So far we have used probability distributions, and assumed that 

if the sample size is large enough, then the data will match 

some underlying distribution, e.g. the t distribution, the chi-

squared distribution, etc.

• These tests are referred to as parametric tests

• If possible we want to use parametric tests as they are often the 

most powerful tests for a given data set

• But sometimes the test assumptions will not be satisfied, 

particularly the assumption of Normality

24
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Test Assumptions Not Satisfied

• What to do if your data is not roughly Normally distributed?

• For example:

- Censored – e.g. cut off at zero

- Bimodal or multimodal

- Asymmetrical – skewed to the left or right

- Non-numeric data, such as ordered categorical

- Groups with different variance

25

Alternative: Transforming your data

• Sometimes the data don’t look Normally distributed but we 

can transform the data so that it looks Normal

• A number of different transformations are possible: 

• Take the square root of each of the data points

• Take the square of each of the data points

• Take the logarithm of each of the data points

26

Alternative: Transforming your data

• The choice will depend on the shape of the original data

• Remember that all tests carried out on the transformed data 

relate to the transformed data and not the original data

27
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Alternative: Transforming your data

28

Non-Parametric Tests

• If we cannot find a transformation that allows us to use a 

parametric test, then the next alternative is to use a non-

parametric test

29

Non-Parametric Tests

• The z test, etc. depend on being able to define the data using 

the parameters: the mean and the variance

• We can avoid this by using ranks, and instead of comparing 

means we compare medians

• There are non-parametric versions of several of the most 

popular parametric tests

30
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Non-Parametric Tests: Guidelines

• Ranking the data results in a loss of information: we now have 

no information about how spread out the data is, just about the 

ordering of the data points

• Non-parametric tests will have less power

• They can be computationally easier for simple cases (small 

samples)

• They are not completely assumption-free

31

Mann-Whitney U test

• If you want to compare two samples, but they are not normally 

distributed

• The Mann-Whitney U test is the non-parametric alternative

• H0: median of group 1 = median of group 2

• H1: median of group 1 ≠ median of group 2

32

Mann-Whitney U test

• Procedure:

- Pool the two groups, and rank all the data points

- In each of the two groups, sum the ranks

- Test statistic: U is then calculated from these sums and the 

sample sizes in the groups

33
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Non-Parametric Tests

34

Parametric Test Non-Parametric Version

t test: Two sample

Mann-Whitney U test

Wilcoxon rank sum test

t test: Paired

Sign test

Wilcoxon signed rank test

ANOVA Kruskal-Wallis test

Pearson correlation Spearman correlation

Exact Tests

• Another type of test is an exact test

• An exact test is a test where the distribution of the test statistic 

is exactly calculable, either by complete enumeration or by 

simulation

• Using an exact test, we get an exact p-value

35

Fisher's Exact test

• Suppose we have a contingency table in which we are 

comparing the side effect of a drug, with a placebo

• When at least one expected cell count is low (<5), Fisher’s exact 

test is usually employed

• Given that we have a certain number of people in each category 

(marginal totals), this table can be seen as one possible instance 

of all possible tables

36
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Fisher's Exact test

37

2 4

7 3

Drug          Placebo

Side Effects       

No Side Effects       

Total

Total

9 7 16

10

6

• It is clearly unbalanced – it has 2:4 in the first row, and 7:3 in 

the second row

• How many tables more unbalanced than that are possible, 

while keeping the marginal totals the same?

38

1 5

8 2

Drug          Placebo

Side Effects       

No Side Effects       

Total

Total

9 7 16

10

6

• More extreme:

- One with 1:5 and 8:2

Fisher's Exact test

39

0 6

9 1

Drug          Placebo

Side Effects       

No Side Effects       

Total

Total

9 7 16

10

6

• More extreme:

- One with 1:5 and 8:2

- One with 0:6 and 9:1

Fisher's Exact test
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40

a b c d probability

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

3 3 6 4 …

2 4 7 3 pobs

1 5 8 2 p1

0 6 9 1 p2

• Here we've made a table to 

show the permutations for 

each of the four cells

• Calculate a probability for 

each table – this is done 

with a formula based on the 

hypergeometric distribution

• Add up the probabilities of 

as extreme, or more 

extreme tables to obtain the 

exact total probability
Exact p-value = pobs + p1 + p2

Fisher's Exact test

Permutation tests

• These are a type of Exact test

• They follow the same principle of shuffling the data

• With a permutation test, we obtain the distribution of the test 

statistic under the null hypothesis by calculating all possible 

values for the test statistic by rearranging the labels of the 

observed data points

41

Permutation test: example

• Two sample t test:

• Remember our 

hypotheses:

H0:  µ1 = µ2

H1:  µ1 ≠ µ2

42

Patient ID Group 1

01 71.2

03 73.6

05 62.3

07 75.4

09 74.9

11 68.3

.

