TABLE OF CONTENTS

WELCOME .. 2
FOREWORD .. 3
INTRODUCTION .. 4
ALLOCATION OF PLACES .. 4
MODERATORSHIP CHOICE FORM ... 5
COURSE ADVISORS (JS) .. 6
COURSE ADVISORS (SS) .. 7
MODERATORSHIP QUOTAS ... 8
MODULE CHOICE FORMS ... 10
TRINITY ELECTIVES ... 10
NON-SATISFACTORY ATTENDANCE AND COURSEWORK ... 11
JUNIOR SOPHISTER EXAMINATION INFORMATION ... 12
DATES TO NOTE ... 13
BIOCHEMISTRY .. 14
BOTANY ... 21
ENVIRONMENTAL SCIENCE .. 32
GENETICS ... 44
HUMAN GENETICS ... 53
IMMUNOLOGY ... 63
MICROBIOLOGY ... 70
MOLECULAR MEDICINE ... 76
NEUROSCIENCE ... 83
PHYSIOLOGY .. 97
ZOOLOGY ... 108
GRADUATE ATTRIBUTES .. 120
APPENDIX 1 .. 121
Welcome

Dear Students

Congratulations – you are nearing the end of the Freshman years of your degree and are ready to make the important decision about which science moderatorship you wish to pursue. The Freshman course structure has given you an excellent grounding in your core subject to prepare you for the advanced material you will cover in your Sophister years. You have also had opportunities to take open modules in other science subjects that have given breadth and context to your science education.

Development of educational breadth continues in the Sophister years via the opportunity to take further open modules and also Trinity Electives. Trinity Electives are stand-alone, College-wide modules that enable you to broaden your knowledge outside of your chosen subject. There is a wide range of choice available to you that encompasses languages and cultures, key societal challenges and Trinity’s ground-breaking research activities.

A list of the modules can be found at this link (https://www.tcd.ie/TEP/trinity_electives.php). Having the opportunity to develop these broader skills, particularly in communication and presentation, will allow you to derive the greatest benefits from your particular choice of moderatorship subject and will give you important insights into other subjects and modes of scholarship outside of the sciences.

I wish you the very best in your Sophister years and look forward to seeing your future successes and achievements.

Prof Áine Kelly
Associate Dean of Undergraduate Science Education
Foreword
The purpose of this booklet is to provide information on the moderatorship choices that are available to you in the Sophister (3rd and 4th) years of the TR060 Biological and Biomedical Sciences (BBS) Programme.

Having successfully completed the Freshman years, of the BBS programme, you must now decide on the discipline in which you wish to specialise for your moderatorship. For some of you this will be an easy decision, as you have known from entry the subject you wish to study. For others the choice may be more difficult. However, it is important for all of you to be open-minded and reflect carefully on the broad range of topics presented in the Freshman biology modules.

My strong advice to you is - follow your interests! You will excel in the areas of biology in which you are most interested.

I recommend that you read this booklet very carefully before making your choices. You will see that the Biological and Biomedical Sciences Programme allows you to choose from 11 moderatorships covering a broad range of disciplines. You should also note the overlap in content between disciplines, afforded by the system of ‘Core’ and ‘Open’ modules that will give breadth to your scientific education. For example: those who specialise in Microbiology also have the opportunity to choose modules in ‘Biochemistry for Biological Sciences’; ‘Introduction to Immunology and Immunometabolism’; ‘Genomes and Systems Biology’ and ‘Introduction to Parasitology’ in the Junior Sophister year.

Junior Sophister students also have the opportunity to broaden their education by taking one or two Trinity Elective(s) in a topic outside of their moderatorship subject. The list of Trinity Elective modules reflects the very wide range of engagement in scholarship across college. Trinity Electives therefore afford the opportunity to study subjects of interest to you, presented by the leaders in the field.

Detailed information on each moderatorship can be obtained from the Junior Sophister Course Advisor. You are also welcome to visit the Science Course Office to discuss any personal needs you may have.

I wish you every success in your chosen field of study over the next two years.

Prof Kevin Devine
Director Biological and Biomedical Sciences
Introduction

Sophister courses in science are organised so that students follow a continuous programme of work over two years leading to a moderatorship in a particular subject. Each module (whether lecture, tutorial, seminar or practical) has a specified credit value, which is an approximate measure of the workload associated with the module and is in turn reflected in its proportional weighting in assessment. One credit is normally considered to represent a minimum of 20 hours of work on the part of a student. Students take modules to the value of 60 credits in each of the Sophister years.

The Sophister Course Booklet is intended as a detailed and comprehensive guide to all moderatorships within the Biological and Biomedical Sciences course (BBS). Full course descriptions and reading lists are available from individual schools/ departments and Course Advisers.

While every effort will be made to give due notice of major changes, the Science Course Office reserves the right to suspend, alter or initiate courses, timetables, examinations and regulations at any time.

The information in this booklet is accurate at the time of going to print but maybe subject to minor changes.

Allocation of Places

The Science Course office coordinates and processes the applications for Junior Sophister places in the TR060 BBS course. The procedures documented below show students that places are allocated in a fair, transparent and efficient manner.

The number of places available in each moderatorship subject is limited by quota. Allocation is based on the overall mark obtained in the Senior Freshman examinations and the order of choice as expressed by the student. The Science Course Office makes the decisions on the allocation of places. Students cannot be allocated a place by circumventing the Science Course Office and going directly to the disciplines. All enquiries with regard to the allocation of places made to the disciplines will be redirected to the Science Course Office science@tcd.ie.

Places will be allocated in the following way until quotas are reached:

1. All students passing their Senior Freshman semester one and semester two examinations will be ranked in merit order on the basis of their overall mark.
2. Places will be allocated in rank order.
3. Students failing the Senior Freshman examinations must reapply for the remaining unfilled places until quotas are reached. Second round choice of subject forms will be made available on-line:
4. The closing date for the online second round form is Friday 10th July 2020.
5. Examination results will be available on your personal portal at my.tcd.ie.
6. Publication of the JS places will be available through my.tcd.ie portal by the beginning of June.
7. Students are informed by email when the places are published, and the procedures followed are clearly outlined in the email.
8. Students opting to go ‘off books’ rather than take up the place offered, will be treated as rising JS students in the following year. Places will not be reserved for such students. Students who apply for readmission will be considered for a place in the same way as the year in which they qualified (if a student did not qualify for a place in the first round, they will not be considered in the first round when they apply for readmission to the College).
9. Students who fail their Junior Sophister examinations will be treated ex-quota in relation to that discipline.
10. Students who are given permission by the Senior Lecturer to defer their examinations until the reassessment examination session can defer a place in their first preference only. Following publication of the reassessment examinations, students who passed Senior Freshman examinations at the reassessment session will be allocated a place based on the same criteria used in the summer allocation of places. If the student in this category does not qualify for the deferred place, the Science Course Administrator will offer that student a place in one of the subjects available in the second round and the deferred place will be offered to the next qualified student from the first-round allocation.

Special note: Students who have passed their Senior Freshman examinations may not repeat the SF year in order to improve their performance.

Moderatorship Choice Form

The choice of subject form is available online: https://www.tcd.ie/Science/TR060/. Click on Junior Sophister on the left menu then click on Moderatorship Choice Form.

The closing date for submission of the JS Moderatorship choices form is Monday 20th April 2020.
Course Advisors (JS)

<table>
<thead>
<tr>
<th>Field</th>
<th>Advisor</th>
<th>Email</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biochemistry</td>
<td>D. Nolan</td>
<td>denolan@tcd.ie</td>
</tr>
<tr>
<td>Botany</td>
<td>M. Williams</td>
<td>willimsm@tcd.ie</td>
</tr>
<tr>
<td>Environmental Sciences</td>
<td>M. Saunders</td>
<td>saundem@tcd.ie</td>
</tr>
<tr>
<td>Genetics</td>
<td>J.P. Labrador</td>
<td>labradoj@tcd.ie</td>
</tr>
<tr>
<td>Human Genetics</td>
<td>J. Farrar</td>
<td>gjfarrar@tcd.ie</td>
</tr>
<tr>
<td>Immunology</td>
<td>F. Sheedy</td>
<td>fsheedy@tcd.ie</td>
</tr>
<tr>
<td>Microbiology</td>
<td>J. Geoghegan</td>
<td>geoghgj@tcd.ie</td>
</tr>
<tr>
<td>Molecular Medicine</td>
<td>J. Murray</td>
<td>james.murray@tcd.ie</td>
</tr>
<tr>
<td>Neuroscience</td>
<td>E. Jimenez-Mateos</td>
<td>jimeneze@tcd.ie</td>
</tr>
<tr>
<td>Physiology</td>
<td>M. Caldwell</td>
<td>caldwellm@tcd.ie</td>
</tr>
<tr>
<td>Zoology</td>
<td>A. Jackson</td>
<td>jacksonan@tcd.ie</td>
</tr>
</tbody>
</table>
Course Advisors (SS)

<table>
<thead>
<tr>
<th>Subject</th>
<th>Prof Name</th>
<th>Email</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biochemistry</td>
<td>Prof Danny Zisterer</td>
<td>dzistrer@tcd.ie</td>
</tr>
<tr>
<td>Botany</td>
<td>Prof Mike Williams</td>
<td>willimsm@tcd.ie</td>
</tr>
<tr>
<td>Environmental Sciences</td>
<td>Prof Matthew Saunders</td>
<td>saundem@tcd.ie</td>
</tr>
<tr>
<td>Genetics</td>
<td>Prof Juan Pablo Labrador</td>
<td>labradoj@tcd.ie</td>
</tr>
<tr>
<td>Human Genetics</td>
<td>Prof Jane Farrar</td>
<td>jane.farrar@tcd.ie</td>
</tr>
<tr>
<td>Immunology</td>
<td>Prof Clair Gardiner</td>
<td>clair.gardiner@tcd.ie</td>
</tr>
<tr>
<td>Microbiology</td>
<td>Prof Kim Roberts</td>
<td>kroberts@tcd.ie</td>
</tr>
<tr>
<td>Molecular Medicine</td>
<td>Prof Gareth Brady</td>
<td>bradyg@tcd.ie</td>
</tr>
<tr>
<td>Neuroscience</td>
<td>Prof Colm Cunningham</td>
<td>cunninco@tcd.ie</td>
</tr>
<tr>
<td>Physiology</td>
<td>Prof Alice Witney</td>
<td>awitney@tcd.ie</td>
</tr>
<tr>
<td>Zoology</td>
<td>Prof Andrew Jackson</td>
<td>a.jackson@tcd.ie</td>
</tr>
</tbody>
</table>
Moderatorship Quotas

To be qualified for a moderatorship, students must have successfully completed both Freshman years. While every effort will be made to give due notice of major changes in the quotas, the Science Course Office reserves the right to alter pre-requisites and quotas, if necessary.

<table>
<thead>
<tr>
<th>Moderatorship</th>
<th>Quotas</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biochemistry</td>
<td>24</td>
</tr>
<tr>
<td>Botany</td>
<td>24</td>
</tr>
<tr>
<td>Environmental Sciences</td>
<td>25</td>
</tr>
<tr>
<td>Genetics</td>
<td>20</td>
</tr>
<tr>
<td>Human Genetics</td>
<td>15</td>
</tr>
<tr>
<td>Immunology</td>
<td>20</td>
</tr>
<tr>
<td>Microbiology</td>
<td>30</td>
</tr>
<tr>
<td>Molecular Medicine</td>
<td>18</td>
</tr>
<tr>
<td>Neuroscience</td>
<td>22</td>
</tr>
<tr>
<td>Physiology</td>
<td>18</td>
</tr>
<tr>
<td>Zoology</td>
<td>36</td>
</tr>
</tbody>
</table>
Junior Freshman Modules 2018/19

<table>
<thead>
<tr>
<th>Module Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BYU11101</td>
<td>From Molecules to Cells</td>
<td>10</td>
</tr>
<tr>
<td>BYU11102</td>
<td>From Organisms to Ecosystems</td>
<td>10</td>
</tr>
<tr>
<td>CHU11B01</td>
<td>Chemistry for Life Sciences</td>
<td>10</td>
</tr>
<tr>
<td>MAU11002</td>
<td>Mathematics, Statistics & Computation 2</td>
<td>10</td>
</tr>
<tr>
<td>GSU11004</td>
<td>Spaceship Earth – An Introduction to Earth System Science</td>
<td>10</td>
</tr>
<tr>
<td>GSU11005</td>
<td>Introduction to Geology – A Beginners Guide to Planet Earth</td>
<td>10</td>
</tr>
<tr>
<td>PYU11F10/20</td>
<td>Foundation Physics for Life and Earth Scientists</td>
<td>10</td>
</tr>
<tr>
<td>SEU10001/02</td>
<td>Science Education and Communication</td>
<td>10</td>
</tr>
</tbody>
</table>

Senior Freshman Modules 2019/20

<table>
<thead>
<tr>
<th>Module Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BYU22001</td>
<td>From Molecules to Cells</td>
<td>10</td>
</tr>
<tr>
<td>BYU22002</td>
<td>From Cells to Organisms</td>
<td>10</td>
</tr>
<tr>
<td>BYU22003</td>
<td>From Organisms to Ecosystems</td>
<td>10</td>
</tr>
<tr>
<td>BYU22004</td>
<td>Sustainable Production: Food, Drink & Drugs</td>
<td>5</td>
</tr>
<tr>
<td>BYU22005</td>
<td>Influences on Animal Behaviour</td>
<td>5</td>
</tr>
<tr>
<td>BYU22006</td>
<td>Microbes, Immune Systems & their Interaction</td>
<td>5</td>
</tr>
<tr>
<td>BYU22007</td>
<td>Genomes, Disease and Diversity</td>
<td>5</td>
</tr>
<tr>
<td>BYU22501</td>
<td>Statistics & Computation</td>
<td>5</td>
</tr>
<tr>
<td>CHU22205</td>
<td>Chemistry for Biologists</td>
<td>5</td>
</tr>
<tr>
<td>GSU22001</td>
<td>Geochemical Cycles: From Geo to Biogeochemistry</td>
<td>10</td>
</tr>
<tr>
<td>GSU22005</td>
<td>Sedimentary Processes & Environments</td>
<td>10</td>
</tr>
<tr>
<td>MAU23302</td>
<td>Euclidean and Non-Euclidean Geometry</td>
<td>5</td>
</tr>
<tr>
<td>PIU22991</td>
<td>History Philosophy & Ethics of Science</td>
<td>5</td>
</tr>
</tbody>
</table>
Module Choice Forms

Students take modules totalling 60 credits in the Junior Sophister year. There are 40 credits of core modules; and 20 credits of open modules spread equally over two semesters in the academic year. The module structure for each individual moderatorship is listed in the following pages.

In addition students can choose one or two (one per semester) 5 credit Trinity Elective modules as shown in the module structure table for each moderatorship subject.

Students can choose their open modules with the help of the Moderatorship Course Adviser following the allocation of moderatorship places. Online forms will be available on the Science web site.

Trinity Electives

The Trinity Electives are a unique feature of your Trinity Education. They are stand alone, College-wide 5 credit modules. They cover a broad range of topics in the arts, humanities, sciences, health and social science, and technology. They are designed to allow students to study topics outside of their core discipline and thus provide breadth in their education. BBS students take a minimum of one and a maximum of two (one per semester) Trinity Electives in the Junior Sophister year. Depending on your moderatorship, you will choose a combination of Trinity Electives and Open Modules as described in this handbook.

Choosing your Trinity Elective

The choice of Trinity Elective is student driven. Almost all Trinity Electives are open to all students. However, students of some moderatorships may be precluded from taking certain Trinity Electives (e.g. the module ‘From Planets to the Cosmos’ is not available to TR063 Physical Sciences students, as this topic is part of their core discipline). The list of exemptions is outlined in the Trinity Electives webpage.

Selection of Trinity Electives will be made through online enrolment which will open in June 2020, after publication of examination results and allocation of moderatorship places. You will be asked to list your choice(s) of Trinity Elective in order of preference. Places are allocated according to a computer algorithm based on student preference and places available in the Trinity Elective. Exam results are not factored into this algorithm.

The Trinity Electives website provides full details of each of the Trinity Electives. A list of the Trinity Electives can be found at https://www.tcd.ie/trinity-electives/

You need to think carefully about your choice of Trinity Elective as the semester in which you take it (Semester 1, Semester 2 or both) will affect your choice of Open Modules. That is: taking one Trinity Elective in the first semester, restricts you to the open modules in Scenario 1; taking one Trinity Elective in the second semester, restricts you to the open modules in Scenario 2 while taking two Trinity Electives, (one in each semester) restricts you to the open modules in Scenario 3. Please refer carefully to the tables in this handbook.
Please note that you CANNOT change your Trinity Elective so choose carefully!!!

