

Module Code EEP55C36

Module Name Computational Methods and Algorithms

ECTS Weighting1 5 ECTS

Semester taught Semester 1

Module Coordinator/s Dr. Hossein Javidnia

Module Learning Outcomes with
reference to the Graduate
Attributes and how they are
developed in discipline

On successful completion of this module, students should be able to:

LO1. Translate mathematical models into algorithms by reformulating engineering
problems (e.g. signal, image, biomedical and geophysical data) into well-posed
computational tasks.

LO2. Implement and validate numerical, signal-processing and machine-learning solutions
in Matlab and Python, making effective use of core libraries such as NumPy, SciPy, PyTorch
and Matplotlib.

LO3. Integrate domain-specific libraries and toolboxes to build end-to-end systems that
ingest data, compute results and visualise outputs on appropriate platforms.

LO4. Design and execute automated unit and integration tests that verify correctness,
robustness and performance of code under realistic operating conditions.

LO5. Manage code collaboratively with Git, applying branching strategies, pull requests
and continuous-integration workflows for peer review and quality assurance.

LO6. Quantify and optimise resource trade-offs—speed, memory footprint, energy usage
and power dissipation—when selecting algorithms or hardware targets.

LO7. Adapt and deploy computational pipelines at scale, using GPU acceleration, cloud
services or on-premise clusters as required.

LO8. Evaluate the deployment suitability of algorithms for real-time, batch or edge/cloud
settings, justifying architectural choices.

LO9. Communicate methods, assumptions and results clearly through concise technical
reports, well-annotated code and informative visualisations.

1 TEP Glossary

https://www.tcd.ie/TEP/Council/assets/TEP%20Embedding%20Trinity%20Graduate%20Attributes%20in%20the%20Curriculum%202.pdf
https://www.tcd.ie/TEP/graduateattributes.php
https://www.tcd.ie/TEP/graduateattributes.php
https://www.tcd.ie/TEP/Council/assets/TEP%20Glossary%20Edition%201%20Decemeber%20circulation1.pdf

Graduate Attributes: levels of attainment
To act responsibly - Attained
To think independently - Attained
To develop continuously - Enhanced
To communicate effectively - Enhanced

Module Content Please provide a brief overview of the module of no more than 350 words written
so that someone outside of your discipline will understand it.

Computational Methods is a one-semester module that demonstrates how mathematical
reasoning is converted into reliable, efficient software for real-world engineering and
scientific tasks.

The syllabus is organised around a four-stage problem-solving cycle—problem analysis,
algorithm design, implementation, and verification. It begins with vector and matrix
representations of data, establishing the linear-algebra tools needed to manipulate
images, audio snippets, biomedical traces, or seismic readings. Building on this foundation,
the class explores least-squares techniques for regression and modelling, followed by
linear and nonlinear optimisation methods that formalise goals such as cost minimisation
under constraints.

Attention then turns to software architecture. Principles of decomposition and abstraction
show how large computational systems are partitioned into self-contained modules with
clear interfaces. Classic algorithmic patterns—recursion, backtracking, and divide-and-
conquer—illustrate systematic ways to reduce complex tasks to simpler sub-problems.

The final block introduces time-series analysis, covering stationarity, differencing, and
autoregressive modelling for forecasting and anomaly detection in ordered data streams.
Throughout the module, implementations are developed in Python, leveraging widely
adopted libraries (NumPy, SciPy, PyTorch, Matplotlib). Code is maintained under Git
version control, accompanied by unit tests and profiling tools that expose speed, memory,
and energy trade-offs across deployment targets.

By the end of the semester, participants will be able to translate mathematical
formulations into executable algorithms, select appropriate library routines rather than
duplicating existing solutions, evaluate resource constraints when scaling to large data
sets, and communicate computational results clearly through concise technical writing and
visualisation.

Teaching and Learning Methods

 e.g., lectures, seminars, online learning via VLE, field trips, laboratories, practice-
based etc…

• Lectures (weekly, 2 hrs): Structured, problem-led presentations that introduce
the mathematical foundations, algorithmic techniques and software tools. Short
live-coding segments and worked examples model the full “analyse → design →
implement → verify” cycle.

• Laboratories (weekly, 2 hr): Supervised coding sessions in Jupyter/Python
notebooks where students apply the week’s techniques to progressively more
challenging data-driven problems, receiving immediate feedback from
demonstrators.

Assessment Details2
Please include the following:

• Assessment Component
• Assessment description
• Learning Outcome(s)

addressed
• % of total
• Assessment due date

Assessment
Component

Assessment Description
LO
Addressed

% of total
Week
due

Lab Portfolio A

Five short, individual coding
tasks (vectors, matrices, least-
squares, introductory
optimisation). Each task is
submitted via Git with clear
comments plus a brief “AI-
usage note” (≤ 150 words)
describing any generative-AI
help and how the output was
verified. Unit-testing is not
required at this stage.

LO 1, LO 2, LO
3, LO 5

30%
Weeks 1 –
5 (rolling)

Invigilated Lab
Exam

Two-hour, supervised
practical in the lab (Internet
and AI tools blocked).
Students implement a
specified numerical routine
on a supplied data set, then
add basic unit tests and run a
profiling script provided with
the exam.

LO 1, LO 2, LO
4, LO 6

30% Week 10

Oral Viva & Live
Demo

15-minute, individual session:
5-min live demo of one Lab-
Portfolio-B task*; 5-min code
walkthrough focused on
resource trade-offs and
testing; 5-min Q & A probing
algorithm choices and any
documented AI usage.
Examiners may change an
input file or comment out a
function to confirm
understanding.

LO 6, LO 7, LO
8, LO 9

40%
University

Exam
Period

2 TEP Guidelines on Workload and Assessment

https://www.tcd.ie/TEP/Council/assets/TEP%20Instructions%20for%20Using%20the%20student%20workload%20mapping%20tool%201.pdf

 *Lab Portfolio B = the four tasks completed after week 6 (recursive algorithms,
abstraction, unit-testing and profiling). These are part of the same continuous portfolio
but introduced later, once unit-testing concepts have been taught.

Reassessment Requirements

Reassessment with a problem solving exercise in lab. Assessment
based on an oral presentation and demonstration of the solution.

Contact Hours and Indicative
Student Workload2

 Contact hours: 44

• Lectures: 11 weeks × 2 hrs = 22 hrs
• Labs: 11 weeks × 2 hrs = 22 hrs

Independent Study (preparation for course and review of
materials): 44

Independent Study (preparation for assessment, incl.
completion of assessment): 39

Recommended Reading List • Numerical Recipes in C
• Computational Science and Engineering by Gilbert Strang
• Introduction to Computational Models with Python by Jose M

Garrido

Module Pre-requisite Undergraduate Numerical Methods, Signals and Systems

Module Co-requisite None

Module Website

Are other Schools/Departments
involved in the delivery of this
module? If yes, please provide
details.

No

Module Approval Date

Approved by

Academic Start Year

Academic Year of Date 2025-26