.

.

.

.

.

Patient ID Group 2

02 68.0

04 75.6

06 74.5

08 65.9

10 67.5

12 67.4

.

.

.

.

.

.
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Permutation test: example

• Two sample t test:

• H0: the mean is the 

same in both groups

• So, if we swapped 

people from one 

group to the other, 

this should not affect 

the mean

43

Patient ID Group 1

01 71.2

03 73.6

05 62.3

07 75.4

09 74.9

11 68.3

.

.

.

.

.

.

Patient ID Group 2

02 68.0

04 75.6

06 74.5

08 65.9

10 67.5

12 67.4

.

.

.

.

.

.

Permutation test: example

• Procedure:

Permute the data points

between groups, that is

each point has a 50%

chance to swap group

Keeping the sample 

sizes in each group the 

same

Perform t test, and see 

if the test statistic is 

larger
44

Patient ID Group 1

01 71.2

03 73.6

05 62.3

07 75.4

09 74.9

11 68.3

.

.

.

.

.

.

Patient ID Group 2

02 68.0

04 75.6

06 74.5

08 65.9

10 67.5

12 67.4

.

.

.

.

.

.

Permutation test: example

• Original t = 2.15

45

Patient ID Group 1

01 71.2

03 73.6

05 62.3

07 75.4

09 74.9

11 68.3

.

.

.

.

.

.

Patient ID Group 2

02 68.0

04 75.6

06 74.5

08 65.9

10 67.5

12 67.4

.

.

.

.

.

.
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Permutation test: example

• Original t = 2.15

• tp1 = 1.94

46

Patient ID Group 1

01 65.9

03 74.5

05 55.1

07 67.4

09 74.9

11 68.3

.

.

.

.

.

.

Patient ID Group 2

02 68.0

04 75.6

06 73.6

08 71.2

10 67.5

12 75.4

.

.

.

.

.

.

Permutation test: example

• Original t = 2.15

• tp1 = 1.94

• tp2 = 0.98

• etc...

• 1000 permutations 

and 39 gave a 

larger t statistic

47

Patient ID Group 1

01 66.6

03 71.2

05 55.1

07 67.5

09 74.9

11 75.4

.

.

.

.

.

.

Patient ID Group 2

02 68.0

04 75.6

06 73.6

08 74.5

10 67.4

12 68.3

.

.

.

.

.

.

Permutation tests

• The empirical p-value is calculated by counting the proportion 

of times that your permuted data sets show a larger test statistic 

than the one you saw in the original data

• R = the number of permutations where your test statistic was 

exceeded

• N = the total number of permutations

48
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Permutation tests

• The empirical p-value is calculated by counting the proportion 

of times that your permuted data sets show a larger test statistic 

than the one you saw in the original data

• Permutation tests are similar to the exact test, except we don't 

run through all permutations, just a representative subset of 

them
49

Summary I

• Comparing Proportions: Chi squared test

• What hypothesis is being tested

• The assumptions underlying the test

• Paired Data

• Sometimes can reduce a paired dataset to a single sample, 

by taking differences

50

Summary II

• When the assumptions don’t hold

• Transforming Data

• Non-parametric tests

• Exact Tests

• Fisher’s Exact Test (expected cell counts low)

• Permutation Test (swapping labels)

51
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One-Way ANOVA

Introduction

• Analysis of variance (ANOVA) is a method for testing 

the hypothesis that there is no difference between 

three or more population means 

• Often used for testing the hypothesis that there is no 

difference between a number of treatments

2

Independent Two Sample t-test

• Recall the independent two sample t-test which is 

used to test the null hypothesis that the population 

means of two groups are the same 

• Let      and      be the sample means of the two groups, 

then the test statistic for the independent t-test is 

given by:

• The test statistic is compared with the t-distribution 

with                      degrees of freedom (df)

3
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Why Not Use t-test Repeatedly?

• The t-test, which is based on the standard error of the 

difference between two means, can only be used to 

test differences between two means

• With more than two means, could compare each mean 

with each other mean using t-tests

• Conducting multiple t-tests can lead to severe inflation 

of the Type I error rate (false positives) and is NOT 

RECOMMENDED

4

Why Not Use t-test Repeatedly?