Summary of Process

May: Results are published
June: Moderatorships are allocated.

Students apply for Trinity Electives through an online portal on the Trinity Electives website. Trinity Electives are allocated by computer algorithm.

Students are informed of Trinity Elective allocation. **THERE IS NO CHANGE OF MIND.**

Following this process, students will select their Open Modules.

Non-Satisfactory Attendance and Coursework

All students must fulfil the course requirements of the school or department, as appropriate, with regard to attendance and course work. Where specific requirements are not stated, students may be deemed non-satisfactory if they miss more than a third of their course of study or fail to submit a third of the required course work in any term.

At the end of the teaching term, students who have not satisfied the school or department requirements, may be reported as non-satisfactory for that term. Students reported as non-satisfactory for the Michaelmas and Hilary terms of a given year may be refused permission to take their semester two assessment/examinations and may be required by the Senior Lecturer to repeat their year https://www.tcd.ie/undergraduate-studies/academic-progress/attendance-course-work.php.

Please refer to your department/discipline handbook for moderatorship regulations.
Junior Sophister Examination Information

Modules are assessed by continuous assessment and/or by examination. The Junior Sophister year is comprised of modules to a total of 60 credits. The distribution scheme of marks between papers and practical work at the Sophister examinations will be published by individual schools or departments/disciplines.

Calculation of Moderatorship results
The final moderatorship results are calculated as a weighted average of the overall result for the Junior and Senior Sophister examination results.

Junior Sophister 30%, Senior Sophister 70%:
Biochemistry, Botany, Environmental Sciences, Genetics, Human Genetics, Immunology, Microbiology, Molecular Medicine, Neuroscience, Physiology, Zoology.

Reassessment Regulations
Reassessment is available in all years.
The right to reassessment will be automatic for those students who achieve a fail grade in any of their modules.
Students may not present for reassessment in a module they have passed.
Capping of marks will not be applied for reassessment.

Repeat Year regulations
Students who fail to satisfy the requirements of their year at the Reassessment session are required to repeat the year in full (i.e. all modules and all assessment components).
Students are permitted to repeat any year of an undergraduate programme subject to, not repeating the same year more than once and not repeating more than two academic years within a degree course, except by special permission of the University Council (see calendar https://www.tcd.ie/calendar/undergraduate-studies/general-regulations-and-information.pdf page 37.
The option to repeat a year on ‘off-books’ basis will be at the discretion of the Senior Lecturer (see Calendar https://www.tcd.ie/calendar/undergraduate-studies/general-regulations-and-information.pdf page 40).

Please note that in the event of failure at the 2019/20 examinations, students taking Science TR071 and Human Genetics who are permitted to repeat the Junior Sophister year in full will be required to repeat in one of the four new science streams as appropriate:

TR060: Biological & Biomedical Sciences - https://www.tcd.ie/Science/Study-Science/TR060/
Dates to Note

<table>
<thead>
<tr>
<th>Date</th>
<th>Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>9th April 2020</td>
<td>Semester 2 - Hilary Lecture Term ends</td>
</tr>
<tr>
<td>20th April 2020</td>
<td>Closing date – Submit choice of Moderatorship forms</td>
</tr>
<tr>
<td>27th April 2020</td>
<td>Semester 2 Examinations begin (contingency days 23rd to 25th April 2020)</td>
</tr>
<tr>
<td>1st May 2020</td>
<td>Semester 2 Examination ends</td>
</tr>
<tr>
<td>25th May 2020</td>
<td>Publication of Examination results</td>
</tr>
<tr>
<td>End of May</td>
<td>Allocation of JS Moderatorship places</td>
</tr>
<tr>
<td>Beginning of June 2020</td>
<td>Notification of JS Moderatorship places</td>
</tr>
<tr>
<td>Mid-June 2020</td>
<td>Students select Trinity Electives</td>
</tr>
<tr>
<td>June 2020</td>
<td>Students will be allocated Trinity Electives</td>
</tr>
<tr>
<td>June/July 2020</td>
<td>Students complete online form selecting Open modules.</td>
</tr>
<tr>
<td>10th July 2020</td>
<td>Closing date – 2nd Round Choice Moderatorship Form</td>
</tr>
<tr>
<td>31st August 2020</td>
<td>Reassessment Examinations begin (contingency days 24th to 28th August 2020)</td>
</tr>
<tr>
<td>4th September 2020</td>
<td>Reassessment Examinations end</td>
</tr>
<tr>
<td>11th September 2020</td>
<td>Publication of Reassessment Examination results</td>
</tr>
<tr>
<td>14th September 2020</td>
<td>Semester 1 Michaelmas lecture term begins</td>
</tr>
<tr>
<td>4th December 2020</td>
<td>Semester 1 Michaelmas lecture term ends</td>
</tr>
</tbody>
</table>

N.B. These dates are accurate going to print but may be subject to change.
Biochemistry

Junior Sophister Course Advisor: Prof D Nolan denolan@tcd.ie

Biochemistry is a unique discipline because it sits at the interface between chemistry and biology and consequently it is an underpinning subject for many disciplines in the biological and biomedical sciences. Biochemistry is concerned with the study of the structure and function of the building blocks of life, *i.e.* proteins, carbohydrates, lipids and nucleic acids, and how these various components work together in living organisms. Crucially, biochemists seek to provide mechanistic explanations for biological processes and ask questions about how things work, why they work and what happens when they don’t! This is the approach that provides the molecular understanding of disease which is essential for the development of new therapeutics. Moreover, biochemists developed many of the key quantitative and analytical technologies that are now used widely in the life and medical sciences.

The Biochemistry moderatorship is run by the School of Biochemistry and Immunology (http://www.tcd.ie/Biochemistry/) and the course at Trinity reflects the longstanding, and internationally recognised, strengths of the school in diverse areas of biochemistry.

All international visiting student queries should please contact Prof Andrei Budanov (budanova@tcd.ie).

The junior sophister year consists of four core modules, each worth 10 credits. These modules cover three central themes in biochemistry: Protein Structure & Function; Membranes and Cell Biology; Nucleic Acids and consist of lectures and extensive practical classes. The fourth core module is unique and seeks to develop those explicit skills that are essential for a graduate biochemist, i.e. organisational, technical, analytical and communication skills.

In addition to the Core Biochemistry modules, students will take Open modules in: Genomes and Systems Biology (5 credits, S1) and an Introduction to Immunology and Immunometabolism (5 credits, S2). Biochemistry students then have the option of further Open Modules in association with a Trinity Elective, as indicated in the Module Structure Table.

Senior Sophister students spend a number of weeks in one of the research laboratories in the new Biomedical Sciences Institute where they conduct state-of-the-art research in areas such as cancer, obesity, ageing, neurobiology, nutrition, parasitology and biotechnology. Graduates in the discipline of biochemistry will be able to describe cellular function and regulation in terms of the molecules, proteins and structures involved, be trained in the application of appropriate technologies to investigate these processes and have a special insight into the nature of human pathological states and their treatment at a molecular level.
Module Structure

<table>
<thead>
<tr>
<th>Core Modules</th>
<th>Open Modules Scenarios</th>
</tr>
</thead>
<tbody>
<tr>
<td>Semester 1</td>
<td>Scenario I</td>
</tr>
<tr>
<td>BIU33110 Protein Structure and Function. (10 credits)</td>
<td>GEU33045 Genomes and Systems Biology (5 Credits)</td>
</tr>
<tr>
<td>BIU33120 Membranes and Cell Biology. (10 credits)</td>
<td>Trinity Elective (5 Credits)</td>
</tr>
<tr>
<td>Scenario II</td>
<td>Scenario II</td>
</tr>
<tr>
<td>Scenario III</td>
<td>Scenario III</td>
</tr>
<tr>
<td>BIU33110 Protein Structure (S1)</td>
<td>10 credits</td>
</tr>
<tr>
<td>Profs A Khan, K Hun Mok, D Finlay, J Murray, E Creagh, D Nolan, N Nic a' Bháir</td>
<td>Trinity Elective (5 Credits)</td>
</tr>
<tr>
<td>This module introduces the concept of proteins as molecular nanomachines that act as the workhorses in living cells. The topics covered include: the relationship between protein structure and function, enzyme structure, mechanism, analysis and regulation; how drugs can be exploited to target proteins to treat diseases. As well as lectures the module includes a set of linked practical sessions.</td>
<td>Trinity Elective (5 Credits)</td>
</tr>
<tr>
<td>The module will be assessed by in course continuous assessment and by an individual end of term exam paper.</td>
<td>Trinity Elective (5 Credits)</td>
</tr>
</tbody>
</table>
BIU33120 MEMBRANE AND CELL BIOLOGY (S1)
Profs M Caffrey, P Voorheis, D Nolan, E Creagh, R Porter, A Dunne
This module covers the structure and function of biological membranes, the cytoskeleton, related signal transduction pathways and associated pathological conditions important in human health. As well as lectures the module includes a set of linked practical sessions. The module will be assessed by in course continuous assessment and by an individual end of term exam paper.

BIU33010 NUCLEIC ACIDS (S2)
Profs V Kelly, M Carty, D Zisterer, A Bowie, D Finlay & F Sheedy
This module covers the structure and function of nucleic acids and the molecular basis of gene regulation/expression including DNA replication and repair, transcription and translation. As well as lectures the module includes a set of linked practical sessions. The module will be assessed by in course continuous assessment and by an individual end of term exam paper.

BIU33020 RESEARCH SKILLS (S2)
All biochemistry staff
This purpose of this module is to teach the essential skills in laboratory research, experimental design, survey & critical analysis of the literature and communication (written and oral) that are essential for a graduate biochemist. Students will undertake a series of thematic, mini-project style practical classes that extend over a number of laboratory sessions covering: (i) RAS and cancer and (ii) culture and differentiation of a medically important protozoan parasite. In addition, students will be trained in the analysis of primary experimental data through a combination of lectures and tutorial sessions. Finally, students will undertake a major written review of a subject area of biochemical relevance under the supervision of a member of staff of the school. Students will also give a short oral presentation of their review. This module is entirely in-course assessed

Open modules

GEU33045 Genomics and Systems Biology (S1)
Profs F Wellmer, K Hun Mok, A Bracken, R McLaughlin, C Kröger
This module will introduce students to core concepts of genomics and systems biology. Topics discussed will include structural genomics and genome sequencing; DNA sequencing methods and the story of the human genome project; genome annotation and gene finding; comparative genomics; functional genomics; epigenomics; transcriptomics; regulatory networks; and the cis-regulatory code. Furthermore, students will be introduced to the use of genomics techniques in medicine and will learn about methods used to analyze the proteome of an organism.
PGU33950 Cell Physiology and Pharmacology. Credit Value (S1) 5 credits
Profs T Boto and M-V Guillot Sestier
The lectures in this module focus on (i) membrane structure, proteins and properties; (ii) receptors and neurotransmitters, (iii) the principles of drug action, drug development and drug targets. The module is designed to consider the structure of the membrane, the changes that occur in the membrane under different biological circumstances using age as an example, and role of membrane proteins. Cell functions, for example, the control of intracellular calcium by cells and transmitter release will be considered in the context of the membrane proteins that impact on these functions. There is a problem-based learning element to this course that will be a team-based exercise. An overall theme will be chosen and groups of 3 or 4 students will be assigned specific aspects of the theme. The objective is to undertake research on the theme and prepare a presentation that is cohesive across the topic. Each team member will contribute to the presentation.

Introduction to Immunology and Immunometabolism (S2) 5 credits
Profs A Dunne, C O’Farrelly, J Fletcher, R Porter, F Sheedy
This module introduces to the basic components and function of the immune system – the molecules, cells, tissues and organs that make up the immune system. It will illustrate the immune responses to infection. Additionally, it will introduce students to the importance of central energy and intermediary metabolic pathways before considering how they are dysregulated in diseases like cancer and to fuel immune function. The module will be assessed by in course continuous assessment and an individual end of term exam paper.

Basics of Neurobiology (S2) 5 credits
Profs G Davey & D Loane
This module focuses on chemical transmission between neurons, how neurotransmitters are classified and identified and describes typical and atypical neurotransmitters and their functions in the brain. It considers mechanisms in which abnormal neurotransmission gives rise to common neurological & psychiatric disorders.

GEU33215 Medical Genetics (S2) 5 credits
Profs J Farrar, P Humphries, R McLaughlin
The module will introduce core concepts in medical genetics and will highlight the exciting advances in this field in the past few years. It will provide an overview of the history of field and insights into key developments in medical genetics up to 2020 including state-of-art powerful technologies such as genome editing. A key objective of the module is to provide an overview of the dominant technologies and methodologies currently used to elucidate the genetic pathogenesis of human disorders. The module will illuminate the enormous role that genetic information now has in disease diagnosis and prognosis, and in directing therapeutic choices for patients for many disorders. This module provides an introduction to: the genetic basis of mendelian and multifactorial diseases, the genetic methodologies and technologies used to define the causes of disease, the exploitation of genomic data in the diagnosis, prognosis and treatment of disease, the genetic basis of why different individuals can respond so differently to therapeutics and the individualization of medicine in the genomics era (pharmacogenomics).
Senior Sophister Course Advisor: Prof Danny Zisterer dzisterrer@tcd.ie

Module Structure

<table>
<thead>
<tr>
<th>Core Modules</th>
<th>Semester 2 (S2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIU44010 Advanced Research Skills (10 credits)</td>
<td>BIU44110 Biochemistry in Health and Disease II (10 credits)</td>
</tr>
<tr>
<td>BIU44120 Immunology & Microbiology (10 credits)</td>
<td>BIU44130 Cancer Biology & Cell Signalling (10 credits)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Capstone Project</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIU44190 Research Project in Biochemistry (20 Credits)</td>
</tr>
</tbody>
</table>

BIU44190 RESEARCH PROJECT IN BIOCHEMISTRY (S1) 20 credits

Each project will be supervised by a member of staff in the School of Biochemistry & Immunology.

The module comprises of an original research project in biochemistry, a research thesis and an oral and poster presentation.

BIU44010 ADVANCED RESEARCH SKILLS (S1) 10 credits

All Biochemistry Teaching Staff contribute to this module.

This purpose of this module is to further develop research, critical analysis and communication skills that are essential for a graduate biochemist. Students will be trained in data handling as well as solving quantitative problems in biochemistry. In addition, this module will introduce students to a wide array of cutting-edge techniques and strategies used in biochemistry.

BIU44110 BIOCHEMISTRY IN HEALTH & DISEASE II (S2) 10 credits

Profs G Davey, D Loane, J Hayes, A Molloy & R Porter.

This module covers the structure, function and pharmacology of neurotransmitters, neuron-glia interactions, intraneuronal signalling and the neurobiology of behaviour and neurodegenerative disorders. This module also covers the biochemistry of genetic deficiency diseases and metabolic diseases.

BIU44120 IMMUNOLOGY & MICROBIOLOGY (S2) 10 credits

This module covers pathogen recognition by and signal transduction in immune cells. Bacterial pathogens of medical importance will also be covered in detail. It will provide an introduction to parasitic protozoa such as trypanosomes and helminths. Finally, the biochemical and genetic mechanisms by which bacteria, viruses and parasites evade the host immune responses will be covered.
BIU44130 CANCER BIOLOGY & CELL SIGNALLING (S2) 10 credits
This module covers the cellular and regulatory mechanisms that control the cell cycle. It also covers the molecular basis of a stem cell and its potential use in therapies. Furthermore, it covers the molecular basis of cancer, the progression of the disease and the therapeutic treatment strategies.

