Module Code	ME5B09
Module Name	Control Engineering 2
ECTS Weighting ¹	5 ECTS
Semester taught	Semester 1
Module Coordinator/s	Asst. Prof. Dermot Geraghty
Module Learning Outcomes with reference to the <u>Graduate Attributes</u> and how they are developed in discipline	On successful completion of this module, students should be able to:
	LO1 Design and simulate a continuous control compensator using Matlab and Simulink using either root locus or frequency response methods
	LO2 Design, simulate and evaluate a discrete compensator using the method of emulation
	LO3 Design a discrete compensator using a direct design method
	LO4 Select an 'off the shelf' PID controller for a given process and tune it
	LO5 Program a commercial robot to implement a pick and place operation
	Graduate Attributes: levels of attainment To act responsibly - Enhanced To think independently - Enhanced To develop continuously - Enhanced To communicate effectively - Enhanced
Module Content	This course focuses on design techniques for controllers and compensators. Continuous compensators are studied in detail and used as a basis for the design of discrete equivalents using the method of emulation.
	Direct design techniques for the design of digital compensators are introduced. Stability analysis for both continuous and discrete systems is introduced. Real time computer implementation of discrete controllers is studied.
	PID controllers and associated tuning techniques are studied. Design assignments are completed and simulated using Matlab and Simulink. This

	given machine	ares students to fully implem e or process. ntals of commercial robot pro ercise Robot Control.			
Teaching and Learning Methods	laboratory ses learning outco In the current following chan 1. <u>All lec</u> 2. Recor	uses Blackboard, podium lect ssion and tutorials to help stu omes. Covid-19 situation or in a ne nges to the normal teaching in ctures and tutorials will be de rded lectures will be available nd of semester exam will be	udents achiev ew lockdown methods app elivered onlin e on Blackboa	ve the red situation bly: <u>be.</u>	quired
Please include the following: • Assessment Component • Assessment description • Learning Outcome(s) addressed	Assessment Component	Assessment Description	LO Addressed	% of total	Week due (provisional)
	Written Examination	End of Semester examination	L01-L05	60%	Exam Period
	Laboratory	Staggered throughout			Staggered

Staggered throughout

semester

Weeks 3-9

LO5

L01-L04

10%

30%

throughout

Semester

Week 9

- addressed % of total •
- Assessment due date •

Reassessment Requirements

Written Examination

Laboratory

Exercise

Design

Assignment

Contact Hours and Indicative Student Workload ²	Contact hours: 46 (33 Lectures, 11 tutorials, 1 Lab)
	Independent Study (preparation for course and review of materials): 30
	Independent Study (preparation for assessment, incl. completion of assessment): 40

Recommended Reading List	Control Systems Engineering by Norman S. Nise, Wiley. E-book is available via the College Library
Module Pre-requisite	None
Module Co-requisite	None
Module Website	Blackboard
Are other Schools/Departments involved in the delivery of this module? If yes, please provide details.	Νο
Module Approval Date	
Approved by	
Academic Start Year	
Academic Year of Date	