• ANOVA is used to test for differences among several 

means without increasing the Type I error rate

• The ANOVA uses data from all groups to estimate 

standard errors, which can increase the power of the 

analysis

5

Why Look at Variance When 

Interested in Means?

• Basic Idea

- Calculate the mean of the observations within each 

group

- Compare the variance of these means to the average 

variance within each group

- As the means become more different, the variance 

among the means increases

6
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Why Look at Variance When 

Interested in Means?

• The variability 

within each sample 

is approximately the 

same

• The variability in the 

mean values of the 

samples is 

consistent with the 

variability within the 

individual samples

7

Why Look at Variance When 

Interested in Means?

• The variability in 

the sample means 

is much larger than 

would be expected 

given the variability 

within each of the 

samples

8

Why Look at Variance When 

Interested in Means?

• To distinguish between the groups, the variability 

between (or among) the groups must be greater than 

the variability of, or within, the groups

• If the within-groups variability is large compared with 

the between-groups variability, any difference 

between the groups is difficult to detect

• To determine whether or not the group means are 

significantly different, the variability between groups 

and the variability within groups are compared

9
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One-Way ANOVA and Assumptions

• One-Way ANOVA

- When there is only one categorical variable which 

denotes the groups and only one measurement 

variable (numerical), a one-way ANOVA is carried 

out

- For a one-way ANOVA the observations are divided 

into I mutually exclusive categories, giving the one-

way classification

10

One-Way ANOVA and Assumptions

• ASSUMPTIONS

- Each of the populations is Normally distributed with 

the same variance (homogeneity of variance)

- The observations are sampled independently, the 

groups under consideration are independent 

ANOVA is robust to moderate violations of its 

assumptions, meaning that the probability values 

(P-values) computed in an ANOVA are sufficiently 

accurate even if the assumptions are moderately 

violated 

11

Simulated Data Example

• 54 observations

• 18 AA observations

mean IQ for AA = 71.6

• 18 AG observations

mean IQ for AG = 72.7

• 18 GG observations

mean IQ for GG = 87.1

12
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Introduction of Notation

• Consider I groups, whose means we want to compare

• Let  ni, i = 1, 2, . . ., I be the sample size of  group i

• For the simulated verbal IQ and genotype data,              

(I = 3), representing the three possible genotypes at 

the particular locus of interest. Each person in this 

data set, as well as having a genotype, also has a 

verbal IQ score

13

Null Hypothesis for ANOVA

• Want to examine if the mean verbal IQ score is the 

same across the 3 genotype groups

- Null hypothesis is that the mean verbal IQ is the 

same in the three genotype groups

14

Within-Groups Variance

• Remember assumption that the population variances 

of the three groups is the same

• Under this assumption, the three variances of the 

three groups all estimate this common value 

- True population variance = σ2

- Within-groups variance 

= within-groups mean square 

= error mean square 

= 

15



6

Within-Groups Variance

• For groups with equal sample size this is defined as the 

average of the variances of the groups

• = observation j in group i

• = sample means of the genotype groups AA, AG, GG

16

Within-Groups Variance

• In our example data

17

Within-Groups Variance

• Since the population variances are assumed to be equal 

the estimate of the population variance, derived from 

the separate within-group estimates, is valid whether or 

not the null hypothesis is true

18
EQUAL NOT EQUAL
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Between-Groups Variance

• If the null hypothesis is true:

- the three groups can be considered as random 

samples from the same population 

- assumed equal variances, and because the null 

hypothesis is true, then the population means are 

equal

- The three means are three observations from the 

same sampling distribution of the mean

19

Between-Groups Variance

20

Between-Groups Variance

• The sampling distribution of the mean has variance

• This gives a second method of obtaining an estimate of 

the population variance (n = number of observations in 

each group)

• The observed variance of the treatment means is an 

estimate of               and is given by:

21
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Between-Groups Variance

• For equal sample sizes, the between-groups variance is 

then given by:

22

Mean of all the observations

Means of the 3 groups

Unequal Sample Sizes

• There are adjustments to these formulae when the 

sample sizes are not all equal in the groups:

- Within Groups variance:

- Between Groups Variance:  

23

Testing the Null Hypothesis, F-test

• If the null hypothesis is true then 

- the between-groups variance sb
2

- and the within-groups variance sw
2

- are both estimates of the population variance σ2

24
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Testing the Null Hypothesis, F-test