GEU33215 Medical Genetics (S2) 5 credits
Profs J Farrar & R McLaughlin
The module will introduce core concepts in medical genetics and will highlight the exciting advances in this field in the past few years. It will provide an overview of the history of field and insights into key developments in medical genetics up to 2020 including state-of-art powerful technologies such as genome editing. A key objective of the module is to provide an overview of the dominant technologies and methodologies currently used to elucidate the genetic pathogenesis of human disorders. The module will illuminate the enormous role that genetic information now has in disease diagnosis and prognosis, and in directing therapeutic choices for patients for many disorders. This module provides an introduction to: the genetic basis of mendelian and multifactorial diseases, the genetic methodologies and technologies used to define the causes of disease, the exploitation of genomic data in the diagnosis, prognosis and treatment of disease, the genetic basis of why different individuals can respond so differently to therapeutics and the individualization of medicine in the genomics era (pharmacogenomics).
Learning Outcomes:

- Demonstrate in written and oral form a foundation level of knowledge and understanding of the biological, physical and quantitative sciences underpinning Biochemistry;
- Discuss core and specialised areas of Biochemistry in depth and analyse and solve biochemical problems;
- Demonstrate a comprehensive understanding of the theory behind techniques used in Biochemistry and show a critical awareness of how these techniques can be applied to biological problems;
- Design and implement a wide range of experimental procedures, critically analyse and interpret experimental data, synthesise hypotheses from a wide range of information sources, critically evaluate research literature and write a research dissertation;
- Work effectively as an individual and in a team;
- Display computer literacy and use advanced computer skills to aid in conducting scientific research;
- Communicate effectively with the scientific community and with society at large and articulate how the improved knowledge of Biochemistry impacts on society.
Botany

Junior Sophister Course Adviser: Prof Mike Williams willimsm@tcd.ie

Botany is the study of plants which are the source of the food we eat, the oxygen we breathe, most of the medicines we use, and the timbers and fiber which shelter, warm and clothe us. Plants are the core to understanding one of the greatest issues of our time – global climate change. In Trinity we specialise in the study of the evolution, genetics, ecophysiology, vegetation structure, history and dynamics, sustainability and conservation of all forms of plant life.

If you are interested in the future of the planet and life on it then Botany is for you. Almost no other course offers you the opportunity to study the natural, living World in the field and laboratory. Our graduates enter into a large range of careers and, as there is a global shortage of plant scientists, find employment in a huge range of careers.

Trinity’s Botany moderatorship is unique in content in Ireland and uncommon in a European context. Uniquely, we integrate small-group teaching, field-based activities and the laboratory. Field based teaching in ecology, physiology and plant evolution is at its heart: We consider both the whole plant and how it works in a natural context. All staff are research active with high profile, strong research interests in Ireland and the tropics. Consistently, our graduates have rated our course very highly indeed: we believe that our course offers you the best possible training in Ireland for your future career.

The JS year consists of a diverse programme of lectures, laboratory practical’s, field trips, tutorials and seminars. In the Senior Sophister year, students attend a series of lectures, laboratory practical’s, field work, seminars, tutorials and workshops. In addition, they are required to undertake a 20 credits research project which culminates in the submission of a dissertation. The year consists of a total of 50 mandatory credits and 10 optional credits. These modules are indicated in greater detail in the following pages.

Field trips are a central part to Botany teaching, and during your two years study you will be allowed to take up to 20 credits in residential field trip modules, including trips to Gran Canaria, and Africa.
Module Structure

Botany

<table>
<thead>
<tr>
<th>Core Modules</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>BOU33100: Plant Physiology (5 Credits)</td>
<td>BOU33107: Plant Molecular Biology (5 Credits)</td>
<td></td>
</tr>
<tr>
<td>ZOU33010: Fundamentals of Ecology (5 Credits)</td>
<td>ZOU33070: Experimental Design and Analysis (5 Credits)</td>
<td></td>
</tr>
<tr>
<td>BOU33108: Plants in the Irish Environment (5 Credits)</td>
<td>BOU33111: Angiosperm Diversity and Systematics (5 Credits)</td>
<td></td>
</tr>
<tr>
<td>BOU33109: General Botanical Science 5 Credits</td>
<td>BOU33121: Field Skills in Plant and Environmental Sciences (5 Credits)</td>
<td></td>
</tr>
</tbody>
</table>

Open Modules Scenario I

BOU33120: Environmental Dynamics (5 credits)		BOU33125: Diversity of Plant Morphology (5 credits)
OR		OR
BOU33123: Soil Science (5 credits)		BOU33122: Entomology (5 credits)
OR		
BOU33105: Global Environmental Change (5 Credits)		
Trinity Elective (5 credits)		

Open Modules Scenario II

BOU33120: Environmental Dynamics (5 Credits)		BOU33125: Diversity of Plant Morphology (5 credits)
OR		OR
BOU33123: Soil Science (5 credits)		BOU33122: Entomology (5 credits)
OR		
BOU33105: Global Environmental Change (5 Credits)		
Trinity Elective (5 credits)		

Open Modules Scenario III

BOU33120: Environmental Dynamics (5 Credits)		BOU33125: Diversity of Plant Morphology (5 Credits)
OR		OR
BOU33123: Soil Science (5 credits)		BOU33122: Entomology (5 credits)
OR		
BOU33105: Global Environmental Change (5 Credits)		
Trinity Elective (5 Credits)		
BOU33100 Plant Physiology (S1 & S2) Prof M Williams 5 credits
This module covers major biochemical and physiological aspects of photosynthesis, respiration, resource capture and growth at both the cell and whole plant level. Supporting practicals are designed to examine both the light and stromal reactions of photosynthesis and to investigate the role of light in seed germination and plant development. Continual assessment will be through a programme of practical’s, tutorials and student presentations.

ZOU33010 Fundamentals of Ecology (S1 part 1) 5 credits
Profs I Donohue and Prof F Mitchell
This module examines the factors that affect the distribution, growth and survival of plant and animal communities. It describes how organisms interact with their environment and the role that they have in ecosystem and community structure. There is an introduction to the concepts and models that help to explain and predict organism distributions and interactions. The module comprises interrelated components of lectures, practical sessions and fieldwork. It has been designed to provide a foundation to ecological theory and its application.

BOU33108 Plants in the Irish Environment (S1 part 1) 5 credits
Profs F Mitchell, I Donohue, T Hodkinson, J McElwain, M Saunders, J Stout & M Williams
This module combines an introduction to the Botany and Environmental Sciences moderatorships with a series of field-based activities including a residential fieldtrip during the first week of term. There will also be a lecture given during the field trip and three following it on specific aspects of the Irish flora.

BOU33109 General Botanical Science (S1 & S2) Prof M Saunders 5 credits
The aim of the seminars is to introduce undergraduate students to current research topics on key issues related to the Plant Science curriculum. The aim of tutorials and workshops is to develop skills in communication and analysis of scientific information. The module is divided into a series of interactive tutorials and workshops with themes such as, essay writing, problem solving, graphics, thesis writing, journal article analysis.

BOU33107 Plant Molecular Biology (S2 part 1) Prof T Hodkinson 5 credits
Plant Molecular Biology plays a major part in most fields of botanical research including ecology, systematics and physiology. The aim of this module is to cover the fundamentals of plant molecular biology and to explore applied aspects, including molecular systematics, molecular ecology, conservation genetics and genetic engineering.
ZOU33070 Experimental Design and Analysis (S2 parts 1 & 2) 5 credits
Prof C Holland
This module will aim to put data collection and analysis in the context of research design and will be an important foundation for the Senior Sophister research project. The module consists of two parts. The emphasis will be practical with a more ‘hands on’ approach rather than the theory of statistics. Initially students will be taught about experimental design, data collection and sampling and the use of spreadsheets for data entry. This will lead on to preliminary data exploration and issues of normality. Emphasis will be placed upon the importance of visually exploring the data prior to the use of statistical tests. Summary statistics, including measures of centre and spread, skewness, kurtosis, percentiles and boxplots, will be covered. Then the module will move on to explore the concept of hypothesis testing and the need to compare two or more means. This will involve the use of t-tests and analysis of variance. Other types of data will also be introduced including the analysis of frequencies. The relationship between two variables in the context of regression analysis will also be explored. Finally, a data set will be used to bring the entire process together starting with simple data exploration through summary statistics to more complex analyses. The aim of the second part of the module is to address, in more detail, the fundamentals of experimental design and to explore how previous projects were conducted. In addition, students will learn how to write a moderatorship project proposal.

BOU33111 Angiosperm Diversity and Systematics (S2 part 2) 5 credits
Prof J Parnell
By undertaking this module, you will become acquainted with the most important group of plants on Earth – the Flowering Plants or Angiosperms. In it we discuss the origin of the Angiosperms, move on to various systems for their classification, compare and contrast molecular and morphological phylogenetic signals and discuss various large groups of Angiosperms: concentrating on those that occur in Europe.

BOU33121 Field Skills in Plant and Environmental Sciences (S2 part 1) 5 credits
Prof J Stout (coordinator), T Hodkinson, J Parnell, S Waldren, M Saunders & M Williams
This module combines a lecture series with a residential field trip to the Canary Islands. The Canary Islands represent very different environments to Ireland: they have different ecology, different threats and pressures. They also contain highly variable landscapes and there are lots of different types of habitats in small area. In addition, they are home to many endemic species, particularly plants, which are not found anywhere else in the world, and face many man-made environmental challenges. The lecture series explores the geography, flora and fauna of the Canary Islands, as well as the history of the islands, and the impacts that humans have and continue to have on its ecosystems.
Open Modules
BOU33120: Environmental Dynamics (S1 part 1) 5 credits
Prof F Mitchell
The last 2.6 million years of Earth history have witnessed dramatic climatic and environmental changes. This module provides an overview of these major environmental changes, their causes, and their significance for human development. It contrasts ‘glacial’ and ‘interglacial’ worlds, examines the nature of the transitions between them, explores some potential causes of change, and illustrates their environmental impacts. In the process, a range of key environmental records are considered, along with the “proxies” used to develop them.

BOU33123 Soil Science (S1 part 2) Prof M Saunders 5 credits
Soils are important for plants as they provide the key resources required for growth and essential structural support. This module will provide an overview of the fundamental concepts of soil formation and characterisation; how soil characteristics influence plant distribution and productivity through water and nutrient availability; how soil organisms (bacteria, fungi) interact with plants and how soils influence global biogeochemical cycles (carbon and nitrogen). Particular focus will be given to the role of soils in the production of food, fuel and fibre and how sustainable land management practices are required to ensure the long-term health and fertility of soil systems.

BOU33105 Global Environmental Change (S1 part 2) Prof M Williams 5 credits
The global environment is changing more rapidly at present than at any time during the human occupancy of the planet. This module reviews the existence of the changing environment and the predictions for the future. Continual assessment consists of a mini desk study on the environmental pressures faced by a given country, and also a soil respiration practical where climate change is linked to increases in heterotrophic soil respiration

BOU33125: Diversity of Plant Morphology (S2 part 2) 5 credits
Prof J McElwain
The Earth’s vegetation is replete with a diversity of plant forms from 40-meter-high trees to aquatics to parasites and climbers. Different plant forms are adapted for different functions. This course aims to provide students with the basic tools necessary to understand describe and appreciate a diversity of plant form and think critically about the likely functional role of different plant structures. Students will be introduced to the morphology of land plants (embryophytes) in the context of current understanding on plant phylogeny (based on molecular data), taxonomy and systematics. Major evolutionary trends in plant form, function and life cycles will be discussed
There are more species of insects on Earth than any other group of organisms and they are of massive ecological and economic importance. This module will address behavioural, social, ecological and applied aspects of entomology, including their role in delivering ecosystem services (such as biocontrol and pollination), invasive species (such as fire ants and harlequin ladybirds) and conservation (both in Ireland and internationally). The practicals will provide students with the skills for sampling and identification of insects, which will be further enhanced through an individual project.
Module Structure

<table>
<thead>
<tr>
<th>Botany</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Semester 1 (S1)</th>
<th>Semester 2 (S2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Core Modules</td>
<td>Core Modules</td>
</tr>
<tr>
<td>ZOU44030: Data Handling (5 Credits)</td>
<td>BOU44106: Tutorials in Botany (5 Credits)</td>
</tr>
<tr>
<td>BOU44108: Plant Environmental Interactions (5 Credits)</td>
<td>BOU44110: The Evolution of Plants and Plant Atmosphere Interactions (5 Credits)</td>
</tr>
<tr>
<td>BOU44109: Vegetation Description and Analysis (5 Credits)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Open Modules</th>
<th>Capstone</th>
</tr>
</thead>
<tbody>
<tr>
<td>BOU44107: Plant-Animal Interactions (5 Credits)</td>
<td>FBU44000: Capstone Project (20 Credits)</td>
</tr>
<tr>
<td>FBU44060: Plant Breeding and Biotechnology (5 Credits)</td>
<td>BOU44103: Plant Conservation and Biodiversity (5 Credits)</td>
</tr>
<tr>
<td>ZOU44017: Tropical Ecology Field Trip (5 Credits)</td>
<td></td>
</tr>
<tr>
<td>BOU44111: Restoration Ecology and Re-Wilding (5 Credits)</td>
<td></td>
</tr>
</tbody>
</table>

ZOU44030 Data Handling (S1 parts 1 and 2) Prof A Jackson

Being able to form research questions and challenge our hypotheses by collecting and analysing data forms the basis of scientific inquiry. An understanding of data analysis is an essential skillset for all scientists. This module will consist of 2 tutorial sessions per week spanning all of semester 1. One of the tutorials each week will be used to develop class-directed questions relevant to current scientific thinking. As a class, we will form hypotheses, collect data and develop appropriate analytical techniques to answer our research questions. Concurrently, online material including video podcasts will be used to develop hands-on skills in the use of the very powerful and flexible statistics package R for data analysis. The module will start with basic probability theory, introduce different statistical distributions and culminate in learning how General Linear Models form a common framework for conceptualizing and analysing your data. At the end of the module you will have analysed a wide variety of data types and will have used the transferable and widely applicable statistics package R to analyse your data.
BOU44108 Plant Environmental Interactions (S1 parts 1 and 2) 5 credits
Prof M Saunders
Plant growth is significantly influenced by the surrounding physical, chemical and biological environment. This module will address the key inter-related concepts of carbon assimilation and sequestration, plant water relations and energy balance components across the soil-plant-atmosphere continuum. The physiological response of plants to respond to a broad range of environmental conditions including abiotic and biotic extreme events will be explored, and the implications for natural and production-based systems will be assessed.

BOU44109 Vegetation Description and Analysis (S1 part 1) 5 credits
Profs S Waldren & J Parnell
This module will describe how to sample, record and lead up to detailed multivariate analyses to help define vegetation communities. Though some theoretical and historical framework will be given in lectures, the emphasis will be on practical collection, analysis and interpretation of vegetation data. Various data sets will be utilised in computer-based sessions, and field work will be used to generate a novel data set, the analysis and interpretation of which will form part of the continuous assessment for this module.

BOU44107 Plant-Animal Interactions (S1 parts 1 and 2) Prof J Stout 5 credits
In The Origin of Species (1859) Darwin emphasized that “plants and animals, most remote in the scale of nature, are bound together by a web of complex relations”. Plant-animal interactions have become increasingly recognized as drivers of evolutionary change and important components of ecological communities. This module will focus on pollination (the transfer of pollen between male and female reproductive structures in flowers) and herbivory (the consumption of plants by animals). The first half of the module will focus on plant-pollinator interactions, including pollinator-mediated evolution of floral traits, community level interactions, pollinator decline and conservation. The second part of the module will focus on antagonistic interactions between plants and herbivores, and explore plant and animal adaptations to herbivory, plant-herbivore dynamics and applications of interactions to ecosystem management. Practical’s will investigate floral characteristics and adaptations for pollination, pollinator networks and plant and animal adaptations to herbivory.

FBU44060 Plant-Breeding Biotechnology (S1 part 1) 5 credits
Prof T Hodkinson & Dr B Murphy
The module covers the principles and practice of plant breeding and biotechnology. Lectures cover key topics such as the origins of agriculture, genetic resources, disease resistance, conventional breeding, modern breeding, genetic engineering, and case studies in breeding and biotechnology. Practicals cover crop diversity, polyploid estimation and at least one site visit to a Teagasc Research Centre (e.g Ashtown Dublin).
ZOU44017 Tropical Ecology Field Trip (S1 part 2) 5 credits
Prof I Donohue
This module aims to provide students with a thorough understanding of the principles underpinning the ecology of tropical ecosystems. The module comprises a ten-day residential field course in East Africa that will run during the first two weeks of November. The course will focus on the ecology and biodiversity of a range of ecosystems and habitats (including tropical montaine forest and alpine communities, aquatic ecosystems [freshwater rivers and lakes, wetlands and saline lakes] and grasslands) and the connectivity’s among them. Issues and problems to do with human impacts and the conservation and management of these diverse habitats will also comprise an important element of the course.

BOU44111 Restoration Ecology and Re-Wilding (S1 part 2) 5 credits
Dr Marcus Collier
Restoration ecology, like conservation biology, is a ‘crisis’ discipline, having emerged as a science/practice response to the social and ecological impacts directly and indirectly driven by human activities. Restoration ecology has proven to be highly effective in some cases but has also given rise to some controversy as well as policy difficulties. Rewilding and novel ecosystems are new and controversial areas within restoration ecology making it difficult to know how and when to intervene. This module will introduce you to the challenges and opportunities, failings and fallacies of the complex world of restoration ecology, rewilding, and the work of restoration ecologists. It will look at how rewilding could be the most efficient of nature-based solutions and asks if this is feasible in the modern world. As the discipline struggles to navigate global climate issues, integrate with the social sciences, incorporate politics and economics, and derive policy actions, this module will draw on case studies of restoration globally to will challenge students to rethink ecology and ecosystems in the Anthropocene.

