Module Code	CE7E05			
Module Name	E5: Water Quality & Hydrological Modelling			
ECTS Weighting ¹				
	5 ECTS			
Semester taught	Semester 2			
Module Coordinator/s	Prof. Laurence Gill (<u>Laurence.gill@tcd.ie</u>)			
	Asst. Prof. Liwen Xiao (liwen.xiao@tcd.ie)			
	Asst. Prof. David O'Connell (david.oconnell@tcd.ie)			
Module Learning Outcomes with reference	On successful completion of this module, students should be able to:			
to the Graduate Attributes and how they	on successful completion of this module, students should be usic to.			
are developed in discipline	LO1. Develop conceptual models for typical problems within the field of			
	environmental engineering.			
	LO2. Demonstrate an awareness of different approaches to			
	hydro(geo)logical modelling.			
	LO3. Calculate the dissolved oxygen sag in a water course downstream of an input of organic pollution.			
	LO4. Develop complex water quality models for natural processes such as			
	eutrophication and nitrification.			
	LOS. Develop kinetic microbiological models for wastewater treatment			
	processes.			
	LO6. Elucidate the different conceptual flow paths through karst systems.			
	LO7. Construct a numerical model of a lowland karst system using			
	conceptual pipes and tanks.			
	LO8. Interpret soil water potential curves for different soil types.			
	LO9. Develop numerical equations for both steady water flow and			
	transient			
	Flow through saturated & unsaturated soils.			
	Graduate Attributes: levels of attainment			
	To act responsibly - Enhanced			
	To think independently - Attained			
	To develop continuously - Attained			
	To communicate effectively - Enhanced			

Module Content

This module aims to develop the students' comprehension of the relevance and usefulness of mathematical modelling in both water quality and hydrological scenarios. This will enable students to be able to devise a conceptual model to solve typical problems within the field of environmental engineering.

Modeling approaches in hydrology

Physical, mathematical and analogue modelling Aquifer testing Groundwater flow modeling Surface hydrological modeling

Water quality modelling

Fundamental relationships
Numerical methods
Streeter-Phelps Dissolved Oxygen Model
Eutrophication model
Nitrification model
Activated Sludge Model

Karst hydrology

Karst generation / landforms
Karst hydrogeology
Modelling karst conduit networks

Modelling the vadose zone

Overview & fundamentals of soil science
Soil water potential & retention curves
Steady water flow in saturated & unsaturated soils
Unsteady water flow in saturated & unsaturated soils
Solute transport
Evaporation and transpiration

Teaching and Learning Methods

This module is taught by a combination of lectures and tutorials during which two assignments are discussed. Copies of the lecture presentations are given to the students just before the beginning of each lecture. The first continuous assessment, on modelling nitrogen transport through the unsaturated zone, is handed out to the students in week 4 of the module. The second continuous assessment, on modelling a constructed wetland treatment process, is handed out to the students in week 7 of the module. Both completed assignments have to be submitted by the last day of the second semester. The projects are marked and returned to the students with constructive comments.

Assessment Component Assessment description Learning Outcome(s) addressed * % of total Assessment due date Continuous assessment 2 Examination [3 hours] Contact Hours and Indicative Student Workload Contact Hours: 27 Independent Study (preparation for course and review of materials): 40.5 Independent Study (preparation for assessment, incl. completion of assessment): 32.5 Recommended Reading List Water quality modelling – Steven Chapra [McGraw-Hill] Soil Physics with Hydrus – Radcliffe & Simunek [CRC Press] Introduction to Soil Physics – Hillell [Elsevier] Rainfall-runoff modelling – The Primer – Beven [Wiley] Module Pre-requisite n/a Module Vebsite	 Assessment description Learning Outcome(s) addressed % of total 	Assessment Component	Assessment Description	LO Addressed	% of total		
• % of total • Assessment due date Continuous assessment 2 Constructed wetland)					15%		
Reassessment Requirements Examination [3 hours] Contact Hours and Indicative Student Workload ² Independent Study (preparation for course and review of materials): 40.5 Independent Study (preparation for assessment, incl. completion of assessment): 32.5 Recommended Reading List Water quality modelling – Steven Chapra [McGraw-Hill] Soil Physics with Hydrus – Radcliffe & Simunek [CRC Press] Introduction to Soil Physics – Hillell [Elsevier] Rainfall-runoff modelling – The Primer – Beven [Wiley] Module Pre-requisite n/a Module Co-requisite				LO1, LO5	15%		
Contact Hours and Indicative Student Workload² Independent Study (preparation for course and review of materials): 40.5 Independent Study (preparation for assessment, incl. completion of assessment): 32.5 Recommended Reading List Water quality modelling – Steven Chapra [McGraw-Hill] Soil Physics with Hydrus – Radcliffe & Simunek [CRC Press] Introduction to Soil Physics – Hillell [Elsevier] Rainfall-runoff modelling – The Primer – Beven [Wiley] Module Pre-requisite n/a Module Co-requisite		Examination	Examination [3 hours]	LO1 – LO9	70%		
Contact Hours and Indicative Student Workload² Independent Study (preparation for course and review of materials): 40.5 Independent Study (preparation for assessment, incl. completion of assessment): 32.5 Recommended Reading List Water quality modelling – Steven Chapra [McGraw-Hill] Soil Physics with Hydrus – Radcliffe & Simunek [CRC Press] Introduction to Soil Physics – Hillell [Elsevier] Rainfall-runoff modelling – The Primer – Beven [Wiley] Module Pre-requisite n/a Module Co-requisite							
Independent Study (preparation for course and review of materials): 40.5 Independent Study (preparation for assessment, incl. completion of assessment): 32.5 Recommended Reading List Water quality modelling – Steven Chapra [McGraw-Hill]	Reassessment Requirements	Examination [3 ho	urs]				
materials): 40.5 Independent Study (preparation for assessment, incl. completion of assessment): 32.5 Recommended Reading List Water quality modelling – Steven Chapra [McGraw-Hill] Soil Physics with Hydrus – Radcliffe & Simunek [CRC Press] Introduction to Soil Physics – Hillell [Elsevier] Rainfall-runoff modelling – The Primer – Beven [Wiley] Module Pre-requisite n/a Module Co-requisite		Contact hours: 2	7				
Recommended Reading List Water quality modelling – Steven Chapra [McGraw-Hill] Soil Physics with Hydrus – Radcliffe & Simunek [CRC Press] Introduction to Soil Physics – Hillell [Elsevier] Rainfall-runoff modelling – The Primer – Beven [Wiley] Module Pre-requisite n/a Module Co-requisite		materials): 40.5					
Soil Physics with Hydrus – Radcliffe & Simunek [CRC Press] Introduction to Soil Physics – Hillell [Elsevier] Rainfall-runoff modelling – The Primer – Beven [Wiley] Module Pre-requisite n/a Module Co-requisite		of assessment): 3	32.5				
Module Co-requisite n/a	Recommended Reading List	Soil Physics with Hydrus – Radcliffe & Simunek [CRC Press] Introduction to Soil Physics – Hillell [Elsevier]					
	Module Pre-requisite	n/a					
Module Website http://www.tcd.ie/Engineering/undergraduate/maiyear5/	Module Co-requisite	n/a					
	Module Website	http://www.tcd.ie/Engineering/undergraduate/maiyear5/					
Are other Schools/Departments involved in the delivery of this module? NO If yes, please provide details.	involved in the delivery of this module?	NO					
Module Approval Date	Module Approval Date						
Approved by	Approved by						
Approved by	Academic Start Year	1 st September 2020					
	Academic Year of Date	2020/2021					

Week due

9

12