Module Template for New and Revised Modules¹

Module Name Introduction to ECTS Weighting ² 5 ECTS Semester taught Semester 1	o Computational Fluid Dynamics nt Professor Séamus O'Shaughnessy				
ECTS Weighting ² 5 ECTS	nt Professor Séamus O'Shaughnessy				
Semester taught Semester 1	nt Professor Séamus O'Shaughnessy				
Jennester taught Jennester 1	nt Professor Séamus O'Shaughnessy				
Module Coordinator/s Ussher Assistar	Ussher Assistant Professor Séamus O'Shaughnessy				
Module Learning Outcomes with reference to the Graduate Attributes and how they are developed in disciplineOn successful of engine1. System 	completion of this module, students should be able to: natically apply conservation equations to common CFD ering applications. e to critically evaluate the correct boundary/initial ons for various problems. stand the requirements of computational grid/mesh ition for CFD applications. ands-on user experience with well-known CFD software es. e different numerical techniques used to enhance the of the simulations. take complete fluid flow and heat transfer simulations using instrate a critical awareness of the concepts of stability, timation and convergence. nent comprehensive post-processing of numerical tion results. numerical results both quantitatively and qualitatively to we accuracy. butes: levels of attainment ibly - Enhanced endently - Enhanced tinuously - Enhanced te effectively - Enhanced				

¹ <u>An Introduction to Module Design</u> from AISHE provides a great deal of information on designing and re-designing modules.

² TEP Glossary

Module Content	Computational Fluid Dynamics (CFD) is the art of replacing governing partial differential equations (PDE) systems with a set of algebraic equations which can be solved using digital computers to analyse problems that involve fluid flows. CFD is a fluid mechanics tool that is frequently used to provide practical and insightful simulations of real-life problems using numerical methods and algorithms. CFD is wide-ranging in its application and is regularly employed across engineering industry in areas such as aerospace, architecture, automotive, civil engineering, manufacturing, process industry, turbo-machinery and wastewater treatment. The ultimate goal of the CFD simulation is to discover and evaluate the flow phenomena that occur in various existing real-life examples and new engineering systems.
Teaching and Learning Methods	ME5E04 Introduction to CFD is an optional course which is offered to 5th year MAI students and equips students to apply CFD methods as a tool for design, analysis and engineering applications such as fluid flow and heat transfer. The course material is presented in a series of online or face-to-face lectures and/or narrated videos of CFD exercises. Students are expected to conduct a significant amount of self-directed learning for this module. The core teaching material is supplemented by weekly laboratory sessions during which the students will apply the information provided during lectures to CFD simulations using existing College-licenced commercial CFD software package(s), which may be supplemented with basic programming exercises in Microsoft Excel or Matlab. With a strong emphasis on understanding and application of the underlying methods, enthusiastic students will gain experience using commercial CFD software packages by analysing well established CFD problems as well as applying their knowledge to current research projects within the School of Engineering.
Student Software	ANSYS offer a free student version of their software which is available at the link below. Please note the software limitations and hardware requirements listed on the webpage. Also note that this software is not backwards compatible, so you will not be able to open files created in the latest student version on earlier versions. In the event of limited access to the university and computer facilities, remote desktop access will be organised for students.

https://www.ansys.com/academic/free-student-products

Accessibility

5E04 involves significant interaction with Windows-based PC software such as Matlab and ANSYS, as well as online learning platforms such as Blackboard. All laboratory sessions take place either in the Parsons Building TCD or online. Students can choose to use their own hardware, or remote access will be provided in the even o limited access to the University. Students enrolled in this module who experience disabilities are encouraged to confidentially contact the module coordinator to ensure that the content is delivered in an appropriate manner.