BOU44106 Tutorials in Botany (S1 & S2) 5 credits
Prof M Saunders
The aim of the seminars is to introduce undergraduate students to current research topics on key issues related to the Plant Science curriculum. The aim of tutorials and workshops is to develop skills in communication and analysis of scientific information. The module is divided into a series of interactive tutorials and workshops with themes such as, essay writing, problem solving, graphics, thesis writing, journal article analysis.
BOU44110 The Evolution of Plants and Plant Atmosphere Interactions (S2 part 1) 5 credits
Prof J McElwain
We are currently experiencing major changes in our climatic and atmospheric environment. Conservative estimates project that the concentration of greenhouse gas carbon dioxide will double by the end of this century and global temperatures are expected to rise by 1 to 4 degrees C. A major issue facing the scientific and political community is understanding how these projected changes will influence natural ecosystems, plant and animal ecology and biodiversity. This module will explore the evolution of plants in the context of long-term changes in climate and atmospheric composition. Examples of plant-atmosphere and plant-climate interactions in the deep geological past will be examined in addition to modern experimental studies. The course will provide a framework for understanding the nature and scale of evolution, adaptation and ecophysiological responses of plants to their atmospheric and climatic environment over the past 500 million years of Earth history. Continual assessment will be through a programme of tutorials and student reviews of primary research papers linked to lectures.

BOU44103 Plant Conservation and Biodiversity (S2 part 1) 5 credits
Profs S Waldren, T Hodkinson & J Parnell
Loss of biodiversity is one of the major problems facing humanity. The theoretical background to the evolution of plant diversity is firstly developed, and the principles of conservation are then used to develop approaches to conserve plant diversity. The module is taught through lectures and practical workshops.

FBU44000: Research Project (S2) 20 credits
Prof Y Buckley (module co-ordinator) All Botany and Zoology staff
The project provides an important opportunity for students to plan and carry out a detailed and original piece of scientific research and communicate the results. It culminates in the production of a thesis and communication of the results through a poster presentation at an undergraduate research conference. Students will be assigned to a member of staff who will support an appropriate topic and will supervise the work. They will submit a research proposal before the practical work begins as part of the Junior Sophister ZOU33070 Experimental Design & Analysis module, submit a thesis and present a poster on the results. For the project, they will be expected to outline clearly a scientific problem, review the associated literature, design and execute an appropriate research programme, analyse and present the results and draw clear conclusions, all the time recording progress in a notebook, which must be made available to the project supervisor together with original data. Detailed guidance notes on writing and submitting the thesis and poster may be found on the FBU44000 Blackboard site.
Learning Outcomes

- On successful completion of this programme students will be able to:
- Demonstrate in written, oral and visual form a foundation level of knowledge and understanding of the biological, physical and quantitative sciences underpinning Plant Sciences.
- Demonstrate awareness, particularly in relation to the contributions that plant science makes to society, such as maintaining biodiversity, assessing the impacts of global change, reducing environmental pollution and ensuring sustainable food and energy production, taking into account scientific, social, political, moral and ethical considerations.
- Articulate the fundamental concepts in plant science.
- Discuss current research developments in plant science.
- Review and critique published scientific information.
- Utilise innovative techniques and modern research facilities to develop combined theoretical and technical competence so enabling the development of high-quality independent research and of the ability to work accurately, efficiently and safely in both field and laboratory environments.
- Demonstrate numerical competency and the ability to analyse quantitative data by appropriate statistical tests, using spreadsheets and other software.
- Collaborate effectively in teams and work independently.
- Communicate accurately, clearly, persuasively and imaginatively, in both oral and written form.
Environmental Science

Junior Sophister Course Advisor: Prof M Saunders saundem@tcd.ie

Environmental Sciences is by its nature a multidisciplinary academic field, comprising a study of the frequently complex interactions between the biological, chemical and physical components of our environment. The environmental science discipline has evolved over the last numbers of decades as key environmental problems such as climate change, pollution, sustainable development, deforestation and desertification to name a few, have become the focus of scientists, policy makers and the general public. Environmental scientists have training that is similar to other physical or life scientists but is specifically applied to the environment. A broad scientific knowledge is required which involves a fundamental understanding of the physical and life sciences in addition to economics, law and the social sciences.

The undergraduate degree course offered by the School of Natural Sciences has been designed to provide for the needs of students with an interest in this rapidly developing academic and professional field. The programme comprises specially designed modules plus suitable modules from contributing disciplines. Field study and laboratory skills represent a core component of the programme and these are blended with the theoretical content to provide our graduates with the training required to become highly successful practitioners in this field.
Module Structure

Environmental Sciences

<table>
<thead>
<tr>
<th>Core Modules</th>
<th>Core Modules</th>
</tr>
</thead>
<tbody>
<tr>
<td>BOU33108 Plants in the Irish Environment (5 Credits)</td>
<td>BOU33123 Soil Science (5 Credits)</td>
</tr>
<tr>
<td>ZOU33010 Fundamentals of Ecology (5 Credits)</td>
<td>GGU33930 Environmental Governance 1 (5 Credits)</td>
</tr>
<tr>
<td>ESU33040 Environmental Monitoring (5 Credits)</td>
<td>ZOU33070: Experimental Design and Analysis (5 Credits)</td>
</tr>
<tr>
<td>BOU33105 Global Environmental Change (5 Credits)</td>
<td>Desk Study: Key challenges in Environmental Science (5 Credits)</td>
</tr>
</tbody>
</table>

Open Modules Scenario I

<table>
<thead>
<tr>
<th>BOU33120 Environmental Dynamics (5 credits)</th>
<th>GLU34923 Hydrology and Water Quality (5 credits)</th>
</tr>
</thead>
<tbody>
<tr>
<td>OR</td>
<td>OR</td>
</tr>
<tr>
<td>BOU33100 Plant Physiology (5 Credits)</td>
<td>BOU33121 Field Skills in Plant and Environmental Sciences (5 Credits)</td>
</tr>
<tr>
<td>Trinity Elective (5 Credits)</td>
<td>ZOU33085 Terrestrial Field Ecology (5 Credits)</td>
</tr>
</tbody>
</table>

Open Modules Scenario II

<table>
<thead>
<tr>
<th>BOU33120 Environmental Dynamics (5 Credits)</th>
<th>GLU34923 Hydrology and Water Quality (5 credits)</th>
</tr>
</thead>
<tbody>
<tr>
<td>OR</td>
<td>OR</td>
</tr>
<tr>
<td>BOU33100 Plant Physiology (5 Credits)</td>
<td>BOU33121 Field Skills in Plant and Environmental Sciences (5 credits)</td>
</tr>
<tr>
<td>OR</td>
<td>OR</td>
</tr>
<tr>
<td>ZOU33085 Terrestrial Field Ecology (5 Credits)</td>
<td>Trinity Elective (5 Credits)</td>
</tr>
</tbody>
</table>

Open Modules Scenario III

<table>
<thead>
<tr>
<th>Environmental Dynamics (5 Credits)</th>
<th>Hydrology and Water Quality (5 Credits)</th>
</tr>
</thead>
<tbody>
<tr>
<td>OR</td>
<td>OR</td>
</tr>
<tr>
<td>BOU33100 Plant Physiology (5 credits)</td>
<td>BOU33121 Field Skills in Plant and Environmental Sciences (5 credits)</td>
</tr>
<tr>
<td>OR</td>
<td>OR</td>
</tr>
<tr>
<td>ZOU33085 Terrestrial Field Ecology (5 Credits)</td>
<td>Trinity Elective (5 Credits)</td>
</tr>
<tr>
<td>Trinity Elective (5 Credits)</td>
<td>Trinity Elective (5 Credits)</td>
</tr>
</tbody>
</table>
BOU33108 PLANTS AND THE IRISH ENVIRONMENT (S1) 5 credits
Coordinator: Prof F Mitchell
This module combines an introduction to the Plant Sciences and Environmental Sciences moderatorships with a series of field-based activities including a residential fieldtrip during the first week of term (Week 3). There will also be a lecture given during the field trip and three following it on specific aspects of the Irish flora.

ZOU33010 FUNDAMENTALS OF ECOLOGY (S1) 5 credits
Coordinator: Prof I Donohue
This module examines the factors that affect the distribution, growth and survival of plant and animal communities. It describes how organisms interact with their environment and the role that they have in ecosystem and community structure. There is an introduction to the concepts and models that help to explain and predict organism distributions and interactions. The module comprises interrelated components of lectures, practical sessions and fieldwork. It has been designed to provide a foundation to ecological theory and its application.

ESU33040 ENVIRONMENTAL MONITORING (S1) 5 credits
Coordinator: Profs J Piggott & M Penk
This module is an introduction to the chemistry of the atmosphere, precipitation, soils, freshwaters and estuaries as well as interactions among these. There is particular focus on elements and compounds that are important in determining environmental quality. Emphasis is placed on techniques that are available for assessment of environmental quality using chemical and biological methods. Students will have the opportunity to apply a range of techniques to different sample types. Lab work and field work are important aspects of the course.

BOU33105 GLOBAL ENVIRONMENTAL CHANGE (S1) 5 credits
Coordinator: Prof M Williams
The global environment is changing more rapidly at present than at any time during the human occupancy of the planet. This module reviews the existence of the changing environment and the predictions for the future.

BOU33123 SOIL SCIENCE (S2) 5 credits
Coordinator: Prof M Saunders
Soils are important for plants as they provide the key resources required for growth and also essential structural support. This module will provide an overview of the fundamental concepts of soil formation and characterisation; how soil characteristics influence plant distribution and productivity through water and nutrient availability; how soil organisms (bacteria, fungi) interact with plants and how soils influence global biogeochemical cycles (carbon and nitrogen). Particular focus will be given to the role of soils in the production of food, fuel and fibre and how sustainable land management practices are required to ensure the long-term health and fertility of soil systems.
GGU33930 ENVIRONMENTAL GOVERNANCE 1 (S2) 5 credits
Coordinator: Prof R Rowan
The “environment” emerged as a new object of concern in the 1960s. Since then, and largely through the work of citizens, scientists, environmental justice movements, and NGOs, many different environmental problems have come to light - from chemical contamination to climate change, from oil spills to plastic-filled oceans. Despite growing awareness of these many forms of environmental degradation and risk, the political and societal response has been far from adequate. How can we explain this? One starting point is to interrogate the contested history and development of environmental politics since the 1960s. What we learn from such an approach is that there have been radically different ways of framing environmental problems, giving rise to radically different proposals on how to deal with these problems. This historically informed understanding thus invites us to consider how re-framing current environmental problems may help us to orientate society towards a more just and sustainable future.

This module will introduce students to the emergence of environmental politics as a unique field of policymaking, scientific production, and conflict since the 1960s. It will discuss key texts, writers and thinkers, whose work has been instrumental in shaping how we think about the environment, as well as how private, public and civil society actors have responded to environmental problems in recent times.

ZOU33070 EXPERIMENTAL DESIGN AND ANALYSIS (S2) 5 credits
Coordinator: Prof C Holland
This module will aim to put data collection and analysis in the context of research design and will be an important foundation for the Senior Sophister research project. The module consists of two parts. The emphasis will be practical with a more 'hands on' approach rather than the theory of statistics. Initially students will be taught about experimental design, data collection and sampling and the use of spreadsheets for data entry. This will lead on to preliminary data exploration and issues of normality. Emphasis will be placed upon the importance of visually exploring the data prior to the use of statistical tests. Summary statistics, including measures of centre and spread, skewness, kurtosis, percentiles and boxplots, will be covered. Then the module will move on to explore the concept of hypothesis testing and the need to compare two or more means. This will involve the use of t-tests and analysis of variance. Other types of data will also be introduced including the analysis of frequencies. The relationship between two variables in the context of regression analysis will also be explored. Finally, a data set will be used to bring the entire process together starting with simple data exploration through summary statistics to more complex analyses. The aim of the second part of the module is to address, in more detail, the fundamentals of experimental design and to explore how previous projects were conducted. In addition, students will learn how to write a moderatorship project proposal.
Desk Study: Key challenges in Environmental Science (S2) 5 credits
Coordinator: Prof M Saunders
Students will undertake desk-based research using the scientific literature to synthesise and write an extended essay on a selected topic of current interest key challenges in Environmental Science. The finished product will conform to the general format of a scientific review article.

BOU33120 ENVIRONMENTAL DYNAMICS/5 ECTS/Semester 1
Coordinator: Prof F Mitchell
The last 2.6 million years of Earth history have witnessed dramatic climatic and environmental changes. This module provides an overview of these major environmental changes, their causes, and their significance for human development. It contrasts ‘glacial’ and ‘interglacial’ worlds, examines the nature of the transitions between them, explores some potential causes of change, and illustrates their environmental impacts. In the process, a range of key environmental records are considered, along with the “proxies” used to develop them.

BOU33100 PLANT PHYSIOLOGY (S1) 5 credits
Coordinator: Prof M Williams
This module covers major biochemical and physiological aspects of photosynthesis, respiration, resource capture and growth at both the cell and whole plant level. Supporting practicals are designed to examine both the light and stromal reactions of photosynthesis and to investigate the role of light in seed germination and plant development. Continual assessment will be through a programme of practical’s, tutorials and student presentations.

GLU34923 HYDROLOGY AND WATER QUALITY (S2) 5 credits
Coordinator: Prof C Coxon
This course aims to provide students with an understanding of hydrological processes, following the different pathways of water through the terrestrial part of the hydrological cycle. It also aims to familiarise students with the factors affecting groundwater quality, and to develop an understanding of groundwater quality issues in the context of integrated catchment management.

BOU33121 FIELD SKILLS IN PLANT AND ENVIRONMENTAL SCIENCE (S2) 5 credits
Coordinator: Prof J Stout
This module combines a lecture series with a residential field trip to the Canary Islands. The Canary Islands represent very different environments to Ireland: they have different ecology, different threats and pressures. They also contain highly variable landscapes and there are lots of different types of habitats in small area. In addition, they are home to many endemic species, particularly plants, which are not found anywhere else in the world, and face many man-made environmental challenges. The lecture series explores the geography, flora and fauna of the Canary Islands, as well as the history of the islands, and the impacts that humans have and continue to have on its ecosystems.
This two-part module begins with a series of lectures in Hilary Term, which offer an introduction to terrestrial biodiversity and wildlife biology, both globally and regionally. Topics covered will include assessment of biodiversity from individual, population, community and landscape scales and the importance of foraging ecology, habitat selection, inter- and intra-specific competition, territoriality, dispersion, population dynamics and regulation for determining diversity and distribution of animals. There will also be a particular focus on the origins, development and current status of the Irish vertebrate fauna. The lecture series will be complemented, in week 37, by a five day residential field course in Glendalough, Co Wicklow, during which field techniques used for the study of terrestrial ecosystems will be introduced, with an emphasis on habitat and population assessment of mammals, insects and birds and their interactions with plants and the abiotic environment. Field visits will help with an understanding of contrasting habitats and approaches to conservation management. Students will carry out and present a mini project during the last two days of the course.
Module Structure

Environmental Sciences

<table>
<thead>
<tr>
<th>Semester 1 (S1)</th>
<th>Semester 2 (S2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Core Modules</td>
<td></td>
</tr>
<tr>
<td>ZOU44030 Data Handling (5 credits)</td>
<td>BOU44111 Restoration Ecology and re-wilding (5 credits)</td>
</tr>
<tr>
<td>ZOU44092 Environmental Impact Assessment (5 credits)</td>
<td>ESU44052 General Environmental Sciences (5 credits)</td>
</tr>
<tr>
<td>ZOU44060 Research Comprehension (5 credits)</td>
<td></td>
</tr>
</tbody>
</table>

Capstone Project

(20 credits)

Open Modules

Students will choose 3 of the following modules
- ZOU44017 Tropical Ecology (5 Credits)
- BOU44109 Vegetation Description and Analysis (5 Credits)
- BOU44107 Plant-Animal Interactions (5 Credits)
- BOU44103 Plant conservation and Biodiversity (5 Credits)
- ESU44054 Spatial Analysis using GIS (5 Credits)
- GGU44927 Environmental Governance 2 (5 Credits)

ZOU44030 DATA HANDLING (S1) 5 credits

Coordinator: Prof A Jackson

Being able to form research questions and challenge our hypotheses by collecting and analysing data forms the basis of scientific inquiry. An understanding of data analysis is an essential skillset for all scientists. This module will consist of 2 tutorial sessions per week spanning all of semester 1. One of the tutorials each week will be used to develop class-directed questions relevant to current scientific thinking. As a class, we will form hypotheses, collect data and develop appropriate analytical techniques to answer our research questions. Concurrently, online material including video podcasts will be used to develop hands-on skills in the use of the very powerful and flexible statistics package R for data analysis. The module will start with basic probability theory, introduce different statistical distributions and culminate in learning how General Linear Models form a common framework for conceptualizing and analysing your data. At the end of the module you will have analysed a wide variety of data types and will have used the transferable and widely applicable statistics package R to analyse your data.
ZOU44092 ENVIRONMENTAL IMPACT ASSESSMENT (S1)
Coordinator: Prof J Rochford
This module involves an introduction to the principles and processes of Environmental Impact Assessment, particularly in relation to national and international requirements. All stages of the EIA process, from initial project screening to the final review, are covered, with the emphasis throughout on the role of the natural scientist. Strategic Environmental Assessment is also briefly covered. In addition to the lectures, students carry out a scoping exercise for a proposed development and conduct a quality review of an actual EIA.