• If the null hypothesis is NOT true then

- the population means are not all equal

- then sb
2 will be greater then the population 

variance, σ2

- it will be increased by the treatment differences

25

Testing the Null Hypothesis, F-test

• To test the null hypothesis we compare the ratio of sb
2

and sw
2 using an F-test

• F statistic is given by:

with I-1 and I(n-1) degrees of freedom  

26

Testing the Null Hypothesis, F-test

• Another way of thinking about this ratio:

27
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F Distribution and F-test

• The F distribution is the continuous distribution of the 

ratio of two estimates of variance

• The F distribution has two parameters: degrees of 

freedom numerator (top) and degrees of freedom 

denominator (bottom)

• The F-test is used to test the hypothesis that two 

variances are equal

28

F Distribution and F-test

• The validity of the F-test is based on the requirement 

that the populations from which the variances were 

taken are Normal

• In the ANOVA, a one-sided F-test is used

29

F Distribution

30
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Output: ANOVA Table

• For the genotype, verbal IQ data:

One-way ANOVA: IQ versus Genotype 

Source         DF          SS         MS         F          P
Genotype       2       2691      1346     6.25    0.004
Error            51     10979        215
Total            53     13671

S = 14.67   R-Sq = 19.69%   R-Sq(adj) = 16.54%

31

Output: ANOVA Table

• For the genotype, verbal IQ data:

One-way ANOVA: IQ versus Genotype 

Source         DF          SS         MS         F          P
Genotype       2       2691      1346     6.25    0.004
Error            51     10979        215
Total            53     13671

32

I-1 = 3-1 = 2, since 

3 genotype groups, 

AA, AG, GG 
I(n-1)= 3(18-1) 

= 51

Between-Groups

Between treatments

Within-Groups

Residual Variation

F Statistic

P-Value

Output: Plots

33
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Boxplot of IQ



12

GGAGAA

110

100

90

80

70

60

50

40

30

Genotype

IQ

Individual Value Plot of IQ vs Genotype

Output: Plots

34

Assumption Checking

• Homogeneity of variance = homoscedasticity

- The dependent variable (quantitative 

measurement) should have the same variance in 

each category of the independent variable 

(qualitative variable) 

- Needed since the denominator of the F-ratio is the 

within-group mean square, which is the average of 

the group variances

35

Assumption Checking

- ANOVA is robust for small to moderate departures 

from homogeneity of variance, especially with 

equal sample sizes for the groups

- Rule of thumb: the ratio of the largest to the 

smallest group variance should be 3:1 or less, but 

be careful, the more unequal the sample sizes the 

smaller the differences in variances which are 

acceptable

36
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Assumption Checking
• Testing for homogeneity of variance

- Levene’s test of homogeneity of variance

- Bartlett’s test of homogeneity of variance (Chi-

square test)

- Examine boxplots of the data by group, will highlight 

visually if there is a large difference in variability 

between the groups

- Plot residuals versus fitted values and examine 

scatter around zero,                                             
residuals = observations – group mean

group mean = fitted value 
37

Assumption Checking

Normality Assumption

- The dependent variable (measurement, 

quantitative variable) should be Normally 

distributed in each category of the independent 

variable (qualitative variable)

- Again ANOVA is robust to moderate departures 

from Normality

38

Assumption Checking

• Checking the Normality assumption

- Boxplots of the data by group allows for the 

detection of skewed distributions

- Quantile-Quantile plots (QQ plots) of the residuals, 

which should give a 45-degree line on a plot of 

observed versus expected values,                                           

- Usual tests for Normality may not be adequate with 

small sample sizes, insufficient power to detect 

deviations from Normality

39
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Assumption Checking: Plots

40

What to do with a Significant 

ANOVA Result (F-test)

• If the ANOVA is significant and the null hypothesis is 

rejected, the only valid inference that can be made is 

that at least one population mean is different from at 

least one other population mean

• The ANOVA does not reveal which population means 

differ from which others

41

What to do with a Significant 

ANOVA Result (F-test)

- Only think about investigating differences between 

individual groups when the overall comparison of 

groups (ANOVA) is significant, or that you had 

intended particular comparisons at the outset

- Need to consider whether the groups are ordered or 

not

42
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What to do with a Significant 

ANOVA Result (F-test)
• Modified t-test:

- based on the pooled estimate of variance from all the 

groups (within groups, residual variance in the ANOVA 

table), not just the pair being considered

• Least significant difference:

- The least difference between two means which is significant 

is used

- Arrange the treatment means in order of magnitude and the 

difference between any pair of means can be compared 

with the least significant difference

43

What to do with a Significant 

ANOVA Result (F-test)

• Tukey’s honest significance test 

- The test compares the means of every group to the means 

of every other group and corrects for the multiple 

comparisons that are made

• Linear Trend

- When the groups are ordered we don’t want to compare 

each pair of groups, but rather investigate if there is a trend 

across the groups (linear trend)

• There are many other tests available...