Assessment Details ³ Please include the following: • Assessment Component • Assessment description • Learning Outcome(s) addressed • % of total • Assessment due date	Assessment Component	Assessment Description	LO Addressed	% of total	Week due		
	Assignment 1	CFD study and associated report or presentation	3-9	20	4		
	Online test 1	Online Quiz via Blackboard	1-3	12.5	6		
	Assignment 2	CFD study and associated report or presentation	3-9	25	8		
	Online test 2	Online Quiz via Blackboard	1-3	12.5	10		
	Assignment 3	CFD study and associated report or presentation	3-9	30	12		
Reassessment Requirements	Since this module is entirely evaluated using continuous assessment during the 1 st semester, students who require re-assessment will be obliged to conduct a significant number of CFD case studies as well as the online tests during a period after the end of semester 2.						
Contact Hours and Indicative	Contact hours: 44						
Student Workload [®]	Preparation for course and review of materials: 40						
	Preparation for assessment, incl. completion of assessment: 4						
	 Numerical Heat Transfer and Fluid Flow – Suhas V. Patankar CFD The basics with applications – John D. Anderson Jr. An Introduction to CFD – H.K. Versteeg & W Malalasekera CFD, Volume 1, 4th Edition – Klaus A. Hoffman, Steve T. Chang 						
Recommended Reading List	 Numer CFD Th An Intr CFD, V 	real Heat Transfer and Fluid he basics with applications – roduction to CFD – H.K. Vers olume 1, 4 th Edition – Klaus	John D. And teeg & W Ma A. Hoffman,	s V. Pa erson alalase Steve	Jr. Ikera T. Chang		
Recommended Reading List Module Pre-requisite	 Numer CFD Th An Intr CFD, V Foundation con Mechanics (e.g.) 	real Heat Transfer and Fiuld he basics with applications – roduction to CFD – H.K. Vers olume 1, 4 th Edition – Klaus urses in Numerical Methods g. 3B02, 4B13), and Heat Tra	John D. And teeg & W Ma A. Hoffman, (e.g. 2E11/3 nsfer (e.g. 48	s V. Pa erson alalase Steve BE2), Fl 304)	Jr. :kera T. Chang uid		
Recommended Reading List Module Pre-requisite Module Co-requisite	 Numer CFD Th An Intr CFD, V Foundation con Mechanics (e.g n/a 	real Heat Transfer and Fluid he basics with applications – roduction to CFD – H.K. Vers olume 1, 4 th Edition – Klaus urses in Numerical Methods g. 3B02, 4B13), and Heat Tra	John D. And teeg & W M A. Hoffman, (e.g. 2E11/3 nsfer (e.g. 4E	s V. Pa erson . alalase Steve ⁻ BE2), Fl BO4)	Jr. kera T. Chang uid		
Recommended Reading List Module Pre-requisite Module Co-requisite Module Website	 Numer CFD Th An Intr CFD, V Foundation con Mechanics (e.g n/a See Blackboard 	ical Heat Transfer and Fiuld ie basics with applications – roduction to CFD – H.K. Vers olume 1, 4 th Edition – Klaus urses in Numerical Methods g. 3B02, 4B13), and Heat Tra	John D. And teeg & W Ma A. Hoffman, (e.g. 2E11/3 nsfer (e.g. 48	s V. Pa erson . alalase Steve ⁻ BE2), Fl BO4)	Ir. kera T. Chang uid		
Recommended Reading List Module Pre-requisite Module Co-requisite Module Website Are other Schools/Departments involved in the delivery of this module?	 Numer CFD Th An Intr CFD, V Foundation con Mechanics (e.g n/a See Blackboard No 	ical Heat Transfer and Fluid ne basics with applications – roduction to CFD – H.K. Vers olume 1, 4 th Edition – Klaus urses in Numerical Methods 3. 3B02, 4B13), and Heat Tra	John D. And teeg & W Ma A. Hoffman, (e.g. 2E11/3 nsfer (e.g. 4E	s V. Pa erson alalase Steve BE2), Fl 304)	Ir. kera T. Chang uid		
Recommended Reading List Module Pre-requisite Module Co-requisite Module Website Are other Schools/Departments involved in the delivery of this module? Module Approval Date	 Numer CFD Th An Intr CFD, V Foundation con Mechanics (e.g n/a See Blackboard No 	ical Heat Transfer and Fluid ne basics with applications – roduction to CFD – H.K. Vers olume 1, 4 th Edition – Klaus urses in Numerical Methods g. 3B02, 4B13), and Heat Tra	John D. And teeg & W Ma A. Hoffman, (e.g. 2E11/3 nsfer (e.g. 48	s V. Pa erson . alalase Steve ⁻ BE2), Fl 304)	Jr. kera T. Chang uid		
Recommended Reading List Module Pre-requisite Module Co-requisite Module Website Are other Schools/Departments involved in the delivery of this module? Module Approval Date Approved by	 Numer CFD Th An Intr CFD, V Foundation con Mechanics (e.g n/a See Blackboard No 	ical Heat Transfer and Fluid ne basics with applications – roduction to CFD – H.K. Vers olume 1, 4 th Edition – Klaus urses in Numerical Methods (. 3B02, 4B13), and Heat Tra	John D. And teeg & W M A. Hoffman, (e.g. 2E11/3 nsfer (e.g. 4E	s V. Pa erson . alalase Steve ⁻ 8E2), Fl 804)	Jr. kera T. Chang uid		

³ TEP Guidelines on Workload and Assessment

Academic Year of Date

2020