ZOU44060 RESEARCH COMPREHENSION (S1 & S2)
Coordinator: Prof P Luijckx
No matter what you do when you graduate, in most jobs you will be expected to read, understand and interpret data. Often this will be in a subject you are unfamiliar with or will use unfamiliar methods or study organisms. The aim of this module is to help you to develop the ability to understand and interpret research from a broad range of scientific areas, and then to develop opinions about this research and how it fits into the “big picture”. This module also aims to improve your ability to communicate all kinds of scientific research to a general audience, a skill that is currently in great demand.

BOU44111 RESTORATION ECOLOGY AND RE-WILDING (S1)
Coordinator: Prof M Collier
Restoration ecology, like conservation biology, is a ‘crisis’ discipline, having emerged as a science/practice response to the social and ecological impacts directly and indirectly driven by human activities. Restoration ecology has proven to be highly effective in some cases but has also given rise to some controversy as well as policy difficulties. Rewilding and novel ecosystems are new and controversial areas within restoration ecology making it difficult to know how and when to intervene. This module will introduce you to the challenges and opportunities, failings and fallacies of the complex world of restoration ecology, rewilding, and the work of restoration ecologists. It will look at how rewilding could be the most efficient of nature-based solutions and asks if this is feasible in the modern world. As the discipline struggles to navigate global climate issues, integrate with the social sciences, incorporate politics and economics, and derive policy actions, this module will draw on case studies of restoration globally to will challenge students to rethink ecology and ecosystems in the Anthropocene.

ESU44052 GENERAL ENVIRONMENTAL SCIENCES (S1 & S2)
Coordinator: Prof M Saunders
This module provides an opportunity for students to build on the content covered throughout the Sophister Environmental Sciences programme, and to explore in greater detail the key challenges facing Environmental Scientists today. Guest lectures also form a core part of this module and will be given by practitioners in the environmental sciences field. Students are expected to integrate their approach to this material with the perspectives and skills they develop during their Sophister years. Appropriate literature relating to the Junior and Senior Sophister core (mandatory) modules will be recommended for detailed study.
ZOU44017 TROPICAL ECOLOGY (S1)
Coordinator: Prof I Donohue
The module comprises a short series of lectures followed by a nine-day residential field course in East Africa that will run at the end of October (encompassing the reading week). The module will focus on the ecology and biodiversity of a range of ecosystems and habitats (including aquatic ecosystems, freshwater rivers and lakes, wetlands and saline lakes, tropical montane forest and grasslands) and the connectivity’s among them. Issues and problems to do with human impacts and the conservation and management of these diverse habitats will also comprise an important element of the module. The module will focus particularly on the following three topics:
- Quantifying biodiversity and the factors that underpin biodiversity in the tropics
- Economics of wildlife management
- Behaviour on the savannah
- Sustainable development of tropical ecosystems

BOU44109 VEGETATION DESCRIPTION AND ANALYSIS (S1)
Coordinator: Prof S Waldren
This module will describe how to sample, record and lead up to detailed multivariate analyses to help define vegetation communities. Though some theoretical and historical framework will be given in lectures, the emphasis will be on practical collection, analysis and interpretation of vegetation data. Various data sets will be utilised in computer-based sessions, and field work will be used to generate a novel data set, the analysis and interpretation of which will form part of the continuous assessment for this module.

BOU44107: PLANT ANIMAL INTERACTIONS (S1)
Coordinator: Prof J Stout
In the Origin of Species (1859) Darwin emphasized that “plants and animals, most remote in the scale of nature, are bound together by a web of complex relations”. Plant-animal interactions have become increasingly recognized as drivers of evolutionary change and important components of ecological communities. This module will focus on pollination (the transfer of pollen between male and female reproductive structures in flowers) and herbivory (the consumption of plants by animals). The first half of the module will focus on plant-pollinator interactions, including pollinator-mediated evolution of floral traits, community level interactions, pollinator decline and conservation. The second part of the module will focus on antagonistic interactions between plants and herbivores, and explore plant and animal adaptations to herbivory, plant-herbivore dynamics and applications of interactions to ecosystem management. Practical’s will investigate floral characteristics and adaptations for pollination, pollinator networks and plant and animal adaptations to herbivory.
BOU44103: PLANT CONSERVATION AND BIODIVERSITY (S2) 5 credits

Coordinator: Prof S Waldren
Loss of biodiversity is one of the major problems facing humanity. The theoretical background to the evolution of plant diversity is firstly developed, and the principles of conservation are then used to develop approaches to conserve plant diversity. The module is taught through lectures and practical workshops.

ESU44054: SPATIAL ANALYSIS USING GIS (S2) 5 credits

Coordinator: Prof N Harty
This module introduces students to the framework and methods used in real-life problems related to the field of Spatial Analysis by applying the theoretical knowledge gathered during the module to live project work. The module seeks to impart the necessary skills and knowledge to enable graduates to engage as team members and leaders in the types of large and complex sustainable environment projects that are increasingly being planned across the world. It aims to help fill a major and increasingly obvious skills gap. A unique feature of this module is the use of Dublin and Ireland as a learning laboratory, where the students will take responsibility of a project. The Spatial Analysis using GIS Module is designed to introduce the student to spatial analysis using the Geographic Information Systems (GIS) platform ArcGIS.

GGU44927 ENVIRONMENTAL GOVERNANCE 2 (S2) 5 credits

Coordinator: Prof R Rowan
There is little disagreement that far-reaching societal, technological, political, and economic transformations are required if we are to avoid the worst effects of global, anthropogenic environmental change. What form these transformations should take and who should take responsibility for them are questions that are, however, far from settled. This module considers some of the key conceptual debates and environmental conflicts arising in this context. Examination of these debates and conflicts will demonstrate the contested and uneven nature of environmental change and the measures sought to address these changes. The overall aim of the module is to help students develop a more nuanced, critical and multi-disciplinary understanding of environmental change and the different, often contested, ways of responding to such changes. The module will consist of weekly interactive lectures/seminars, guest lectures, and set readings. Lectures will introduce students to key concepts and perspectives drawn from the broad field of political ecology. Each week part of the class will be set aside for students to develop their research projects. These projects will focus on a key area of environmental contestation in Ireland through a political ecology lens. The projects will involve group work and individual work, written assignments, oral presentations, and primary research.
FBU44000 RESEARCH PROJECT (S2)
Coordinator: Prof I Donohue
The project provides an important opportunity for students to plan and carry out a detailed and original piece of scientific research and communicate the results. It culminates in the production of a thesis and communication of the results through a poster presentation at an undergraduate research conference. Students will be assigned to a member of staff who will support an appropriate topic and will supervise the work. They will submit a research proposal before the practical work begins as part of the Junior Sophister ZOU33070 Experimental Design & Analysis module. As part of FBU44000 they will submit a thesis and present a poster on the results. For the project, they will be expected to outline clearly a scientific problem, review the associated literature, design and execute an appropriate research programme, analyse and present the results and draw clear conclusions and record progress in a notebook (physical or electronic as appropriate). Detailed guidance notes on writing and submitting the thesis and poster may be found on the FB4000 Blackboard site.
Learning Outcomes

Our mission is to:

- make you aware of the basic concepts, key challenges and current research developments in Environmental Science;
- enable you to understand the basis of good experimental design;
- teach you to work efficiently and safely in laboratories;
- enable you to become a competent field researcher;
- teach you to critically analyse quantitative data;
- develop your written and oral communication skills;
- develop your skills to work effectively in a group and independently; and
- make you socially aware, particularly in relation to the contribution that Environmental Science makes to society.

On successful completion of this programme, students should be able to:

- identify and describe plant and animal communities and analyse their distribution;
- demonstrate the principles of geochemical cycling in the global context with specific reference to environmental change;
- discuss the principles of hydrology and its relationship with groundwater quality;
- discuss the causes and effects of terrestrial, atmospheric and marine pollution and present-day mitigation strategies;
- show a good working knowledge of skills and tools, such as spatial data analysis and statistical techniques, which can be used selectively to address complex problems, or to conduct closely guided research;
- identify, formulate, analyse and suggest reasoned solutions to current environmental problems;
- design an Environmental Impact Assessment for a range of diverse habitats;
- critically assess scientific literature;
- work effectively as an individual, in teams and in multidisciplinary settings; and
- communicate effectively with both the scientific community and with society at large.
What is Genetics?
Genetics is the study of genes, genomes and heredity. It has developed rapidly in the last decade as new technology has made it possible to study genes in much greater detail and to rapidly sequence genomes. A few examples of remarkable advances in knowledge include:
- The application of gene editing to plant and bacterial systems for biotechnology
- The detailed description of the evolutionary relationships of all organisms
- The application of DNA fingerprinting to forensic science
- The development of CRISPR technology for genome editing

Genetics: The course for you?
If you are interested in understanding the principles of inheritance; how genetic mechanisms control different developmental and physiological processes in biology; and how a perturbation of these mechanisms leads to disorders and diseases, this is the right course for you.

Genetics @ Trinity
Genetics is run by the Department of Genetics, which is part of the School of Genetics and Microbiology and is located in the Smurfit Institute of Genetics with state-of-the-art research facilities. There are 14 members of faculty and a number of academic associates, working in a wide range of areas of Genetics areas covering everything from medical genetics, pharmacogenomics, stem cells to evolutionary genetics, bacterial and plant genetics, amongst other areas. The Department of Genetics has an international reputation for high-quality research and more than 50 years of experience in teaching Genetics to undergraduate students. The teaching of the Department is research-driven; undergraduates are taught by research-active scientists with excellent track records in their chosen fields.

Graduate skills and career opportunities
Many Genetics graduates go on to higher degrees (M.Sc. and/or Ph.D.) and take up careers in research in either academia or industry. Opportunities exist in biotechnology and pharmaceutical companies, agricultural organisations, medical or clinical diagnostic laboratories, forensics, public health and epidemiology programmes, and in teaching. Other graduates have gone into careers such as medicine, patent law or science journalism. Even if you choose a career not directly related to the scientific subject, the skills of critical thinking and problem solving provided by the Genetics degree will put you in high demand.

Your degree and what you’ll study
During third year, students will learn about the fundamentals of genetics through a combination of lecture courses and practical classes. To this end, students will be exposed to different areas of genetics ranging from bacterial genetics, to plant genetics, to medical genetics. Practical classes teach the students about key techniques and analysis methods that are widely used in genetics laboratories. In fourth year, students can choose, largely depending on their interests, from a number of lecture courses on different areas of genetics. They also spend 10 to 12 weeks in a laboratory of the institute and participate in ongoing research projects. They further write an in-depth literature review on a current topic of genetic
<table>
<thead>
<tr>
<th></th>
<th>Semester 1</th>
<th>Semester 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Core Modules</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GEU33015 Molecular Genetics (5 Credits)</td>
<td>GEU33065 Plant and Microbial Genetics (5 Credits)</td>
<td></td>
</tr>
<tr>
<td>GEU33007 Molecular Genetics Laboratory (5 Credits)</td>
<td>GEU33085 Science Structure, Discussion and Presentation for Genetics (5 Credits)</td>
<td></td>
</tr>
<tr>
<td>GEU33075 Evolutionary and Population Genetics (5 Credits)</td>
<td>GEU33035 Genetic Analysis of Nervous Systems (5 Credits)</td>
<td></td>
</tr>
<tr>
<td>GEU33025 Data Handling and Bioinformatics (5 Credits)</td>
<td>GEU33008 Analytical Genetics Laboratory (5 Credits)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Open Modules Scenario I</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GEU33045 Genomics and Systems Biology (5 Credits)</td>
<td>GEU33055 Developmental Genetics (5 Credits)</td>
<td></td>
</tr>
</tbody>
</table>
| Trinity Elective (5 Credits) | GEU33215 Medical Genetics (5 Credits)
OR Introduction to Immunology and Immunometabolism (5 credits)
OR Basic Neurobiology (5 credits) |
| | | |
| **Open Modules Scenario II** | | |
| GEU33045 Genomics and Systems Biology (5 credits) | GEU33055 Developmental Genetics (5 credits) |
| BIU33210 Biochemistry for Biological Sciences 5 Credits | Trinity Elective (5 Credits) |
| | | |
| **Open Modules Scenario III** | | |
| GEU33045 Genomics and Systems Biology (5 credits) | GEU33055 Developmental Genetics (5 credits) |
| Trinity Elective (5 credits) | Trinity Elective (5 credits) |

GEU33015 Molecular Genetics (S1) 5 credits
Profs A Bracken, T Kavanagh, M Ramaswami
The module focuses on the molecular mechanisms controlling DNA replication and gene expression in eukaryotes. Topics covered include Chromatin and chromosomal structure, DNA replication, transcription, combinatorial transcriptional codes, post-transcriptional processing of RNAs, mRNA translation and translational controls, translation, posttranslational protein processing and epigenetic regulation of gene expression.
GEU33007 Molecular Genetics Laboratory (S1) 5 credits
The module comprises a set of robust experiment-based projects in microbial and molecular genetics. The central theme is gene expression and its regulation. In the labs, students work in groups of two performing successive experiments in two or three different projects during each session. The experiments provide invaluable hands-on experience of widely used experimental strategies and techniques in molecular genetics/molecular biology, which include: the isolation and purification of genomic and plasmid DNA; the polymerase chain reaction (PCR); the use of agarose and polyacrylamide gel electrophoresis in the analysis of DNA, RNA and proteins; genetic transformation of E. coli; gene cloning and analysis in plasmid vectors; lacZ, GUS and GFP reporter gene assays; transduction etc.

GEU33075 Evolutionary and Population Genetics (S1) 5 credits
Profs A Mc Lysaght, R Mc Laughlin, R McManus
The aim of this course is to give students a solid understanding of the fundamental principles that underlie molecular evolutionary and population genetics. The course is broken down into 1) molecular evolution, 2) population genetics and 3) mutation, recombination and repair. In each component the students will be presented with a combination of theory and illustrated examples. An emphasis will be placed on data and evidence.

GEU33025 Data Handling and Bioinformatics (S1) 5 Credits
Profs K Hokamp, F Roche, D Bradley
This is a practical module, which will introduce students to the field of bioinformatics and the handling and analysis of data. It is made up of three parts: Bioinformatics, Programming and NGS data analysis. The bioinformatics component will introduce students to the following topics: biological sequence databases, sequence alignment and phylogenetic trees, sequence similarity searching, genetic variation and personal genomics, and genome browsing. The programming part introduces students to the Python programming language, with emphasis on applications to bioinformatics and DNA sequence analysis. Students learn to write programs to handle DNA sequence data, for example translate DNA into protein and to use regular expressions to search for motifs in sequences. During the NGS data analysis part students will carry out a short project relating to the analysis of a ChIP-Seq data set. They will gain hands-on experience using software tools including FastQC, Bowtie2, samtools, GEM and IGV, and learn about topics, such as quality control, trimming, mapping, peak finding, and motif detection.
GEU33065 Plant and Microbial Genetics (S2) 5 credits
Prof F Wellmer, K Devine, T Kavanagh
This module presents an evidence-based description of the basic cellular processes of transcription, translation and DNA replication in bacteria. Furthermore, students will be introduced into the immune systems both bacteria and plants and learn about plant-microbe interactions, which can be both friendly and hostile. In the module, we will also discuss the prokaryotic nature and evolutionary origin of chloroplasts as well as fundamental concepts of plant genetics, including genetic variation, heredity and breeding.