44

Assumption Checking

• If data are not Normal or don’t have equal variances, 

can consider 

- transforming the data, (eg. log, square root ) 

- non-parametric alternatives

45
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Non Parametric ANOVA –

Kruskal-Wallis Test 

• ANOVA  is the more general form of the t-test

• Kruskal-Wallis test is the more general form of the 

Mann-Whitney test

• Kruskal-Wallis test:

- doesn’t assume normality, compares medians

- based on ranking the data (some information is lost, less 

powerful)

46

Summary I

• The hypothesis that the means of at least three groups 

are the same is tested using a one-way ANOVA

• An ANOVA assumes 

- the observations are independent and random

- the data is Normally distributed in each group 

- the variances are the same across the groups

• The ANOVA works by comparing estimates of variance 

which should be the same if the null hypothesis of 

equal means is true

47

Summary II

• Within-Groups Variance

- This is the average of the variances in each group

- This estimates the population variance regardless 

of whether or not the null hypothesis is true

- This is also called the error mean square, or the 

within-groups mean square

48
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Summary III

• Between-Groups Variance

- This is calculated from the variance between 

groups

- This estimates the population variance, if the null 

hypothesis is true

- This is also called the residual variance or the 

between-groups mean square

49

Summary IV

• Use an F-test to compare these two estimates of 

variance

• Relationship with t-test

- If the one-way ANOVA is used for the comparison 

of two groups only, the analysis is exactly and 

mathematically equivalent to the use of the 

independent t-test, (the F statistic is exactly the 

square of the corresponding t statistic)

50
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Correlation

Outline

• What is correlation?

• Pitfalls

• Looking at the data

• The correlation coefficient

• Assessing significance

• Non-parametric tests

2

Correlation

• Measures the degree to which two (or more) variables 

change together

• Linear (straight line) relationship → correlation

• Nonlinear relationship → association

• Captured by a single number

• Correlation/association does not imply causation!

3
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Correlation and Dependence

4

Purpose

Y Random

X Controlled

Y Random 

X Controlled

Investigate 

dependence

Model 1 

Regression

Model 2

Regression

Investigate 

relationship

Meaningless Correlation

Examples of Correlation and 

Non-Linear Relationships

5

Data Quality

• The measure of correlation is highly sensitive to 

anomalies in the data:

- Outliers

- Clustered data points

- Nonlinearity

- Spurious correlations/associations

6
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Look at the Data!

7

• All these datasets have the same mean, variance, correlation 

coefficient and regression line:

• Anscombe, Francis J. (1973) Graphs in statistical analysis. American Statistician, 27

Dependency Structure

• Correlation is not causation...

8

Pearson Correlation
• Measures the degree of linear relationship between 

two sets of n measurements, 

eg. weights Wi and heights Hi

• Varies between -1 and 1

• A value of 1 means perfect linear correlation

• A value of 0 means no correlation

• A value of -1 means perfect linear anticorrelation

• The Pearson sample correlation coefficient, r is an 

estimator of the population coefficient, ρ (rho)
9
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Toy Example

• Measure the heights and weights of 3 people:

10

ID Height (m) Weight(kg)

P1 1.65 66

P2 1.75 70

P3 1.85 74

Computing the Correlation Value I

• Start with two sets of measurements, (heights and 

weights) Hi and Wi:

• Subtract the means to get data centred with mean 0:

11

Toy Example

• First calculate the means:

• Subtract the means to centre the data on zero:

12
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Computing the Correlation Value II

• Divide by sample standard deviations to get the 

standardised heights and weights:

13

Toy Example

• Work out the standard deviations

• Divide by the standard deviations to get our 

standardised variables:

14

Computing the Correlation Value III

• Consider the product of standardised height and 

weight for a single person:

• Positive Correlation:

• Negative Correlation:

15
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The Correlation Coefficient: Version I

• The overall correlation is the mean (almost!) of the n 

products c
i
:

• Question: Why do we divide by n - 1 instead of by n?

16

Toy Example

• Work out the c values:

• Work out the correlation coefficient:

17

Dependency Structure

• Correlation is not causation...

