| Module Code | EE5M01/EEU44C01 | | |---|---|--| | Module Name | Integrated Systems Design | | | ECTS Weighting ¹ | 5 ECTS | | | Semester taught | Semester 1 | | | Module Coordinator/s | Shreejith Shanker | | | Module Learning Outcomes with reference to the Graduate Attributes and how they are developed in discipline | On successful completion of this module, students should be able to: Build a synchronous DSP system in Verilog and verify its performance. Build and test complex FSMs in Verilog. Automate testbenches for automatic pass/fail. Analyse finite precision effects in digital filters. Make design decisions for fixed point implementations given constraints. Analyse memory usage/requirements for FPGA realisations. Target sequential designs to FPGA hardware. Graduate Attributes: levels of attainment To act responsibly - Attained To think independently - Attained To develop continuously - Attained To communicate effectively - Enhanced | | | Module Content | Finite state machines with data path. Verilog HDL language. Automation of test benches and design of golden vectors. Finite precision effects and choice of bit-width in fixed-point applications. Translating DSP systems designed in MATLAB onto an FPGA. Memory on FPGAs. Hardware-Software Interface and Programmable Accelerators High-level Synthesis overview Realisation of the above concepts in hardware designs. | | ¹ TEP Glossary ## **Teaching and Learning Methods** This is a highly practical module. There will be two "classic" style lectures as well as a two-hour practical session each week which will be a lecture/laboratory slot. The FPGA board used to support the practical sessions is the PYNQ-Z2 board. The practical sessions will require the students to complete **3 or 4** assignments outside class hours (average 4 hours extra per week), spreading the load through the year. It is critical that the student keeps up with the practical work during the semester. #### Assessment Details² ## Please include the following: - Assessment Component - Assessment description - Learning Outcome(s) addressed - % of total - Assessment due date | Assessment
Component | Assessment
Description | LO Addressed | % of total | Week
due | |-------------------------|---------------------------|--------------|------------|-------------------------| | Written Exam | End of year exams | 2,4,5,6 | 70 | End of
Year | | Lab & Design exercises | FPGA design lab | 1,2,7 | 30 | Announ
ced in
lab | # **Reassessment Requirements** 100% Based on Exam # Contact Hours and Indicative Student Workload² ### **Contact hours:** 44 (22 hour lectures, 22 hour labs) Independent Study (preparation for course and review of materials): 2 hour / week for lecture review/self study [24] Independent Study (preparation for assessment, incl. completion of assessment): 2 hours lab prep (formative) [44] ² TEP Guidelines on Workload and Assessment | Recommended Reading List | Verilog HDL, 2nd edition, Palnitkar (reference only). FPGA Prototyping By Verilog Examples: Xilinx
Spartan-3 Version, Pong P Chu, Wiley. Exploring Zynq MPSoC with PYNQ and Machine
Learning Applications, L. Crockett, D. Northcote, C.
Ramsay, F. Robinson, B. Stewart, University of
Strathclyde. | | |--|--|--| | Module Pre-requisite | EE3C7 or equivalent | | | Module Co-requisite | | | | Module Website | On Blackboard | | | Are other Schools/Departments involved in the delivery of this module? If yes, please provide details. | | | | Module Approval Date | | | | Approved by | Prof. Naomi Harte | | | Academic Start Year | September 2025 | | | Academic Year of Date | 2025/26 | |