GEU33085 Science Structure Discussion and Presentation for Genetics (S2) 5 credits
Profs J Pablo Labrador, K Devine, F Wellmer, S Martin, M Campbell, D Bradley, A Mc Lysaght, A Bracken, T Kavanagh
In this module students meet in small groups with lecturers for discussion and problem-solving in an informal setting. Topics include genetic analysis, mathematical genetics, medical genetics and ethics. Students will also write a review of the recent literature in a particular area of genetics research, supervised by individual members of the academic staff. The topic can be chosen by the student or suggested by staff. The objective of the review is to bring the reader up to date on the subject under review.

GEU33035 Genetic Analysis of Nervous Systems (S2) 5 credits
Profs J P Labrador & M Ramaswami
The module is focused on understanding how experimental genetics are used to manipulate genes in organisms to address problems in biology. Areas covered are 1) Experimental Genetics: structure and conservation of genes, nature of mutations and their effects on protein structure and function, model organisms in genetic research and experimental manipulation of animal genomes. 2) Developmental Neurogenetics: the purpose and design of genetic screens, genetic analysis of neurogenesis and genetic analysis of axon guidance 3) Behavioural Genetics: cell organization and methods of cell biology, cell biology of neurons and synapses, creation and use of molecular reporters of specific gene or cell activity, methods to study nervous systems, sensory circuits, sensation; transduction; perception; coding; behaviour, learning and memory, sleep and circadian rhythms.
GEU33008 Analytical Genetics Laboratory (S2) 5 credits
Prof J P Labrador
This module is a practical module that introduces the fundamentals of Genetic analysis and the use of Drosophila melanogaster as a genetic model organism. The module will cover different aspects of model organisms handling and experiments to understand Mendelian genetics and non Mendelian inheritance including segregation, recombination, gene mapping, lethal genes and sex-linked inheritance.

Open Modules

GEU33045 Genomics and Systems Biology (S1) 5 credits
Profs F Wellmer, K Mok, A Bracken, R McLaughlin, C Kröger
This module will introduce students to core concepts of genomics and systems biology. Topics discussed will include structural genomics and genome sequencing; DNA sequencing methods and the story of the human genome project; genome annotation and gene finding; comparative genomics; functional genomics; epigenomics; transcriptomics; regulatory networks; and the cis-regulatory code. Furthermore, students will be introduced to the use of genomics techniques in medicine and will learn about methods used to analyze the proteome of an organism.

Biochemistry for Biological Sciences (S1) 5 credits
Profs A Kahn, K Mok, J Murray, M Caffery, P Voorheis, D Nolan & A Dunne.
This module follows on from the biochemistry/cell biology component of the “Molecules to Cells” BIU22201 module of year 2. The aim is to provide Junior Sophister students of other disciplines with the grounding in biochemistry necessary to (i) understand biology at a molecular level, (ii) form a mechanistic view of biological processes and (iii) appreciate the pathobiochemical basis of disease. The topics covered will include: the biochemistry of protein structure, enzymes and their role in metabolism, membranes and transport, signalling and the cytoskeleton and related cell biology. The module will be assessed through a combination of in course assessment and an individual end of term exam.

GEU33055 Developmental Genetics (S2) 5 credits
Profs S Martin, F Wellmer, A Bracken
This module introduces students to core concepts of developmental genetics. In it, we will describe the journey from a fertilized egg to an adult organism using fruit flies, vertebrates and plants as examples. Topics covered will include the control of cell division and cell differentiation; stem cells and the establishment of cell fates; the establishment of the body plan of an organism during embryogenesis; and genetic control mechanisms that guide limb and organ development. Students will also be introduced to methods and experimental approaches used to study the genetics of development.
GEU33215 Medical Genetics (S2) 5 credits
Profs J Farrar & R McLaughlin
The module will introduce core concepts in medical genetics and will highlight the exciting advances in this field in the past few years. It will provide an overview of the history of field and insights into key developments in medical genetics up to 2020 including state-of-art powerful technologies such as genome editing. A key objective of the module is to provide an overview of the dominant technologies and methodologies currently used to elucidate the genetic pathogenesis of human disorders. The module will illuminate the enormous role that genetic information now has in disease diagnosis and prognosis, and in directing therapeutic choices for patients for many disorders. This module provides an introduction to: the genetic basis of mendelian and multifactorial diseases, the genetic methodologies and technologies used to define the causes of disease, the exploitation of genomic data in the diagnosis, prognosis and treatment of disease, the genetic basis of why different individuals can respond so differently to therapeutics and the individualization of medicine in the genomics era (pharmacogenomics).

Introduction to Immunology and Immunometabolism (S2) 5 credits
Profs A Dunne, C O’Farrelly, J Fletcher, R Porter, F Sheedy
This module introduces to the basic components and function of the immune system – the molecules, cells, tissues and organs that make up the immune system. It will illustrate the immune responses to infection. Additionally, it will introduce students to the importance of central energy and intermediary metabolic pathways before considering how they are dysregulated in diseases like cancer and to fuel immune function. The module will be assessed by in course continuous assessment and an individual end of term exam paper.

Basics of Neurobiology (S2) 5 credits
Prof G Davey & D Loane
This module focuses on chemical transmission between neurons, how neurotransmitters are classified and identified and describes typical and atypical neurotransmitters and their functions in the brain. It considers mechanisms in which abnormal neurotransmission gives rise to common neurological & psychiatric disorders.
Module Structure

<table>
<thead>
<tr>
<th>Core Modules</th>
<th>Semester 1 (S1)</th>
<th>Semester 2 (S2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Molecular and Cellular Genetics. (10 credits)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Evolutionary, Population and Developmental Genetics (10 credits)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Human Genetics and Genomics (10 credits)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Genetics of Model Organisms (10 credits)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

| Capstone Project | |
| (20 credits) | |

GEU4400X Molecular and Cellular Genetics (S1 & S2) 10 credits
Profs A Bracken, J Farrar, M Ramaswami, S Martin, M Campbell
The module covers different aspects of cellular genetics and molecular genetics and includes the following areas: Genetic and Non-Genetic Mechanisms in Cancer, Transgenic Animals and Gene Therapy, Genetics & Immunology of Neural Diseases, Functions, Mechanisms and Genetics of Prion-Domain Proteins and Programmed Cell Death.

GEU4400X Evolutionary, Population and Developmental Genetics (S1 & S2) 10 credits
Profs S Martin, F Wellmer, K Mitchell, J P Labrador, D Bradley
The aim of this module is to expand the knowledge acquired in the previous year on genetic analysis and developmental genetics. Areas covered in the module are Human Evolutionary Genetics, Molecular Evolution, Developmental Genetics of Drosophila, Genetics of Neural Development, Behavioural Genetics.

GEU4400X Human Genetics and Genomics (S1 & S2) 10 credits
Profs A Mc Lysaght, A Bracken, T Kavanagh, & K Devine
This module expands general and molecular genetics subjects already introduced in the previous year with a general course on Principles of Genetics and specific ones on Genetics and Genomics.

GEU4400X Genetics of Model Organisms (S1 & S2) 10 credits
Profs A Mc Lysaght, R Mc Laughlin, J P Labrador, K Devine, F Wellmer, S Martin, M Campbell, D Bradley, A Bracken, T Kavanagh, M Ramaswami, K Mitchell
This module will include lectures on prokaryotic, fungal and plant genetics, as well as lectures on selected animal models such as Caenorhabditis elegans.
GEU4400X Capstone Project and Review (S1 & S2) 20 credits
Profs A Mc Lysaght, RI Mc Laughlin, J P Labrador, K Devine, F Wellmer, S Martin, M Campbell, D Bradley, A Bracken, T Kavanagh, M Ramaswami, K Mitchell
In this module the student will undertake a capstone project divided into three components: a) a 10-week research project to be conducted on a topic within the full breadth of the Genetics discipline; b) a computational and data analysis practical where students will process and analyse data relevant to their field of study; c) tutorials for problem solving in the field of Genetics.
Learning Outcomes

- Attain a deep understanding of Genetics, Heredity, and related fields, from Mendelian genetics to the latest technological advances in Genomics, Genome Engineering etc.
- Gather, synthesize, organize and present information in written reports.
- Demonstrate experimental skills in a range of laboratory/bioinformatics techniques; demonstrate the development of practical scientific numerical and analytical skills on data analysis.
- Apply the scientific method as fundamental mechanisms for critical analysis and problem solving.
- Use of general texts, reference books, scientific literature, reports and a range of digital resources to develop future personal knowledge of scientific issues through continued independent learning
What is Human Genetics?
Human Genetics is the study of genes – or heredity – in humans. It examines the effects of these genes on both individuals and societies. It has developed rapidly in the last decade as new technology has made it possible to study genes in much greater detail and to rapidly sequence the genomes of humans and other species. A few examples of remarkable advances in knowledge include:

- The sequencing and analysis of hundreds of thousands of complete human genomes
- The development of gene-based and stem-cell-based therapies for inherited disorders employing diverse technologies from viral gene delivery to genome editing
- The ability to trace the evolution of humankind using ancient genomics
- The application of genomics to cancer medicine
- The individualisation of medicine to develop targeted treatments and avoid adverse side effects.

Human Genetics: The course for you?
If you are interested in understanding how genetics is central to controlling every cell and its functions including the 10-100 trillion cells in the human body, to directing intricate programmes of development and to causing many different disorders when perturbed, this is the right course for you. If you want to understand how genetic information is driving the development of novel therapies, is enabling the individualisation of medicines targeted towards patients’ needs, is revealing our ancestries and how it underpins evolutionary biology, this is the degree for you.

Human Genetics @ Trinity
Human Genetics is run by the Department of Genetics, which is part of the School of Genetics and Microbiology and is located in the Smurfit Institute of Genetics with state-of-the-art research facilities. There are 14 members of faculty and a number of academic associates, working in diverse areas of Human Genetics covering everything from medical genetics, gene-based medicines, pharmacogenomics, stem cells to ancient and modern human population genetics, among other areas. The Department of Genetics has an international reputation for high-quality research and more than 50 years of experience in teaching Genetics and Human Genetics. The teaching of the Department is research driven; undergraduates are taught by research-active scientists with excellent track records in their chosen fields.

Graduate skills and career opportunities
Many Human Genetics graduates go on to higher degrees (M.Sc. and/or Ph.D.) and take up careers in research in either academia or industry. Opportunities exist in biotechnology and pharmaceutical companies, medical or clinical diagnostic laboratories, forensics, public health and epidemiology programmes, and in teaching. Genetic counselling is a rapidly expanding field that might also interest you. Other graduates have gone into careers such as medicine, patent law or science journalism. Even if you choose a career not directly related to the scientific subject, the skills of critical thinking and problem solving provided by the Human Genetics degree will put you in high demand.
Your degree and what you'll study
During third year, students will learn about the fundamentals of Human Genetics through a combination of lecture courses and practical classes. To this end, students will be exposed to different areas of Human Genetics ranging from medical genetics to the genetic programmes underpinning cell biology. Practical classes teach students about key techniques and analysis methods that are widely used in Human Genetics. In fourth year, students can choose, largely depending on their interests, from various lecture courses in different areas of Human Genetics. Students spend 10 to 12 weeks in a laboratory in the Institute and participate in on-going cutting-edge research projects. Furthermore, students write an in-depth literature review on a current topic in Human Genetics.
Module Structure

Human Genetics

<table>
<thead>
<tr>
<th>Core Modules</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>GEU33015 Molecular Genetics (5 credits)</td>
<td>GEU33215 Medical Genetics (5 credits)</td>
</tr>
<tr>
<td>GEU33007 Molecular Genetics Laboratory (5 credits)</td>
<td>GEU33085 Science Structure Discussion and Presentation for Genetics (5 credits)</td>
</tr>
<tr>
<td>GEU33075 Evolutionary and Population Genetics (5 credits)</td>
<td>GEU33035 Genetic Analysis of Nervous Systems (5 credits)</td>
</tr>
<tr>
<td>GEU33025 Data Handling and Bioinformatics (5 credits)</td>
<td>GEU33008 Analytical Genetics Laboratory (5 credits)</td>
</tr>
</tbody>
</table>

Open Modules Scenario I

<table>
<thead>
<tr>
<th>GEU33045 Genomics and Systems Biology (5 credits)</th>
<th>GEU33055 Developmental Genetics (5 credits)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trinity Elective (5 credits)</td>
<td>Introduction to Immunology and Immunometabolism (5 credits)</td>
</tr>
<tr>
<td></td>
<td>OR</td>
</tr>
<tr>
<td></td>
<td>Basic Neurobiology (5 credits)</td>
</tr>
</tbody>
</table>

Open Modules Scenario II

<table>
<thead>
<tr>
<th>GEU33045 Genomics and Systems Biology (5 credits)</th>
<th>GEU33055 Developmental Genetics (5 credits)</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIU33210 Biochemistry for Biological Sciences (5 credits)</td>
<td>Trinity Elective (5 credits)</td>
</tr>
</tbody>
</table>

Open Modules Scenario III

<table>
<thead>
<tr>
<th>GEU33045 Genomics and Systems Biology (5 credits)</th>
<th>GEU33055 Developmental Genetics (5 credits)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trinity Elective (5 credits)</td>
<td>Trinity Elective (5 credits)</td>
</tr>
</tbody>
</table>
GEU33015 Molecular Genetics (S1) 5 credits
Instructors: Adrian Bracken, Tony Kavanagh, Mani Ramaswami
The module focuses on the molecular mechanisms controlling DNA replication and gene expression in eukaryotes. Topics covered include Chromatin and chromosomal structure, DNA replication, transcription, combinatorial transcriptional codes, post-transcriptional processing of RNAs, mRNA translation and translational controls, translation, posttranslational protein processing and epigenetic regulation of gene expression.

GEU33007 Molecular Genetics Laboratory (S1) 5 credits
Instructor: Tony Kavanagh
The module comprises a set of robust experiment-based projects in microbial and molecular genetics. The central theme is gene expression and its regulation. In the labs, students work in groups of two performing successive experiments in two or three different projects during each session. The experiments provide invaluable hands-on experience of widely used experimental strategies and techniques in molecular genetics/ molecular biology, which include: the isolation and purification of genomic and plasmid DNA; the polymerase chain reaction (PCR); the use of agarose and polyacrylamide gel electrophoresis in the analysis of DNA, RNA and proteins; genetic transformation of E. coli; gene cloning and analysis in plasmid vectors; lacZ, GUS and GFP reporter gene assays; transduction etc.

GEU33075 Evolutionary and Population Genetics (S1) 5 credits
Instructors: Aoife Mc Lysaght, Russell Mc Laughlin, Ross McManus
The aim of this course is to give students a solid understanding of the fundamental principles that underlie molecular evolutionary and population genetics. The course is broken down into 1) molecular evolution, 2) population genetics and 3) mutation, recombination and repair. In each component the students will be presented with a combination of theory and illustrated examples. An emphasis will be placed on data and evidence.
GEU33025 Data Handling and Bioinformatics (S1) 5 credits
Instructors: Karsten Hokamp, Fiona Roche, Dan Bradley
This is a practical module, which will introduce students to the field of bioinformatics and the handling and analysis of data. It is made up of three parts: Bioinformatics, Programming and NGS data analysis. The bioinformatics component will introduce students to the following topics: biological sequence databases, sequence alignment and phylogenetic trees, sequence similarity searching, genetic variation and personal genomics, and genome browsing. The programming part introduces students to the Python programming language, with emphasis on applications to bioinformatics and DNA sequence analysis. Students learn to write programs to handle DNA sequence data, for example translate DNA into protein and to use regular expressions to search for motifs in sequences. During the NGS data analysis part students will carry out a short project relating to the analysis of a ChIP-Seq data set. They will gain hands-on experience using software tools including FastQC, Bowtie2, samtools, GEM and IGV, and learn about topics, such as quality control, trimming, mapping, peak finding, and motif detection.

GEU33215 Medical Genetics (S2) 5 credits
Instructors: Jane Farrar, Peter Humphries, Russell McLaughlin
The module will introduce core concepts in medical genetics and will highlight the exciting advances in this field in the past few years. It will provide an overview of the history of field and insights into key developments in medical genetics up to 2020 including state-of-art powerful technologies such as genome editing. A key objective of the module is to provide an overview of the dominant technologies and methodologies currently used to elucidate the genetic pathogenesis of human disorders. The module will illuminate the enormous role that genetic information now has in disease diagnosis and prognosis, and in directing therapeutic choices for patients for many disorders. This module provides an introduction to: the genetic basis of mendelian and multifactorial diseases, the genetic methodologies and technologies used to define the causes of disease, the exploitation of genomic data in the diagnosis, prognosis and treatment of disease, the genetic basis of why different individuals can respond so differently to therapeutics and the individualization of medicine in the genomics era (pharmacogenomics).