18
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The Correlation Coefficient: Version II

• You may also have seen the Pearson correlation 

written in terms of the original measurements

• In our case, these were the weights, Wi and the 

heights, Hi:

19

Assessing Significance I

• The correlation coefficient r is an estimator of the 

population coefficient ρ

• Null Hypothesis: ρ = 0

• Assumption: the variables X and Y are normally 

distributed

20

Assessing Significance II

• Consider the distribution of the quantity:

• If  ρ = 0, this is distributed as Student’s t, with two 

degrees of freedom

→  we can obtain the critical value of t and hence the 

critical value of r

21
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The Spearman Coefficient

22

• The Spearman coefficient measures correlation 

between rank ordered data

• Can handle non–linear (monotonic) data

• The Spearman coefficient is not an estimator of any 

simple population parameter

Computing the 

Spearman Coefficient

• Replace the data values by their ranks in the 

expression for the Pearson coefficient:

23

Toy Example

24

ID Height(m) Rank(R) Weight(kg) Rank(S)

P1 1.65 1 66 1

P2 1.75 2 70 2

P3 1.85 3 74 3
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Example: Non Linear Data

25

R Output for 

Spearman’s Rank Correlation

Spearman’s rank correlation rho

data: height and weight

S = 4328, p-value < 2.2e-16

alternative hypothesis: true rho is not equal to 0

sample estimates:
rho
0.9740294

26

27
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28

29

Summary I

• Correlation measures how two variables change 

together

• It does not imply causation

• It is sensitive to anomalies in the data

• Data should always be examined visually before doing 

a correlation analysis

30
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Summary II

• The Pearson coefficient r measures linear relationships 

and varies between -1  and  +1

• If both variables are normally distributed we can 

determine the statistical significance

• The Spearman coefficient measures non-linear 

monotonic relationships and varies between -1  and  +1

31
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Regression

Introduction

• Correlation and regression – for quantitative/numeric 

variables

- Correlation: assessing the association between 

quantitative variables

- Simple linear regression: description and prediction 

of one quantitative variable from another

2

Introduction

• Simple linear regression: only considering linear 

(straight-line) relationships

• When considering correlation or carrying out a 

regression analysis between two variables always plot 

the data on a scatter plot first

3
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Scatter Plots

4

Linear Linear

Scatter Plots

5

Non-Linear No Relationship

Simple Linear Regression

• Data on two quantitative variables

• Aim is to describe the relationship between the two 

variables and/or to predict the value of one variable 

when we only know the other variable

• Interested in a linear relationship between the two 

variables X and Y

6

Y

Predicted 

Variable

Dependent 

Variable

Response  

Variable

Outcome 

Variable

X

Predictor 

Variable

Independent

Variable

Carrier 

Variable

Input 

Variable
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Simple Linear Regression

• Simple linear regression - when there is only one 

predictor variable, which we will consider here

• Multiple or multivariate regression - when there is 

more than one predictor variable

7

Simple Linear Regression

• The aim is to fit a straight line to the data that predicts 

the mean value of the dependent variable (Y) for a 

given value of the independent variable (X)

• Intuitively this will be a line that minimizes the distance 

between the data and the fitted line

• Standard method is least squares regression

• Notation: n pairs of data points, (xi, yi)

8

Two Quantitative Variables

9
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Two Quantitative Variables, 
Regression Line

10

Two Quantitative Variables, 
Regression Line

11

Linear Regression Assumptions

• The values of the dependent variable Y should be 

Normally distributed for each value of the 

independent variable X (needed for hypothesis testing 

and confidence intervals)

• The variability of Y should be the same for each value 

of X (homoscedasticity)

12
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Linear Regression Assumptions

13

Variability in Y is increasing 

Linear Regression Assumptions

• The relationship between the two variables should be 

linear

• The observations should be independent

• Values of X do not have to be random 

• Values of X don’t have to be Normally distributed

14

Linear Regression Assumptions

• It is easier to check many of these assumptions after 

the regression has been carried out 

• Use residuals to do this and we will return to these 

later

15
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Linear Regression Assumptions

• The straight line or linear relationship is described by the 

equation for a straight line

Dependent variable Independent variable

Intercept Slope

Intercept, value of y when x = 0,      

a = 5, y = 5 + b*0

Slope of the line, b = 2 here

y = 5 + 2x

16

Slopes

17

Slope = 0.2

Slope = 3

Same intercept = 5

Least Squares Regression

• No line could pass through all the data points in our 

example

• We want the best “average” equation (regression 

equation) that would represent a line through the 

middle of the data, this is the regression line:

• The constants a, the intercept and b, the slope or 

regression coefficient are computed using the method 

of least squares

18
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Least Squares Regression

• Fitted value = value of Y given by the line for any value 

of the variable X

(remember what a fitted value was in ANOVA)

