Modify an Existing Module - MEP55B14 -	Engineering Vibrations and Noise [MEP55B14] - [Ref.: MC_000000	20859430348611]
Field	Current value	Proposed value
Academic Year (for deployment)	NA (Y)	2021/22 (2021/22)
Module Name*	Engineering Vibrations and Noise	
Scheme	Any course within ECTS credit scheme [level 7+] (ECTS)	
Proposed Module Code*	MEP55B14	
Discipline	MECHANICAL AND MANUFACTURING ENGINEERING (MEME)	
Faculty/School	EMS, Engineering (EMS-EG)	
Course Year Taught	Postgraduate course year 1 (P1)	
ECTS Value*	5	
Module Type	Standard Module (STAN)	
Module Coordinator*	John Kennedy (06204325)	
Participate in Blackboard Grades Journey?	No (N)	
Assessment Period	Semester 2 Assessed (SEM202)	
Marking Scheme	M50-01 Mod Sch 50%; I, II, P, F (M50-01)	
HEA Price Group	Laboratory (LAB)	
Module Approval Date		
Module Approved By	Council (COUNCIL)	
Module In Use	Yes (Y)	

Module description

Current description	Proposed description
Learning Outcomes	
On completion of this module, the student will be able to: ' understand the principles of vibration isolation and assess designs for solutions of one of the most common problems faced by noise and vibration engineers in practice; ' analyse and recognize multi-degree of freedom systems and apply modal methods to their solution; ' apply eigenvalue analysis to the solution of vibration problems; ' understand the concept of modal analysis and how it is implemented in practice; ' model and analyse continuous systems; ' predict vibration properties of systems using finite elements; ' perform vibration measurements and compare the results with those obtained by the analytical and numerical methods developed in the course.	
Module Content	

Current description Proposed description 'Vibration measurement and isolation forced vibration of single degreeof-freedom systems vibration isolation vibration measurement vibration absorbers ' Multi degree of freedom systems generalised equations of motion Newton's equations of motion for discrete systems matrix formulation Lagrangian formulations; ' Modal analysis Stiffness and flexibility matrices mode shapes and natural frequencies orthogonality analysis of dynamic response mode superposition modal analysis generalised dynamic response. ' Continuous Systems string vibration longitudinal and torsional vibration transverse vibration applications.' Vibration Testing measurement hardware digital signal processing random vibration analysis modal data extraction. ' Numerical Methods vibrating rod and beam finite elements FE method in vibration trusses. **Teaching and Learning Methods** Assessment Details This module is assessed by a formal written two-hour examination (75% of final mark) together with a laboratory experiment and work assignment (25% of final mark). **Reassessment requirements Contact hours** 50 hours **Recommended Reading List** 'Engineering Vibration, DJ Inman, Prentice Hall OTHER RELEVANT TEXT(S) ' Elements of Vibration Analysis, L Meirovitch, McGraw Hill ' Mechanical Vibrations, SS Rao, Pearson/Prentice-Hall **Module Pre-requisite Module Co-requisite Module Website** http://www.tcd.ie/Engineering/undergraduate/baiyear4/modules/4B11.pdf Are other schools/departments involved? Academic Start Year

Academic Year of Data

2014/15

Current description	Proposed description
Graduate Attributes - To Think Independently	
Graduate Attributes - To Act Responsibly	
Graduate Attributes - To Communicate Effectively	
Graduate Attributes - To Develop Continuously	

Existing Assessment Pattern					
Assessment Type	Mark Scheme	Weight	Hours	Qualifying Mark	
[001] Written Examination					
Exam - Take Home Offline	C50-01 Comp Sch 50%	75	06:00		
[002] Assignment Coursework					
Assignment	C50-01 Comp Sch 50%	25			
[901] Take home offline exam Reassessment					
Exam - Take Home Offline	C50-01 Comp Sch 50%	100	06:00		

Activity Log and Notes				
Date and Time	Ву	Туре	Activity	Notes
No notes yet.				