GEU33085 Science Structure Discussion and Presentation for Genetics (S2) 5 credits
Instructors: Juan Pablo Labrador, Kevin Devine, Frank Wellmer, Seamus Martin, Matthew Campbell, Dan Bradley, Aoife Mc Lysaght, Adrian Bracken, Tony Kavanagh
In this module students meet in small groups with lecturers for discussion and problem-solving in an informal setting. Topics include genetic analysis, mathematical genetics, medical genetics and ethics. Students will also write a review of the recent literature in a particular area of genetics research, supervised by individual members of the academic staff. The topic can be chosen by the student or suggested by staff. The objective of the review is to bring the reader up to date on the subject under review.
GEU33035 Genetic Analysis of Nervous Systems (S2)
Instructors: Juan Pablo Labrador, Mani Ramaswami
The module is focused on understanding how experimental genetics are used to manipulate genes in organisms to address problems in biology. Areas covered are 1) Experimental Genetics: structure and conservation of genes, nature of mutations and their effects on protein structure and function, model organisms in genetic research and experimental manipulation of animal genomes. 2) Developmental Neurogenetics: the purpose and design of genetic screens, genetic analysis of neurogenesis and genetic analysis of axon guidance 3) Behavioural Genetics: cell organization and methods of cell biology, cell biology of neurons and synapses, creation and use of molecular reporters of specific gene or cell activity, methods to study nervous systems, sensory circuits, sensation; transduction; perception; coding; behaviour, learning and memory, sleep and circadian rhythms.

GEU33008 Analytical Genetics Laboratory (S2)
Instructor: Juan Pablo Labrador
This module is a practical module that introduces the fundamentals of Genetic analysis and the use of Drosophila melanogaster as a genetic model organism. The module will cover different aspects of model organisms handling and experiments to understand Mendelian genetics and non Mendelian inheritance including segregation, recombination, gene mapping, lethal genes and sex-linked inheritance.

Open Modules
GEU33045 Genomics and Systems Biology (S1)
Instructors: Frank Wellmer, Ken Mok, Adrian Bracken, Russell McLaughlin, Carsten Kröger
This module will introduce students to core concepts of genomics and systems biology. Topics discussed will include structural genomics and genome sequencing; DNA sequencing methods and the story of the human genome project; genome annotation and gene finding; comparative genomics; functional genomics; epigenomics; transcriptomics; regulatory networks; and the *cis*-regulatory code. Furthermore, students will be introduced to the use of genomics techniques in medicine and will learn about methods used to analyze the proteome of an organism.

GEU33055 Developmental Genetics (S2)
Instructors: Seamus Martin, Frank Wellmer, Adrian Bracken
This module introduces students to core concepts of developmental genetics. In it, we will describe the journey from a fertilized egg to an adult organism using fruit flies, vertebrates and plants as examples. Topics covered will include the control of cell division and cell differentiation; stem cells and the establishment of cell fates; the establishment of the body plan of an organism during embryogenesis; and genetic control mechanisms that guide limb and organ development. Students will also be introduced to methods and experimental approaches used to study the genetics of development.
Biochemistry for Biological Sciences (S1) 5 credits
Profs A Kahn, K Mok, J Murray, M Caffery, P Voorheis, D Nolan and A Dunne.
This module follows on from the biochemistry/cell biology component of the “Molecules to Cells” BIU22201 module of year 2. The aim is to provide Junior Sophister students of other disciplines with the grounding in biochemistry necessary to (i) understand biology at a molecular level, (ii) form a mechanistic view of biological processes and (iii) appreciate the pathobiochemical basis of disease. The topics covered will include: the biochemistry of protein structure, enzymes and their role in metabolism, membranes and transport, signalling and the cytoskeleton and related cell biology. The module will be assessed through a combination of in course assessment and an individual end of term exam.

Introduction to Immunology and Immunometabolism (S2) 5 credits
Profs A Dunne, C O’Farrelly, J Fletcher, R Porter, F Sheedy
This module introduces to the basic components and function of the immune system – the molecules, cells, tissues and organs that make up the immune system. It will illustrate the immune responses to infection. Additionally, it will introduce students to the importance of central energy and intermediary metabolic pathways before considering how they are dysregulated in diseases like cancer and to fuel immune function. The module will be assessed by in course continuous assessment and an individual end of term exam paper.

Basics of Neurobiology (S2) 5 credits
Profs G Davey & D Loane
This module focuses on chemical transmission between neurons, how neurotransmitters are classified and identified and describes typical and atypical neurotransmitters and their functions in the brain. It considers mechanisms in which abnormal neurotransmission gives rise to common neurological & psychiatric disorders.
Module Structure

Human Genetics

<table>
<thead>
<tr>
<th>Semester 1 (S1)</th>
<th>Semester 2 (S2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Core Modules</td>
<td></td>
</tr>
<tr>
<td>GEU4400X Molecular and Cellular Genetics (10 credits)</td>
<td></td>
</tr>
<tr>
<td>GEU4400X Evolutionary, Population and Developmental Genetics (10 credits)</td>
<td></td>
</tr>
<tr>
<td>GEU4400X Human Genetics and Genomics (10 credits)</td>
<td></td>
</tr>
<tr>
<td>GEU4400X Medical Genetics (10 credits)</td>
<td></td>
</tr>
<tr>
<td>Capstone Project</td>
<td></td>
</tr>
<tr>
<td>GEUXXX (20 credits)</td>
<td></td>
</tr>
</tbody>
</table>

GEU4400X Molecular and Cellular Genetics (S1 & S2) 5 credits
Prof A Bracken, J Farrar, M Ramaswami, S Martin, M Campbell
The module covers different aspects of cellular genetics and molecular genetics and includes the following areas: Genetic and Non-Genetic Mechanisms in Cancer, Transgenic Animals and Gene Therapy, Genetics and Immunology of Neural Diseases, Functions, Mechanisms and Genetics of Prion-Domain Proteins and Programmed Cell Death.

GEU4400X Evolutionary, Population and Developmental Genetics (S1 & S2) 10 credits
Prof S Martin, F Wellmer, K Mitchell, J P Labrador, D Bradley
The aim of this module is to expand the knowledge acquired in the previous year on genetic analysis and developmental genetics. Areas covered in the module are Human Evolutionary Genetics, Molecular Evolution, Developmental Genetics of Drosophila, Genetics of Neural Development, Behavioural Genetics

GEU4400X Human Genetics and Genomics (S1 & S2) 10 credits
Prof J Farrar, M Campbell, K Daly, R McLaughlin, A Bracken
This module expands general and molecular genetics subjects already introduced in the previous year with a general course on Principles of Genetics and specific ones on Genetics and Genomics.

GEU4400X Medical Genetics (S1 & S2) 10 credits
Prof J Farrar, A Mc Lysaght, R Mc Laughlin, J P Labrador, K Devine, F Wellmer, S Martin, M Campbell, D Bradley, A Bracken, T Kavanagh, M Ramaswami, K Mitchell
This module will expand on the previous year’s module on Medical Genetics, highlighting the power and utility of genetic information to understand the molecular basis of human disorders, and to greatly aid in disease diagnosis, prognosis and development of novel treatments.
GEU4400X Capstone Project and Review (S1 & S2) 20 credits
Profs A Mc Lysaght, R Mc Laughlin, J P Labrador, K Devine, F Wellmer, S Martin,
M Campbell, D Bradley, A Bracken, T Kavanagh, M Ramaswami, K Mitchell
In this module the student will undertake a capstone project divided into three components: a) a 10-week research project to be conducted on a topic directly related to Human Biology or medical research; b) a computational and data analysis practical where students will process and analyze data relevant to their field of study; c) tutorials for problem solving in the field of Human Genetics.
Learning Outcomes

- Attain a deep understanding of Genetics and Heredity and related fields; from Mendelian genetics to the latest technological advances in Genomics, Genome Engineering etc.
- Gather, synthesize, organize and present information in written reports.
- Demonstrate experimental skills in a range of laboratory/bioinformatics techniques; demonstrate the development of practical scientific numerical and analytical skills on data analysis.
- Apply the scientific method as fundamental mechanisms for critical analysis and problem solving.
- Use of general texts, reference books, scientific literature, reports and a range of digital resources to develop future personal knowledge of scientific issues through continued independent learning
Immunology

Junior Sophister
Course Advisor: Prof F Sheedy fsheedy@tcd.ie

Immunology is a moderatorship course run by the School of Biochemistry and Immunology (http://www.tcd.ie/Biochemistry/). Immunology is the study of the molecules and cells of the body that are involved in recognising and fighting infection and disease. Some of the course content is shared with other degree programmes offered by the School (particularly in the areas of cell and molecular biology in JS), but there are specialised courses, assignments and practical's in Immunology in both Sophister years.

For all international visiting student queries please email Prof Andrei Budanov at budanova@tcd.ie.

Junior Sophisters:
The JS year consists of a varied programme of lectures, tutorials, a literature review, data-handling and laboratory practicals. In addition to the Core Immunology courses, students will take Open modules in Biochemistry and Microbiology and have the option of further Open modules in Genetics or Parasitology/Zoology in association with a Trinity Elective, as indicated in the following Table. Please note that the selection of Trinity Electives is subject to exclusion criteria and further information can be found at https://www.tcd.ie/trinity-electives/electives/.
<table>
<thead>
<tr>
<th>Core Modules</th>
<th>Semester 2 (S2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIU33220: Core Concepts in Immunology (10 credits)</td>
<td>BIU33230 Gene Regulation (10 credits)</td>
</tr>
<tr>
<td>BIU33240: Immune Signalling & Disease (10 credits)</td>
<td>BIU33020 Research Skills for Immunologists (10 credits)</td>
</tr>
</tbody>
</table>

Open Modules Scenario I

- BIU33210 Biochemistry for Biosciences (5 credits)
- Microbiology Pathogenesis (5 credits)
- Trinity Elective (5 credits)
- ZOU33030: Parasitology (5 credits)

Open Modules Scenario II

- BIU33210 Biochemistry for Biosciences (5 credits)
- Microbiology Pathogenesis (5 credits)
- GEU33045 Genomes and Systems Biology (5 credits)
- Trinity Elective (5 credits)

Open Modules Scenario II

- BIU33210 Biochemistry for Biosciences (5 credits)
- Microbiology Pathogenesis (5 credits)
- Trinity Elective (5 credits)
- Trinity Elective (5 credits)

BIU33220 Core Concepts in Immunology (S1)

10 credits

This module will give students an introduction to the basic components and functions of the immune system including the molecules, cells, tissues and organs that make up the immune system. It will also illustrate the specificity of immune responses to infection covering antiviral, bacterial and helminth immunity in detail, as well as considering how we can boost immunity through vaccination. Associated practicals will introduce students to basic immunology techniques including cell culture, flow cytometry and bacterial killing assays.
BIU33240 Immune Signalling & Disease (S1) 10 credits
Profs J Hayes, A Dunne, E Creagh, C O’Farrelly, D Finlay, J Fletcher, E Lavelle, L Lynch, F Sheedy, D Zisterer, J Murray, D Nolan
This module introduces basic concepts in cellular signalling and protein structure before analysing how immune proteins function in these processes, and how the immune system is regulated at the cellular and whole-body level. It will consider dysregulation of immune processes associated with human disease including autoimmunity, allergy, metabolic disease and cancer. Associated practicals will give students an introduction to basic biochemical lab skills, metabolism and enzyme kinetics and binding/signalling assays.

BIU33230 Gene Regulation (S2) 10 credits
Profs F Sheedy, A Bowie, D Zisterer, C O’Farrelly, D Finlay
This module concerns the use of molecular biology and control of gene expression in immune processes. Students will be introduced to basic molecular biology techniques and processes like DNA structure, replication, transcription and translation, and repair. Students will also consider how immunogenetics impacts antigen recognition by the innate immune system, transplantation biology and inherited immune deficiencies. Associated practicals and workshops will give students hand-on experience with recombinant DNA technology, quantitative PCR and genome-wide association studies (GWAS).

BIU33020 Research Skills for Immunologists (S2) 10 credits
Profs F Sheedy, C Gardiner, A Bowie, Various others
This module prepares and trains students for a research career by introducing them to critical analysis and synthesis of the immunology literature in the form of a mini review which will be supervised by an academic staff member with expertise in the topic. They will also present their findings orally. Students will also participate in quantitative problem sessions where an academic staff member will demonstrate and train students how to handle and present experimental data. Associated practical’s will give students advanced skills in immunological techniques including ELISA, immuno-blotting, tissue extraction and flow cytometry.

Open Modules

Biochemistry for Biological Sciences (S1) 5 credits
Profs A Kahn, K Mok, J Murray, M Caffery, P Voorheis, D Nolan & A Dunne.
This module follows on from the biochemistry/cell biology component of the “Molecules to Cells” BIU22201 module of year 2. The aim is to provide Junior Sophister students of other disciplines with the grounding in biochemistry necessary to (i) understand biology at a molecular level, (ii) form a mechanistic view of biological processes and (iii) appreciate the pathobiochemical basis of disease. The topics covered will include: the biochemistry of: protein structure, enzymes and their role in metabolism, membranes and transport, signalling and the cytoskeleton and related cell biology. The module will be assessed through a combination of in course assessment and an individual end of term exam.
GEU33045 Genomics and Systems Biology (S1)
Profs F Wellmer, K Hun Mok, A Bracken, R McLaughlin, C Kröger
This module will introduce students to core concepts of genomics and systems biology. Topics discussed will include structural genomics and genome sequencing; DNA sequencing methods and the story of the human genome project; genome annotation and gene finding; comparative genomics; functional genomics; epigenomics; transcriptomics; regulatory networks; and the cis-regulatory code. Furthermore, students will be introduced to the use of genomics techniques in medicine and will learn about methods used to analyze the proteome of an organism.

ZOU33030 Introduction to Parasitology / 5 credits / Semester 2
Prof C Holland
The significance of the host-parasite relationship and the processes associated with the definition of parasitism are discussed in this module. Examples from important parasite phyla are reviewed with a focus upon life cycle strategies, ecology, pathology and control. The epidemiology of parasitic diseases including important differences between microparasites and macroparasites are defined. The significance of parasite distributions within host populations is highlighted. External and internal factors, which influence parasite populations, are outlined and particular attention is paid to host behaviour, genetics and immunity. The concept of a parasite community at the infracommunity and component community level is developed. The challenges associated with parasite control are explored. The practical work provides access to a wide range of parasitic material and gives emphasis to the diversity of parasitic lifestyles and forms. A number of the sessions are experimental in nature and explore parasitic adaptations for infection, the significance of parasite distributions in infected hosts, behavioural changes in parasitised hosts and the nature of parasite communities.

Microbial Pathogenesis (S2)
Profs S Corr & K Roberts
This module gives basic grounding in microbial pathogenicity and medical microbiology. It covers the molecular basis of bacterial pathogenesis, including adhesion to host cells and tissue, invasion of mammalian cells, survival within professional phagocytes, evasion of innate immune responses and damage of host tissue. Major bacterial protein toxins are also covered as are important bacterial pathogens, vaccines and laboratory techniques for the identification of bacterial pathogens. The module also includes a viral pathogenicity component which deals with the properties of viruses compared to other microorganisms, classification of viruses, virus structure, the molecular biology of virus multiplication and viruses of topical interest. This module is examined during the examination period at the end of Semester 2
Module Structure

<table>
<thead>
<tr>
<th></th>
<th>Immunology</th>
</tr>
</thead>
<tbody>
<tr>
<td>Core Modules</td>
<td></td>
</tr>
<tr>
<td>BIU44210: General Immunology</td>
<td>Semester 1 (S1)</td>
</tr>
<tr>
<td>10 credits</td>
<td></td>
</tr>
<tr>
<td>BIU44230: Immunological diseases & immunotherapy</td>
<td>10 credits</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Capstone Project</td>
<td>BIU44290: Research Project in Immunology (20 Credits)</td>
</tr>
</tbody>
</table>

BIU44290 Research Project in Immunology (S1)
20 credits
Each research project is supervised by a member of staff in the School of Biochemistry & Immunology. The module comprises of an original research project in Immunology, a research thesis and both an oral and poster presentation.

BIU44010 Advanced Research Skills (S1)
10 credits
This purpose of this module is to further develop research, critical analysis and communication skills that are essential for a graduate immunologist. Students will be trained in data handling as well as solving quantitative problems in biochemistry. In addition, this module will introduce students to a wide array of cutting-edge techniques and strategies used in Immunology.

BIU44210 General Immunology (S2)
10 credits
Profs A Bowie, C Gardiner, C O’Farrelly, E Lavelle, K Mills, C Cunningham, D Zisterer, L O’Neill, S Martin, D Finlay,
This module familiarizes students with the components of the immune system in more detail and examines local immunity at specific organs including the liver, brain and mucosal sites. Detailed immune signaling pathways will be discussed and the impact of biochemistry and metabolism on immune function introduced through specialized lectures in immunometabolism.