• Residual = difference between the observed value of Y 

and the fitted value

(again, remember what a residual was in ANOVA)

• Least squares aim: to minimize the sum of squares of 

the residuals 

19

20

Fitted Values and Residuals

Residuals

Fitted Values

Least Squares Regression

• At any point xi, the corresponding point on the line is 

given by:

Regression equation:

Residuals (errors):

21
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22

Fitted Values and Residuals

Least Squares Regression

• Linear model:

• Note: if the errors/residuals are correlated or have 

unequal variances then least squares is not the best 

way to estimate the regression coefficient

23

Least Squares Regression

• Minimize the sum of squares (S) of the vertical 

distances of the observations from the fitted line 

(residuals) 

• In order to find the intercept and regression coefficient 

that minimize S the mathematical technique of 

differentiation is employed

24
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Least Squares Regression

• The solution for these two equations results in the following two 

formulae for the estimates of the intercept and regression 

coefficients respectively:

• For the systolic blood pressure and age data in the previous plots:

= 118.7

= 1.0

49 186 168.7 17.3

46 169 165.7 3.3

58 170 177.9 -7.9

53 160 172.8 -12.8

: : : :

25

Residuals

• Checking assumptions: 

– Residuals should have a Normal distribution with 

zero mean

– Plot X against residuals, looking for even scatter at 

all X values

– Consider transformations of the data if these are 

not satisfied (eg., log, square root)

26

Residuals

• These residuals appear reasonable

27
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Residuals

• These residuals show increasing variability

28

Regression Coefficient b

• Regression coefficient:

– this is the slope of the regression line

– indicates the strength of the relationship between 

the two variables

– interpreted as the expected change in y for a one-

unit change in x

29

Regression Coefficient b

• Regression coefficient:

– can calculate a standard error for the regression 

coefficient

– can calculate a confidence interval for the coefficient

– can test the hypothesis that  b = 0, i.e., that there is 

no relationship between the two variables

30
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Regression Coefficient b

• To test the hypothesis that b = 0, testing the hypothesis 

that there is no relationship between the X and Y

variables, the test statistic is given by:

comparing this ratio with a t distribution with n-2

degrees of freedom

• Can also calculate a confidence interval for b:

31

Intercept a

• Intercept:

– the estimated intercept a gives the value of y that is 

expected when x = 0

– often not very useful as in many situations it may not 

be realistic or relevant to consider x = 0 

– it is possible to get a confidence interval and to test 

the null hypothesis that the intercept is zero and 

most statistical packages will report these

32

Coefficient of Determination,         
R-Squared

• The coefficient of determination or R-squared is the 

amount of variability in the data set that is explained by 

the statistical model

• Used as a measure of how good predictions from the 

model will be

• In linear regression R-squared is the square of the 

correlation coefficient

33
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Residual Sum of Squares

34

Regression Sum of Squares

35

35

Here      = 179 

Total Sum of Squares

36

36

Here      = 179 
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Sum of Squares

37

Total                      =      Residual                +    Regression 

sum of squares            sum of squares          sum of squares

Total                      =      Unexplained        +     Explained 

Variation                       Variation Variation

Coefficient of Determination

38

Total                      =      Residual                +    Regression 

sum of squares            sum of squares          sum of squares

Total                      =      Unexplained        +     Explained 

Variation                       Variation Variation

Coefficient of Determination    =    Explained Variation

Total Variation

=        Regression SS

Total SS

Coefficient of Determination          
R-Squared

• Coefficient of determination 

= R-Squared

= R2

= R-Sq

• The regression analysis can be displayed as an ANOVA 

table, many statistical packages present the regression 

analysis in this format

39
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Coefficient of Determination          
R-Squared

• R-Sq must lie between 0 and 1

• If it is equal to one then all the observed points must lie 

exactly on a straight line – no residual variability

• Often expressed as a percentage

• High R-squared says that the majority of the variability 

in the data is explained by the model (good!)

