Exercise and Healthy Aging

Dr Noel McCaffrey

Healthy aging is the "process of developing and maintaining the functional ability that will enable older people to do the things that matter to them"

World Report on Aging and Health (WHO, 2015)

Successful aging involves lack of chronic diseases, physical disabilities and risk factors for disease in older age, as well as good mental health, cognitive function and social engagement

Rowe and Kahn, 1977

- Aging
- Aging and Illness
- Mortality, Quality of Life and Exercise
- Getting Started
- 2 stories
- Discussion

2020

Original Investigation | Health Policy Development and Validation of the Chronic Disease Population Risk Tool (CDPoRT) to Predict Incidence of Adult Chronic Disease

Ryan Ng, PhD; Rinku Sutradhar, PhD; Kathy Kornas, MSc; Walter P. Wodchis, PhD; Joykrishna Sarkar, MSc; Randall Fransoo, PhD; Laura C. Rosella, PhD

- aim was to develop a tool to predict 10-yr incidence of first major chronic disease in an adult population
- 6 chronic illnesses i.e. congestive heart failure, COPD, diabetes, lung cancer, myocardial infarction, stroke (including transient ischemic attack)
- data taken from 6 cycles of Canadian Community Health Survey between 2000 2014
- 133,991 adults (over 20 yrs) representative of the Ontario and Manitoba populations
- no prior history of major chronic disease.

3 major predictors

- Age
- Smoking
- BMI

many chronic inflammatory diseases represent an acceleration of the ageing process

Conditions commoner in old age

Franceschi et al 2018

The Downward Spiral

Open Access

2020

RESEARCH

The impact of physical activity on healthy ageing trajectories: evidence from eight cohort studies

Darío Moreno-Agostino^{1*†}¹⁰, Christina Daskalopoulou^{1†}, Yu-Tzu Wu¹, Artemis Koukounari², Josep Maria Haro^{3,4},

Variable	ALSA	ELSA	ENRICA	HRS	JSTAR	KLOSA	MHAS	SHARE
Frequency of vigorous exercise	х			X	Х	Х		Х
Frequency of less vigorous exercise	X			x	X			X
Level of physical activity		х						
Engagement in vigorous exercise during the last 2 weeks	x	X		X			X	X
Frequency of vigorous exercise activities in the last 2 weeks	X	X		x	X	X		X
Time spent doing vigorous exercise in the last 2 weeks	X		X		X	X		

- harmonised dataset
- 8 ageing cohorts in Australia, USA, Mexico, Japan, South Korea, and Europe
- 130,521 older adults (mean age 62.81 yrs)
- follow up for up to 10 years (mean 5.47 yrs)
- average no of observations = 3

Heathy aging score

- Cognition
- Psychological wellness
- Mobility
- Vitality
- Activities of daily Living
- Sensory function (hearing / vision)

Any level of PA engagement associated with reduced likelihood of being in Stable Low or Fast Decline trajectories

GLOBAL CAUSES OF DEATH 1990

- Non-communicable Diseases
- Communicable, Maternal, Neonatal, Nutritional
- Injuries

GLOBAL CAUSES OF DEATH 2016

- Non-communicable Diseases
- Communicable, Maternal, Neonatal, Nutritional

Injuries

Anderson and Durstine, 2019

	IR	T2DM	DysL	BP	Ob	COPD	СНД	CHF	с	OA	RA	ОР	FM	с	DEP	Asth
Path	A	A	А	A	A	D	А	A	A	D	D	A	С	D	D	D
raui		A	A		A		A	A				A	C			
spec symps	A	А	А	A	A	A	A	A	A	A	С	В	A	В	A	с
funct cap	A	A	A	A	A	A	A	A	A	A	A	В	A	В	A	A
quality of life	А	А	В	А	А	А	A	A	А	А	В	В	А	В	А	В

Evidence for exercise as a treatment in chronic disease Pedersen & Saltin, 2006

- A = strongseveral high quality studiesB = moderateat least one HQ, a number moderate
 - S = Inderate at least one nd, a number mot
- C = little at least one moderate
- D = none none

Effect of change in physical activity pre- to post-treatment in patients with colorectal cancer Nurses Health Study Cohort 1976-2004: Meyerhardt J et al, 2006

			N events/total	patients (%)			
Postoperative pulmon	ary complications	N RCTs	intervention	control	RR (95% CI)	TSA	
All	→>	23	165/934 (17%)	289/930 (31%)	0.52 (0.41 to 0.66)	Conclusive	
Surgery							
Cardiac	\rightarrow	5	45/308 (15%)	85/305 (28%)	0.53 (0.38 to 0.73)	Conclusive	
Lung	<i>→</i> →	10	44/284 (15%)	102/282 (36%)	0.45 (0.33 to 0.60)	Conclusive	
Abdominal		6	21/192 (11%)	41/192 (21%)	0.50 (0.32 to 0.78)	Unclear	
Esophagectomy	→ <u></u>	<u> </u>	55/150 (37%)	61/151 (40%)	0.73 (0.30 to 1.78)		
Training							
Endurance	\rightarrow	4	29/228 (13%)	61/232 (26%)	0.50 (0.34 to 0.74)	Conclusive	
Respiratory muscles		10	102/504 (20%)	152/502 (30%)	0.61 (0.39 to 0.94)	Unclear	
Combined —		9	34/202 (17%)	76/196 (39%)	0.43 (0.31 to 0.60)	Conclusive	
Duration of training							
One week	\rightarrow	7	33/272 (12%)	79/271 (29%)	0.43 (0.30 to 0.62)	Conclusive	
> 1 week	<i>→</i> →	16	142/662 (20%)	210/659 (32%)	0.56 (0.41 to 0.76)	Conclusive	
0.1	1.0	10.0					
	RR (95% CI)						

Figure 3. Analysis of postoperative pulmonary complications according to type of surgery, type of exercise training, and duration of training. CI = confidence interval; RCT = randomized controlled trial; RR = relative risk; TSA = trial sequential analysis.

