<table>
<thead>
<tr>
<th>Module Code</th>
<th>MEU33EM1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module Name</td>
<td>Manufacturing Technology II</td>
</tr>
<tr>
<td>ECTS Weighting</td>
<td>5 ECTS</td>
</tr>
<tr>
<td>Semester taught</td>
<td>Semester 2</td>
</tr>
<tr>
<td>Module Coordinator/s</td>
<td>Assistant Professor Daniel Trimble dtrimble@tcd.ie</td>
</tr>
</tbody>
</table>

Module Learning Outcomes with reference to the Graduate Attributes and how they are developed in discipline

On successful completion of this module, students should be able to:

1. Differentiate between the different grinding and abrasive processes.
2. Identify and describe the different non-traditional machining and thermal cutting processes.
3. Assess the different heat treatment and surface finishing processes.
4. Understand and analyse the different shaping process used to manufacture plastic parts and composites.
5. Explain the steps involved in power metallurgy from power manufacture to part manufacture
6. Analyse and describe the different joining and assembly processes

Graduate Attributes: levels of attainment

To act responsibly - Enhanced
To think independently - Enhanced
To develop continuously - Enhanced
To communicate effectively - Enhanced

Module Content

- Grinding and other abrasive processes
- Non-traditional machining and thermal cutting processes
- Heat treatment of metals
- Surface processing operations
- Shaping processes for plastics
- Processing of composites
- Powder metallurgy
- Fundamentals of welding

1 TEP Glossary
- Welding processes
- Brazing, soldering and adhesive bonding
- Mechanical assembly

Module description:

This module builds on previous skills and knowledge developed in Manufacturing Technology I (3B7). There is a transition from traditional metal manufacturing processes to more advanced metal manufacturing process such as finishing, non-traditional machining, heat treatment, surface processing, powder metallurgy and welding. Furthermore, shaping process for plastics and processing of composites are also covered. The focus of the module is to provide a treatment of manufacturing that is quantitative rather than just descriptive. The module will enable students to solve quantitative manufacturing problems through the use of material science and mathematical theory.

Teaching and Learning Methods

This module is taught using a combination of lecturers, tutorial problem solving sessions, multiple choice review quizzes and a group based assignment. All lecture notes, tutorial questions and solutions, multiple choice quizzes, videos and assignment briefs will be available through Blackboard.
<table>
<thead>
<tr>
<th>Assessment Details</th>
<th>Assessment Component</th>
<th>Assessment Description</th>
<th>LO Addressed</th>
<th>% of total</th>
<th>Week due</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written Exam</td>
<td>Exam</td>
<td></td>
<td></td>
<td>70%</td>
<td>EOS</td>
</tr>
<tr>
<td>Assignment</td>
<td>Assignment</td>
<td></td>
<td></td>
<td>15%</td>
<td>BB</td>
</tr>
<tr>
<td>Quiz</td>
<td>Multiple Choice Quizzes</td>
<td></td>
<td></td>
<td>15%</td>
<td>BB</td>
</tr>
</tbody>
</table>

Reassessment Requirements

Contact Hours and Indicative Student Workload

Contact hours: 33 Hours

- Independent Study (preparation for course and review of materials): 33
- Independent Study (preparation for assessment, incl. completion of assessment): 33

Recommended Reading List

- Manufacturing Engineering and Technology. Kalpakjian and Schmid

Module Pre-requisite

3b7

Module Co-requisite

na

Module Website

TCD Blackboard

Are other Schools/Departments involved in the delivery of this module? If yes, please provide details.

na

Module Approval Date

19-08-2019

Approved by

Dr. G. O’Donnell

Academic Start Year

2019

Academic Year of Date

2019 - 2020

2 TEP Guidelines on Workload and Assessment