Module Template for New and Revised Modules

<table>
<thead>
<tr>
<th>Module Code</th>
<th>MEP55B21</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module Name</td>
<td>Neural Signal Analysis</td>
</tr>
<tr>
<td>ECTS Weighting1</td>
<td>10 ECTS</td>
</tr>
<tr>
<td>Semester taught</td>
<td>Semester 1</td>
</tr>
<tr>
<td>Module Coordinator/s</td>
<td>Assistant Professor Alejandro Lopez Valdes</td>
</tr>
</tbody>
</table>

Module Learning Outcomes with reference to the Graduate Attributes and how they are developed in discipline

On successful completion of this module, students should be able to:

- **LO1.** Understand the origin and imaging methods of neural signals.
- **LO2.** Understand how to quantitatively analyse dynamic, multivariate neural data.
- **LO3.** Design analysis pipelines and analyse EEG and event-related potential data with time-frequency methods.
- **LO4.** Analyse structural and functional MRI data.
- **LO5.** Understand advanced analysis frameworks for connectivity and modelling on neural systems.

Graduate Attributes: levels of attainment

- To act responsibly - Enhanced
- To think independently - Enhanced
- To develop continuously - Enhanced
- To communicate effectively - Enhanced

Module Content

The purpose of this module is to equip students with advanced mathematical tools for the analysis of neural signals including EEG, MEG, fMRI and intracranial data. The tools will include harmonic analysis, filtering, independent component analysis and wavelet-based methods. All methods will be developed to answer specific physiological questions on real data sets. The lectures will be accompanied by Matlab based analysis assignments throughout the semester. The scoring of the module will encourage this practical application of the methods with continuous Matlab based assignments comprising 100% of the module mark.

- The analysis of linear time-invariant systems as applied to electrophysiology.
- Noise and filtering for electrophysiological data.
- Electroencephalography: generators, analysis and interpretation.
- Intracranial data: sources, interpretation and analysis.
- Functional magnetic resonance imaging: origin of the BOLD signal and its analysis.
- Estimating neural connectivity patterns from neural data.
- Computational modelling of neural systems.

Teaching and Learning Methods

The course is lecture based, but a large emphasis is placed on accompanying Matlab-based assignments. These assignments will involve applying methods discussed in lectures to real neural data.

Students will be expected to complete an extensive training in recording of high-quality EEG data. This will involve multiple recording sessions on volunteer subjects so that they demonstrate competence in recording and data analysis.

In the event of a COVID-19 lockdown, the teaching methods for this module may have to be revised. Your module coordinator will keep you updated.
Assessment Details
Please include the following:
- Assessment Component
- Assessment description
- Learning Outcome(s) addressed
- % of total
- Assessment due date

<table>
<thead>
<tr>
<th>Assessment Component</th>
<th>Assessment Description</th>
<th>LO Addressed</th>
<th>% of total</th>
<th>Week due</th>
</tr>
</thead>
<tbody>
<tr>
<td>Individual assignments</td>
<td>Submission of Course Assignments</td>
<td>L01-L06</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Reassessment Requirements
Reassessment will consist of an additional continuous assessment exercise

Contact Hours and Indicative Student Workload

Contact hours: 33

- **Independent Study (preparation for course and review of materials): 66 hours:** Researching journals, reviewing lecture material and class notes.
- **Independent Study (preparation for assessment, incl. completion of assessment): 66 hours:** Searching, locating, retrieving, analysing and implementing mathematical solutions or assignments. Writing of the assignment reports and discussing conclusions.

Recommended Reading List

Module Pre-requisite
EEU33BM1 Anatomy and Physiology, EEU44C05 Digital Signal

Module Co-requisite

Module Website
Blackboard

Are other Schools/Departments involved in the delivery of this module?
No

Module Approval Date

Approved by

Academic Start Year
2021
| Academic Year of Date | 2021 |