Module Code	CHU11E05		
Module Name	Chemistry		
ECTS Weighting ¹	5 ECTS		
Semester taught	Semester 1		
Module Coordinator/s	Asst. Prof. Richard Hobbs		

Module Learning Outcomes with reference to the <u>Graduate Attributes</u> and how they are developed in discipline

On successful completion of this module, students should be able to: LO1. Explain chemical equations, balance them, and make calculations based on them relating to stoichiometry and molarity;

- LO2. Relate trends in the periodic table (in both elements and their compounds) with the underlying trends in electronic and atomic structure; LO3. Perform calculations on the rates of reaction and to relate reaction kinetics to the details of the reaction mechanism;
- LO4. Perform calculations on chemical equilibria of different nature (acid-base, complexation, gas reactions, solubility, etc.);
- LO5. Be able to read and interpret basic phase diagrams of pure substances and binary mixtures;
- LO6. Explain the properties of ideal and near-ideal solutions and carry out calculations using colligative properties;
- LO7. Perform calculations of electrochemical potentials and relate them to thermodynamic quantities;
- LO8. Explain chemical reactivity (thermodynamic and kinetic) in terms of valency, electronegativity and electronic structure;
- LO9. Relate some of the macroscopic properties of materials to the nature of the electronic structure and bonding at the molecular/atomic level;
- L010. Carry out basic experimental procedures on aspects of chemical reactions and to appreciate the need for safety and safety procedures in the laboratory.

Graduate Attributes: levels of attainment

To act responsibly - Introduced
To think independently - Introduced
To develop continuously - Introduced
To communicate effectively - Introduced

_

¹ TEP Glossary

Module Content

Introduction and General Chemistry

• Chemical change; elements, compounds and mixtures; atomic theory; stoichiometry and chemical equations; atomic structure; electronic structure and the periodic table; bonding; elementary structural chemistry; metals, semiconductors and insulators.

Physical Chemistry I

• Thermodynamics: First law, internal energy, enthalpy; introduction to entropy, 2nd and 3rd Laws; criterion for chemical change; Gibbs free energy.

Physical Chemistry II

- States of matter: Gibbs phase rule, ideal solutions, colligative properties
- Chemical Equilibrium: Law of mass action; equilibrium constant for a chemical reaction; factors that influence the position of equilibrium. Ionic equilibria: ionic equilibria in aqueous solutions; strong and weak acids and bases; buffer solutions and indicators;
- Electrochemistry; molar conductivity and electrolyte solutions; electrode potentials; cells; electrolysis; emf and chemical equilibrium; and introduction to analytical chemistry;
- Chemical Kinetics: rates of reactions; order and molecularity; activation energy; kinetics and mechanisms; catalysis.

Teaching and Learning Methods

This module is taught using a combination of lectures, tutorials and laboratory-based experiments.

Assessment Details ² Please include the following:	Assessment Component	Assessment Description	LO Addressed	% of total	Week due	
	End of semester examination	Written/Multiple Choice Examination	1-9 above	80	20	
	Laboratory sessions	Students attend 3 laboratory practicals (2 experiments online/at home, 1 experiment on site in laboratory setting, 3 hours per experiment). Lab reports are assessed.	1-10 above	20	Reports due 1 week after each scheduled in-person experiment, 2 weeks after each scheduled online/at home experiment	
Reassessment Requirements						
Contact Hours and Indicative Student Workload ²	Contact hours: 48 hours Independent Study (preparation for course and review of materials): 40 hours (approximately 30 hours reviewing lecture material and references to textbook, 10 hours answering tutorial questions)					
	Independent Study (preparation for assessment, incl. completion of assessment): 26 hours (6 hours preparing for labs and completing lab reports, 20 hours preparation for final exam)					
Recommended Reading List	Main text for the	course:				
	The recommended text for this module is: Chemistry — The Molecular Nature of Matter and Change, Silberberg and Amateis, 9 th edition, McGraw-Hill The material is also covered in: Chemistry, Chang and Overby, 13 th					

edition, McGraw-Hill; Chemistry: Molecules, Matter and Change,

² TEP Guidelines on Workload and Assessment

Atkins and Jones, 4th edition, Freeman; Chemistry for Engineering Students, Brown and Holme, 1st edition, Thompson,

There is also a more detailed and advanced text by Atkins and Jones: Chemical Principles – the Quest for Insight, Freeman, 2nd edition. This will also cover the material presented in lectures, and may suit students who already have a strong background in Chemistry.

Some students who have not studied Chemistry previously may find that they benefit from access to a text that starts at a more elementary level. Two such texts that JF Engineering students have found valuable in recent years are: Chemistry, R Lewis and W Evans, MacMillan Foundations; Fundamentals of Chemistry, DE Goldberg, McGraw-Hill

A valuable online resource is available via openstax at the following link. https://openstax.org/details/books/chemistry-2e/

		D		• - • • -
IVIO	iule	Pre-	reau	isite

Module Co-requisite

Module Website

Are other Schools/Departments involved in the delivery of this module? If yes, please provide details.

Module Approval Date

Approved by

Academic Start Year

Academic Year of Date

https://www.tcd.ie/engineering/currentstudents/undergraduate/engineering/year-one/

School of Chemistry

September 23rd 2024

2024/2025