Assouline, B et al, 2021, Annals ATS

Percutaneous Coronary Angioplasty Compared With Exercise Training in Patients With Stable Coronary Artery Disease A Randomized Trial 2004

Rainer Hambrecht, MD; Claudia Walther, MD; Sven Möbius-Winkler, MD; Stephan Gielen, MD;

- n =101 males
- Stable angina and one stenosed vessel
- 20 mins / day cycle erg @70% max HR during stress test
- + 1 x group session x 60 mins weekly

Exercise Group

- Increased exercise tolerance
- Increased VO2 max
- Increased survival

Figure 2. Event-free survival after 12 months was significantly superior in exercise training group versus PCI group (P=0.023 by log-rank test).

Follow up [Months]

Prognostic Effects of Cardiac Rehabilitation in Patients With Heart Failure (from a Multicenter Prospective Cohort Study)

Takuji Adachi, PhD, PT^a, Naoki Iritani, MSc, PT^b, Kuniyasu Kamiya, PhD, PT^c,

2022

CR weekly (x2) x 6 mo vs control

Acute HF or worsening CHF

n = 626

Heart Failure/CR in Patients with HF

Figure 2. Kaplan-Meier curves for the composite outcome, HF rehospitalization, and all-cause mortality according to cardiac rehabilitation.

2009

Total mortality after changes in leisure time physical activity in 50 year old men: 35 year follow-up of population based cohort

Liisa Byberg, researcher, ¹ Håkan Melhus, professor, ² Rolf Gedeborg, researcher, ³ Johan Sundström,

- 35 year cohort study
- 50 yo men recruited over a 3 year period
- Survey of physical activity at baseline and at ages 60, 70, 70 and 82
- Mortality data collected
- Classified as low, medium or high PA levels based on these questions:
 - 1. Do you spend most of your time reading, watching TV, going to the cinema, or engaging in other, mostly sedentary activities?
 - 2. Do you often go walking or cycling for pleasure?
 - 3. Do you engage in any active recreational sports or heavy gardening at least 3 hours every week?
 - 4. Do you regularly engage in hard physical training or competitive sport?

Summary findings

- Over 35 yrs, mortality rate was much lower for those with high versus low physically activity levels
- Increasing PA to a high level (either from a low or a medium level) between ages 50-60 yrs eventually led to a 50% reduction in mortality rate (to the same levels seen in those who sustained high levels of physical activity)
- This benefit was similar in magnitude seen in those who stopped smoking
- There was no significant improvement in mortality in those who increased from low to medium PA levels

Original Investigation | Cardiology

Association of Cardiorespiratory Fitness With Long-term Mortality Among Adults Undergoing Exercise Treadmill Testing

Kyle Mandsager, MD; Serge Harb, MD; Paul Cremer, MD; Dermot Phelan, MD, PhD; Steven E. Nissen, MD; Wael Jaber, MD

- 122,007 patients undergoing treadmill exercise testing, Cleveland
- 1991 2014 mean age 53 yrs
- 59% male

Figure 1. Patient Survival by Performance Group

JAMA Network Open. 2018;1(6):e183605. doi:10.1001/jamanetworkopen.2018.3605

- CR fitness inversely related to all cause mortality
- The increased risk was equal to or greater than the risk associated with some 'standard' risks (diabetes, coronary artery disease, smoking)

RESEARCH ARTICLE

Physical activity and health related quality of life

Nana Kwame Anokye^{1*}, Paul Trueman¹, Colin Green², Toby G Pavey³ and Rod S Taylor² 2012

- National household survey England 2008
- 5,453 adults 40-60 yrs
- HRQoL (EQ-5D Questionnaire)
- PA level
 - subjective (questionnaire)
 - objective (belt-worn actigraph)
- HRQoL higher in those who were physically active
- This applied to sport / exercise and also to walking

The People

- white (91%),
- female (55%),
- married, living with partners (66%),
- educated (81%),
- employed (76%).
- obese (26%)
- smokers (22%)
- 'drinkers of alcohol'. (85%)
- av ann house-hold income was £35,591

- Exercise and illness
 - \circ Prevention
 - o Treatment
- What aspect of exercise matters
- Physiucal activity level
- Fitness

How does exercise help deliver healthy aging?

- Reduced risk of disease
- Protects against cognitive decline
- Enhanced physical function
- Social interaction

Key impact messages

- All outcomes improve
- They improve quickly (6 weeks)
- The scale of change exceeds MCID for 6MTT and SS
- The greatest relative improvements occur in those who start off the weakest

How Much Exercise ?

Every little helps (anti-sedentary behaviour)

- 5 x 30 min sessions of moderately vigorous aerobic exercise weekly
- include resistance training at least twice weekly.
- 8-12 reps of 8-10 different exercises that target all major muscle groups.

What Type ?

- 1. Aerobic
- 2. Strength
- 3. Core stability / balance

How Hard?

- Modest breathlessness
- Talk Test

Getting Started

- Make the decision
- Gradual
- Pick something you enjoy
- Group activity has benefits
 - Regular schedule
 - Discipline
 - Supervision
 - Social interaction
- Goal setting

Summary

- Exercise works for length and quality of life
- Probably the single best intervention for healthy aging
- It's cheap
- It's great fun, especially in groups

