Module Template for New and Revised Modules

<table>
<thead>
<tr>
<th>Module Code</th>
<th>MEU33B02</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module Name</td>
<td>Fluid Mechanics 1</td>
</tr>
<tr>
<td>ECTS Weighting</td>
<td>5 ECTS</td>
</tr>
<tr>
<td>Semester taught</td>
<td>Semester 1</td>
</tr>
<tr>
<td>Module Coordinator/s</td>
<td>Craig Meskell</td>
</tr>
</tbody>
</table>

Module Learning Outcomes with reference to the Graduate Attributes and how they are developed in discipline

On successful completion of this module, students should be able to:

1. Explain the fundamental scientific principles underlying the generalised equations of fluid motion for both incompressible and compressible flow.
2. Reduce the generalised equations of fluid motion to simplified versions in rectilinear and cylindrical coordinates and solve for simple flow problems.
3. Use Buckingham’s Pi theorem to develop dimensionless groups and apply similarity and modelling procedures.
4. Generate mathematical models for boundary layer flows, using integral analysis procedures.
5. Estimate skin friction coefficients and drag for aircraft, ships and vehicles.
6. Discuss the characteristics of laminar and turbulent flow and describe flow visualisation methods and techniques for the measurement of turbulence.
7. Analyse head losses in piping systems and estimate the flow distribution in pipe networks.
8. Calculate the variation in pressure and velocity in a high speed internal gas flow.
9. Execute a numerical simulation of turbulent flow using RANS.
10. Follow formatting requirements typical of grant applications or contract tender process.

1. *An Introduction to Module Design* from AISHE provides a great deal of information on designing and re-designing modules.
2. *TEP Glossary*
Graduate Attributes: levels of attainment
To act responsibly - Introduced
To think independently - Enhanced
To develop continuously - Enhanced
To communicate effectively - Introduced

Module Content
This course introduces the student to the basic concepts underlying the mechanics of fluid motion. The appropriate scientific principles and mathematical modelling techniques are described and then applied to practical engineering problems. Four different modelling techniques are discussed: exact analytical solutions using Navier-Stokes equations; approximate approaches (e.g. boundary layer integral analysis); similarity (dimensional) analysis for experimental data; and numerical simulation using RANS. Real life problem-solving skills are cultivated within the framework of practical flow devices and systems (e.g. piping system components, fluid machines, vehicle drag). Environmental and social implications are briefly discussed.

Teaching and Learning Methods
The course is delivered through a combination of formal podium lectures and online problem sets.

Assessment
There are two components to the module’s assessment:

- Written 2 hour examination at end of Semester (this will probably be delivered through Blackboard)
- An individual assignment (in two parts) on the use of CFD.
Assessment Details

Please include the following:

- **Assessment Component**
- **Assessment description**
- **Learning Outcome(s) addressed**
- **% of total**
- **Assessment due date**

<table>
<thead>
<tr>
<th>Assessment Component</th>
<th>Assessment Description</th>
<th>LO Addressed</th>
<th>% of total</th>
<th>Week due</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exam</td>
<td>End of Semester exam</td>
<td>1-8</td>
<td>85</td>
<td>14</td>
</tr>
<tr>
<td>Assignment 1</td>
<td>Intro to Using CFD software</td>
<td>9 & 10</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>Assignment 2</td>
<td>Application of CFD</td>
<td>7, 9, 10</td>
<td>12</td>
<td>9</td>
</tr>
</tbody>
</table>

Reassessment Requirements

- Exam

Contact Hours and Indicative Student Workload

- **Contact hours:** 33
- **Independent Study (preparation for course and review of materials):** 60
- **Independent Study (preparation for assessment, incl. completion of assessment):** 15

Recommended Reading List

This is the course textbook. Students are expected to have access to a copy.

Fundamentals of fluid mechanics 8e (SI Version)

Other Relevant Texts

The following textbook provide useful addition material:

Introduction to Fluid Mechanics 7e Fox, Pritchard, McDonald. ISBN 978-0-470-23450-1

Module Pre-requisite

- MEU2205

Module Co-requisite

- none

Are other Schools/Departments involved in the delivery of this module?

- No

Academic Year of Date

- 2023-24

3 TEP Guidelines on Workload and Assessment