40

Adjusted R-Squared

• Sometimes an adjusted R-squared will be presented in 

the output as well as the R-squared

• Adjusted R-squared is a modification to the R-squared 

adjusting for the sample size and for the number of 

explanatory or predictor variables in the model (more 

relevant when considering multiple regression)

• The adjusted R-squared will only increase if the addition 

of the new predictor improves the model more than 

would be expected by chance

41

Residual Standard Deviation

• Remember the linear model formulation:

• The residual standard deviation is an estimate of the 

standard deviation of the residuals

• Measures the spread of the y values about the 

regression line

42

√
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Residual Standard Deviation

• The residual standard deviation is a goodness-of-fit 

measure

• The smaller the residual standard deviation the closer 

the fit to the data

43

Output

44

Regression Analysis: Systolic BP versus Age 

The regression equation is

Systolic BP = 119 + 1.02 Age

Predictor    Coef  SE Coef     T      P

Constant   118.73    14.29  8.31  0.000

Age        1.0205   0.2386  4.28  0.000

S = 12.5103   R-Sq = 38.7%   R-Sq(adj) = 36.6%

Analysis of Variance

Source          DF      SS      MS      F      P

Regression       1  2863.2  2863.2  18.29  0.000

Residual Error  29  4538.7   156.5

Total           30  7401.9

Unusual Observations

Systolic

Obs   Age        BP     Fit  SE Fit  Residual  St Resid

16  58.0    204.00  177.91    2.26     26.09      2.12R

R denotes an observation with a large standardized residual.

Output

45

Regression Analysis: Systolic BP versus Age 

The regression equation is

Systolic BP = 119 + 1.02 Age

Predictor    Coef  SE Coef     T      P

Constant   118.73    14.29  8.31  0.000

Age        1.0205   0.2386  4.28  0.000

S = 12.5103   R-Sq = 38.7%   R-Sq(adj) = 36.6%

Estimate of the 

intercept, a

Estimate of the 

regression 

coefficient, b

R-Sq says that 38.7% of the 

variability in the data is 

explained by the model

Adjusted R-Sq, slightly lower as 

it has been adjusted for the 

number of predictor variables 

and the sample size

S is the standard 

deviation of the 

residuals



16

Output

46

Analysis of Variance

Source          DF      SS      MS      F      P

Regression       1  2863.2  2863.2  18.29  0.000

Residual Error  29  4538.7   156.5

Total           30  7401.9

F-statistic = square of  

t-statistic for regression 

coefficient, (4.28)2

Residual sum of 

squares

Total sum of 

squares

Regression sum 

of squares

R2 = 

Regression sum of squares

Total sum of squares

= 2863.2/ 7401.9 

= 0.387

Output

47

Unusual Observations

Systolic

Obs   Age        BP     Fit  SE Fit  Residual  St Resid

16  58.0    204.00  177.91    2.26     26.09      2.12R

R denotes an observation with a large standardized residual.

Statistical packages 

sometimes also highlight 

any unusual observations
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Confidence Interval on Fitted Values

• Can calculate a confidence interval on the fitted value:

• This is a confidence interval for the mean value of y, 

given a value of x

• The width of the confidence interval depends on the 

value of xi and will be a minimum at                   and will 

widen as                   increases  

49

95% Confidence Interval

50

Prediction Interval for Future Values

• Can predict the range of possible values of y for a new 

independent value of x not used in the regression 

model

• The prediction interval describes the spread of the 

observations around the mean value: 

• The prediction interval is wider than the confidence 

interval

• The interval widens with distance from the mean value 

of x, but is not so obvious to see

51
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95% Prediction Interval

52

95% Prediction Interval

53
Same data - different scale

Interpolation and Extrapolation

• Interpolation

– Making a prediction for Y within the range of values 

of the predictor X in the sample used in the analysis

– Generally this is fine

• Extrapolation

– Making a prediction for Y outside the range of values 

of the predictor X in the sample used in the analysis

– No way to check linearity outside the range of values 

sampled, not a good idea to predict outside this 

range
54
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Correlation and Regression

• Correlation only indicates the strength of the 

relationship between two variables, it does not give a 

description of the relationship or allow for prediction

• The t-test of the null hypothesis that the correlation is 

zero is exactly equivalent to that for the hypothesis of 

zero slope in the regression analysis

55

Correlation and Regression

• For correlation both variables must be random, for 

regression X does not have to be random

• Correlation is often over used

• One role for correlation is in generating hypotheses, 

remember correlation is based on one number, limit to 

what can be inferred with one number

56

Summary I

• Simple linear regression- describe and predict linear 

relationship

• Least squares regression

• Assumptions:

– Dependent variable Y Normally distributed for each value of 

the independent variable

– Variability of Y same for each value of X

– Linear relationship

– Independent observations

– X doesn’t have to be random or Normally distributed

57
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Summary II

• Need to be familiar with:

– Regression coefficient (slope)

– Intercept

– Residuals – Normal(0, σ2)

– Fitted Value

– R2 (coefficient of determination)

– Residual standard deviation

• Confidence and Prediction Intervals

• Interpolation and Extrapolation

58


