<table>
<thead>
<tr>
<th>Module Code</th>
<th>EE5P55C07</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module Name</td>
<td>Self-Organizing Systems</td>
</tr>
<tr>
<td>ECTS Weighting</td>
<td>5 ECTS</td>
</tr>
<tr>
<td>Semester taught</td>
<td>Semester 1</td>
</tr>
<tr>
<td>Module Coordinator/s</td>
<td>PROF NICOLA MARCHETTI</td>
</tr>
</tbody>
</table>

Module Learning Outcomes with reference to the Graduate Attributes and how they are developed in discipline

On completion of this module the student will be able to:

1. Understand the limitations and applicability of self-organising systems, in particular with respect to communication networks.
3. Identify and describe the performance of communication systems and components by using agent-based modelling techniques.
4. Use software tools to solve relevant self-organising network engineering problems.
5. Design and conduct software-based experiments working in a project team, demonstrating understanding of group dynamics and related leadership aspects.
6. Present the relevant technical aspects in a written form, in a way that is both concise and precise.

Graduate Attributes: levels of attainment

- To act responsibly - Enhanced
- To think independently - Enhanced
- To develop continuously - Enhanced
- To communicate effectively - Enhanced

Module Content

Modern communications research is tending towards a dynamical description of networks; examples include 5G networks, Internet of Things, drone-based systems and Industry 4.0. These dynamics, which include movement, growth, competition and adaptation, add complexity to the networks. This results in an environment in which centralised planning becomes challenging. In addition, advances on the infrastructure side are also pushing away from centralised approaches. Dense large-scale uncoordinated deployment by the end users of millions of transceivers (each targeting the coverage of a certain local area), especially in urban environments, mean that the mobile operator does not oversee a coordinated roll out of network infrastructure with a subsequent

1. [An Introduction to Module Design](#) from AISHE provides a great deal of information on designing and re-designing modules.
2. [TEP Glossary](#)
careful setting of all operation parameters. All of this drives the requirement for self-organising functionality within the network transmitters and receivers as central planning becomes increasingly infeasible.

This module discusses the emergent properties of these kinds of self-organising and highly dynamic networks, offering new insights that can be used in their design and deployment. The module introduces the students to the emerging scientific field of self-organisation. The module will focus on different aspects of relevance to self-organising systems, including: local behaviour – global properties paradigm, implicit system coordination, self-synchronisation in nature and engineering systems, and adaptivity to changes.

The module will introduce students to the network science aspects such as the classification of networks into random, small world, scale free, and regular, and how this relates to the analysis and design of modern communication networks. The module will also cover computing aspects, such as cellular automata, agent-based modelling and bio-inspired algorithms, using such approaches and related software tools to model and study modern communication networks such as 5G networks, Internet of Things, unmanned vehicle-based systems, Industry 4.0 and social networks.

The module will then discuss how game theory can be applied to model self-organisation in a communication network. Fundamental concepts in cooperative and non-cooperative game theory will be introduced, illustrating how they can be applied to model radio resource management in current and future networks. Further, optimization and machine learning tools will also be used to model wireless communication and networking problems.

Module syllabus:

1. Introduction to self-organising systems; local behaviour – global properties paradigm, implicit system coordination, self-synchronisation in nature and engineering systems, adaptivity to changes.
2. Network science aspects; small world and scale free networks and application to 5G, IoT and social networks.
3. Computing aspects; cellular automata and agent-based modelling for 5G moving networks (including drone-based networks) and Internet of Things (e.g., traffic lights control, industry 4.0).
4. Application of bio-inspired algorithms to communication networks (e.g., genetic algorithms, simulated annealing).
The module is taught using a combination of lectures and tutorials. Every week one lecture is allocated to tutorials. There will also be four lab lectures to introduce the students to software tools relevant to the study of self-organising systems.

Four software-based lab sessions will demonstrate some of the concepts covered in class. Students will be required to complete a software-based project focusing on the application of self-organising systems analysis and design to emerging topics in wireless networks, such as 5G networks, Internet of Things systems, moving networks (including drone-based networks), industry 4.0 and social networks.

Assessment Details

<table>
<thead>
<tr>
<th>Assessment Component</th>
<th>Assessment Description</th>
<th>LO Addressed</th>
<th>% of total</th>
<th>Week due</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination</td>
<td>2 hour written examination</td>
<td>LO1, LO2, LO3, LO6</td>
<td>50%</td>
<td>n/a</td>
</tr>
<tr>
<td>In class quiz</td>
<td>50 minute written examination</td>
<td>LO1, LO2, LO3, LO6</td>
<td>20%</td>
<td>5</td>
</tr>
<tr>
<td>In class quiz</td>
<td>50 minute written examination</td>
<td>LO1, LO2, LO6</td>
<td>20%</td>
<td>12</td>
</tr>
<tr>
<td>Lab project</td>
<td>Written report based on four 2 hour lab sessions</td>
<td>LO4, LO5, LO6</td>
<td>10%</td>
<td>5-6-9-10</td>
</tr>
</tbody>
</table>

Reassessment Requirements

Examination (2 hours, 100%)

Contact Hours and Indicative Student Workload

Contact hours:	52
Independent Study (preparation for course and review of materials):	61
Independent Study (preparation for assessment, incl. completion of assessment):	12
Recommended Reading List

Module Pre-requisite

- Mathematics (JS), Physics, Signal Processing (preferably JS), Basic knowledge of Linear Algebra and Probability and Statistics.

Module Co-requisite

- n/a

Module Website

- Material available on BlackBoard

Are other Schools/Departments involved in the delivery of this module?

- No

Module Approval Date

- Approved by

Academic Start Year

- Academic Year of Date