Module Code	EEU33C07	
Module Name	Digital Systems Design	
ECTS Weighting ¹	5 ECTS	
Semester taught	Semester 2	
Module Coordinator/s	Assistant Professor Shreejith Shanker, Assistant Professor George Floros	
Module Learning Outcomes with reference to the Graduate Attributes	On successful completion of this module, students should be able to:	
and how they are developed in discipline	1. Discriminate between combinatorial and sequential circuits.	
	2. Design state machines to control complex systems.	
	 Understand digital design flows for systems design and evaluate the trade-offs involved in different approaches. 	
	4. Write synthesisable Verilog.	
	5. Write Verilog testbenches to test Verilog modules.	
	6. Write test cases and high-level test plans.	
	7. Target a Verilog design to an FPGA board.	
	8. Analyse and debug Verilog modules.	
	The module is highly practical. Students are expected to be self-motivated and demonstrate the learning process by preparing and engaging in lab sessions, assignments and additional course materials. This module forms the foundation for the Integrated Circuits Design course in Senior Sophister.	
	Graduate Attributes: levels of attainment	
	To act responsibly - Enhanced To think independently - Attained	
	To develop continuously - Enhanced	
	To communicate effectively - Attained	

¹ TEP Glossary

Module Content

The student will need to re-familiarise themselves with computer arithmetic from 1st year. Topics studied in 3C7:

- In-depth study of combinatorial and sequential logic and finite state machines.
- Digital design flows and design trade-offs.
- FPGA architecture and resources.
- Verilog HDL language.
- Vitis (Vivado) design and simulation environment.
- Testbench construction.
- Realisation of all above concepts in hardware designs.

Teaching and Learning Methods

This is a highly practical module. There will be 2 "classic" style lectures per week. There will also be a two-hour practical session each week which will be a lecture-come-lab, where the lecturer will talk about the content of the session and the student will "learn by doing". The FPGA board used to support the practical sessions is the Basys-3 Artix-7 FPGA board. The practical sessions will require the students to complete the weekly assignment outside class hours, spreading the load through the year. It is critical that the student keeps up with the practical work during the semester.

Assessment Details²

Please include the following:

- Assessment Component
- Assessment description
- Learning Outcome(s) addressed
- % of total
- Assessment due date

Assessment Component	Assessment Description	LO Addressed	% of total	Week due
Lab Quiz/Viva	Quiz/Viva in lab	1, 3, 4, 5, 6, 8	10	Week 8/9
Assignments	Design exercises	2-8	40	Week 7, 11 (Semester 2)
Final Exam	End of year exam	All	50	As per timetable

Reassessment Requirements

100% based on Exam

Contact Hours and Indicative Student Workload²

Contact hours:

44 hours (22 hr lecture, 22 hr lab)

Independent Study (preparation for course and review of materials):

2 hours lab prep/completion/writeup (formative) [14]

2 hour / week for lecture review/self study [24]

Independent Study (preparation for assessment, incl. completion of assessment):

² TEP Guidelines on Workload and Assessment

	4 hours per assignment [8]	
	Exam Preparation 10-25 hours	
Recommended Reading List	 FPGA Prototyping By Verilog Examples: Xilinx Spartan-3 Version, Pong P. Chu (wiley). Verilog HDL, 2/e Palnitkar (reference only). 	
Module Pre-requisite	EE1E6 or equivalent	
Module Co-requisite		
Module Website	On Blackboard	
Are other Schools/Departments involved in the delivery of this module? If yes, please provide details.		
Module Approval Date		
Approved by	Prof. Naomi Harte	
Academic Start Year	September 2025	
Academic Year of Date	2025/2026	