BIU44220 Infection & Immunity (S2)
10 credits
This module will integrate knowledge about how the innate and adaptive immune systems work together to eliminate specific bacterial and viral pathogens ranging from intracellular bacteria, helminths, trypanosomes, viruses and enteric bacteria. Students will also consider how pathogens subvert both innate and adaptive immune responses and learn about current thinking in vaccinology.
This module will give students a detailed understanding of the contribution of immunology to a range of important human diseases including autoimmunity (rheumatoid arthritis), auto-inflammatory diseases, obesity and neurological diseases. Importantly, students will consider how this knowledge has been harnessed to develop a range of immunotherapies and in particular apply this to cancer, where the interaction between the immune system and tumours has multiple outcomes. This will include an introductory course in cancer biology.
Learning Outcomes

• Describe the cells and molecules involved in the induction and regulation of innate and adaptive immune responses

• Identify how the immune system specifically deals with different pathogens including bacteria, viruses and parasites. Strategies for effective immunisation will also be discussed.

• Critically evaluate the contribution of immunology to a range of important human diseases including autoimmunity, obesity and neurological diseases and cancer.

• Pursue with a degree of independence an original research project in Immunology. Design and implement a wide range of experimental procedures, critically analyse and interpret experimental data, synthesise hypotheses from a wide range of information sources, critically evaluate research literature and write a research dissertation.

• Show that they have acquired the learning skills to undertake future independent research and learning with a high degree of autonomy.

• Demonstrate the ability to communicate effectively with the scientific community and with society at large and articulate how the Immunology impacts on society.
Microbiology

Junior Sophister Course Advisor: Dr. Joan Geoghegan geoghegj@tcd.ie

Microbiology is a two-year moderatorship course run by the School of Genetics and Microbiology. It encompasses microbial & molecular genetics, microbial genomics, cellular & molecular biology, microbial pathogenesis, medical microbiology, immunology, virology, antimicrobial chemotherapy, vaccinology, applied microbiology and biotechnology. Senior Sophister students’ study in specialized areas of modern microbiology and carry out a full-time, nine-week research project. Microbiology graduates find employment in research laboratories, universities, industry, hospitals, the scientific civil service, police forensic labs, public health labs, quality control labs in the food, dairy, beverage and pharmaceutical industries, as well as in education, scientific publishing, technical sales and services, marketing and in management.

Junior Sophister

The Junior Sophister (JS) year consists of a diverse programme of lectures, laboratory practical’s, tutorials and a research essay.

Module Structure

<table>
<thead>
<tr>
<th>Microbiology</th>
<th>Semester 1 (S1)</th>
<th>Semester 2 (S2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Core Modules</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MIU33016 Applied Microbiology & Antimicrobial Agents (5 Credits)</td>
<td>MIU33012 Microbiology Pathogenesis (5 credits)</td>
<td></td>
</tr>
<tr>
<td>MIU33011 Microbial Physiology (5 credits)</td>
<td>MIU33003 Research Essay (5 credits)</td>
<td></td>
</tr>
<tr>
<td>MIU33014 Microbial & Molecular Genetics (10 Credits)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MIU33015 Experimental Microbiology (10 credits)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Open Modules Scenario I</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Biochemistry for Biological Sciences (5 credits)</td>
<td>Introduction to Immunology and Immunometabolism (5 credits)</td>
<td></td>
</tr>
<tr>
<td>Trinity Elective (5 credits)</td>
<td>ZOU33030 Introduction to Parasitology (5 credits)</td>
<td></td>
</tr>
<tr>
<td>Open Modules Scenario II</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Biochemistry for Biological Sciences (5 credits)</td>
<td>Introduction to Immunology and Immunometabolism (5 credits)</td>
<td></td>
</tr>
<tr>
<td>GEU33045 Genomes and Systems Biology (5 credits)</td>
<td>Trinity Elective (5 credits)</td>
<td></td>
</tr>
<tr>
<td>Open Modules Scenario III</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Biochemistry for Biological Sciences (5 credits)</td>
<td>Introduction to Immunology and Immunometabolism (5 credits)</td>
<td></td>
</tr>
<tr>
<td>Trinity Elective (5 credits)</td>
<td>Trinity Elective (5 credits)</td>
<td></td>
</tr>
</tbody>
</table>
Microbial Physiology (S1) 5 credits
Profs A Fleming & J Geoghegan
This module covers various aspects of microbial physiology including cell surface structure and function, cell membranes, nutrient uptake and metabolism, as well as mechanisms by which cells respond to nutrient depletion. Biosynthesis, post-translational modification and secretion of protein and polysaccharide structures in microbes are described.
This module is examined during the examination period at the end of Semester 1

Microbial Pathogenesis (S2) 5 credits
Profs S Corr & K Roberts
This module gives basic grounding in microbial pathogenicity and medical microbiology. It covers the molecular basis of bacterial pathogenesis, including adhesion to host cells and tissue, invasion of mammalian cells, survival within professional phagocytes, evasion of innate immune responses and damage of host tissue. Major bacterial protein toxins are also covered as are important bacterial pathogens, vaccines and laboratory techniques for the identification of bacterial pathogens. The module also includes a viral pathogenicity component which deals with the properties of viruses compared to other microorganisms, classification of viruses, virus structure, the molecular biology of virus multiplication and viruses of topical interest.
This module is examined during the examination period at the end of Semester 2

Research Essay (S2) 5 credits
Profs J Geoghegan & K Roberts
This module covers prokaryotic and eukaryotic genetics and molecular biology and how this knowledge is applied to current problems in Industry, Agriculture and Medicine. Student learning in this module is supported by lectures, tutorials and laboratory-based practicals. This module assessment involves written exams and data handling and interpretation assignments.

Microbial & Molecular Genetics (S1 & S2) 10 credits
Profs U Bond & C Dorman
This module covers prokaryotic and eukaryotic genetics and molecular biology and how this knowledge is applied to current problems in Industry, Agriculture and Medicine.
This module is examined during the examination period at the end of Semester 1
Applied Microbiology and Antimicrobial Agents (S1) 5 credits
Profs C Kroger & M Martins
This module covers applications in Applied Microbiology, discussing essential features of microbiology relevant to the environment, food, pharmaceutical industries and clinical settings. While food and medicinal applications constitute a big portion of applied microbiology, the study of microorganisms has led to commercial industries, which are involved with, and affect, almost all aspects of human life. This module will cover areas such as (i) Environmental microbiology and water quality; (ii) Food microbiology; (iii) Biotechnology; and (iv) Clinical microbiology and Public Health. This module also includes lectures on Antimicrobial Agents, namely: (i) the general properties of the major antimicrobial agents in use and under investigation, (ii) targets/mechanisms of action of current and potential drugs, and (iii) mechanisms of drug resistance in microbial pathogens. This module is examined during the examination period at the end of Semester 1.

Experimental Microbiology (S1 & S2) 10 credits
This module offers students an opportunity to explore concepts described in lectures through a series of laboratory-based practical classes and tutorials. The classes and activities aim to deepen understanding of the curriculum, inspire broader thinking across modules and encourage numerical, reasoning and problem-solving skills. Laboratory-based sessions are closely linked to the content of the modules running concurrently. Students are encouraged to develop the technical and experimental skills required to work in a modern microbiology or molecular biology lab and to become competent, independent bench-lab scientists.
This module is assessed ‘in-course’ using a variety of assessment modes including written exams, take-home assignments, lab reports, data handling and interpretation exercises and student presentations.

Experimental Microbiology 2 (S2) 5 credits
This module allows students to build on the key skills developed during semester 1 and to further their knowledge of important experimental approaches. Laboratory-based sessions are closely linked to the content of the modules running concurrently.
This module is assessed ‘in-course’ using a variety of assessment modes including written exams, take-home assignments, data handling and interpretation exercises and short presentations.

Open Modules

Biochemistry for Biological Sciences (S1) 5 credits
Profs A Kahn, K Mok, J Murray, M Caffery, P Voorheis, D Nolan and A Dunne.
This module follows on from the biochemistry/cell biology component of the “Molecules to Cells” BIU22201 module of year 2. The aim is to provide Junior Sophister students of other disciplines with the grounding in biochemistry necessary to (i) understand biology at a molecular level, (ii) form a mechanistic view of biological processes and (iii) appreciate the pathobiochemical basis of disease. The topics covered will include: the biochemistry of protein structure, enzymes and their role in metabolism, membranes and transport,
signalling and the cytoskeleton and related cell biology. The module will be assessed through a combination of in course assessment and an individual end of term exam.

GEU33045 Genomics and Systems Biology (S1)

5 credits

Profs F Wellmer, K Hun Mok, A Bracken, R McLaughlin, C Kröger

This module will introduce students to core concepts of genomics and systems biology. Topics discussed will include structural genomics and genome sequencing; DNA sequencing methods and the story of the human genome project; genome annotation and gene finding; comparative genomics; functional genomics; epigenomics; transcriptomics; regulatory networks; and the *cis*-regulatory code. Furthermore, students will be introduced to the use of genomics techniques in medicine and will learn about methods used to analyze the proteome of an organism.

Introduction to Immunology and Immunometabolism (S2)

5 credits

Profs A Dunne, C O’Farrelly, J Fletcher, R Porter, F Sheedy

This module introduces to the basic components and function of the immune system – the molecules, cells, tissues and organs that make up the immune system. It will illustrate the immune responses to infection. Additionally, it will introduce students to the importance of central energy and intermediary metabolic pathways before considering how they are dysregulated in diseases like cancer and to fuel immune function. The module will be assessed by in course continuous assessment and an individual end of term exam paper.

ZOU33030 Introduction to Parasitology (S2)

5 credits

Prof C Holland

The significance of the host-parasite relationship and the processes associated with the definition of parasitism are discussed in this module. Examples from important parasite phyla are reviewed with a focus upon life cycle strategies, ecology, pathology and control. The epidemiology of parasitic diseases including important differences between microparasites and macroparasites are defined. The significance of parasite distributions within host populations is highlighted. External and internal factors, which influence parasite populations, are outlined and particular attention is paid to host behaviour, genetics and immunity. The concept of a parasite community at the infracommunity and component community level is developed. The challenges associated with parasite control are explored. The practical work provides access to a wide range of parasitic material and gives emphasis to the diversity of parasitic lifestyles and forms. A number of the sessions are experimental in nature and explore parasitic adaptations for infection, the significance of parasite distributions in infected hosts, behavioural changes in parasitised hosts and the nature of parasite communities.
Module Structure

<table>
<thead>
<tr>
<th>Microbiology</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Core Modules</td>
<td></td>
</tr>
<tr>
<td>Semester 1 (S1)</td>
<td>Semester 2 (S2)</td>
</tr>
<tr>
<td>MIU44002: Microbial Molecular & Cellular Biology (10 credits)</td>
<td>MIU44003: Microbial Pathogenicity (10 credits)</td>
</tr>
<tr>
<td>MIU44004: Advanced Topics in Microbiology (10 credits)</td>
<td>MIU44005: Data Handling (10 credits)</td>
</tr>
<tr>
<td>Capstone Project</td>
<td></td>
</tr>
</tbody>
</table>
| MIU44001: Research in Microbiology | Research Project, Literature Review (20 Credits)

MIU44001: Research in Microbiology (S1 & S2) 20 credits
This research-oriented module involves a full-time 9-week research project and thesis, the writing of a research essay and discussions of professional and ethical issues in Microbiology.

MIU44002: Microbial Molecular & Cellular Biology (S1 & S2) 10 credits
This module involves core lectures, attendance at research seminars and self-directed study guided by reading material in Microbial & Molecular & Cellular Biology.

MIU44003: Microbial Pathogenicity (S1 & S2) 10 credits
This module involves core lectures and self-directed study, attendance at research seminars and self-directed study guided by reading material in Microbial Pathogenicity.

MIU44004: Advanced Topics in Microbiology (S1 & S2) 10 credits
In this module students select three advanced topics from a list which currently includes: cell biology of intracellular pathogens, viral pathogenesis, small RNA-mediated gene regulation, regulation of bacterial gene expression, antimicrobial resistance, immune evasion by bacterial pathogens, lessons from yeast and chromatin, epigenetics and disease. Students are required to carry out self-guided study on primary literature sources in preparation for class participation and presentations.

MIU44005: Data Handling (S2) 10 credits
Students receive tutorials in data handling, data interpretation and problem solving to complement the lectures in the core themes.
Learning Outcomes

Upon successful completion of this programme, students will be able to:

- Demonstrate in written and oral form a foundation level of knowledge and understanding of the biological, physical and quantitative sciences underpinning microbiology.
- Demonstrate in written and oral form an advanced level of knowledge and understanding of the principles of microbiology, including
 - the nature and diversity of microorganisms and the methods of studying them
 - the genetic, biochemical and physiological processes occurring in some of the best-characterised microorganisms
 - the interactions between some of the best-characterised pathogenic microorganisms and their hosts
 - the roles, uses and manipulation of microorganisms in health and disease, agriculture, biotechnology and the environment
 - the roles of microorganisms as model systems in related fields
 - the scientific method of investigation and testing of hypotheses and the distinction between scientific and unscientific arguments.
- Demonstrate in written and oral form a detailed, critical knowledge and understanding, supported by the use of advanced textbooks, journal articles and data sets, of one or more specialist areas, some of it at the current boundaries of the field.
- Apply the knowledge and understanding gained to the critical analysis of experimental data, to sustaining evidence-based arguments on microbiological hypotheses, to solving microbiological problems and to designing microbiological experiments.
- Pursue with a degree of independence an original microbiological research project including project planning; identification, appraisal and safe application of the appropriate experimental techniques; accurate recording and presentation of data; identification of the limitations of and sources of error in experiments; analysis and interpretation of complex data; formulation of logical conclusions; and appraisal of the project outcome in the context of related, published work.
- Demonstrate proficiency in the application of computers to such problems as the searching of literature databases, analysis of biological sequence data, visualisation of biological macromolecules and analysis of experimentally acquired data.
- Demonstrate recognition of the value of scientific inquiry and an understanding of the ethical responsibilities of scientists.
- Demonstrate the capacity to apply international standards and practices within the discipline.
- Act effectively, under the guidance of senior scientists as necessary, as an individual, as part of a team, and/or in a multidisciplinary environment.
- Communicate information and ideas at a high level to both specialist and non-specialist audiences.
- Show that they have acquired the learning skills necessary to update their knowledge and to undertake further study with a high degree of autonomy.
Molecular Medicine

Junior Sophister Course Advisor: Prof J Murray james.murray@tcd.ie

Molecular medicine is the area of study that explores cutting edge advances in disease diagnosis, therapy and prevention driven by advanced bio-molecular research. The Molecular Medicine course is a unique collaboration between the School of Biochemistry & Immunology, Trinity Biomedical Sciences Institute (TBSI) and the School of Medicine. In this course modules are designed to show how basic science is translated from ‘theory to treatment.’ Key areas of focus include cancer, neuroscience, genetic diseases, microbiology and immunology. Students will obtain a unique perspective on modern-day molecular medicine and an appreciation for the importance of both basic and clinical research in drug discovery, molecular diagnostics and personalised medicine.

In addition to highly engaging course material, students will gain experimental skills in a range of cutting-edge techniques and technologies through practical’s and laboratory placements in the final year. The modules are designed to integrate together and equip graduates to work in all major aspects of state-of-the-art medical biosciences. The course content has relevance to both academia and the healthcare/pharmaceutical sector therefore former graduates have gone on to study medicine, engage in postgraduate research (Ph.D.; M.Sc.), and pursue careers in industrial and government organizations. Opportunities also exist in hospital and commercial labs as well as in clinical biochemistry, biotechnology, food science, teaching, information systems, communications, and management.

The module content that is offered is under constant revision and evolution, to reflect the rapidly changing advances in Molecular Medicine. Current third year modules cover topics including Proteins and Drugs; Cell Biology; Disease Mechanisms – Cancer, Inflammation and Metabolic Disease; Nucleic Acids – Gene Expression, Molecular Genetic Mechanisms, Bioanalysis and Research Skills. While fourth year modules cover Neurobiology; Innate and Adaptive Immunity in Disease; Molecular Haematology and Oncology; Microbial Diseases; Autoimmune and Inflammatory Conditions; Genomics, Metabolism and Disease; Molecular Diagnostics and Therapeutics; Cell Cycle and Cancer. In addition, each student undertakes a bespoke capstone research project in their final year in laboratories based in Trinity Translational Medicine Institute on the St. James’s Hospital campus, or Trinity Biomedical Sciences Institute.

Finally, the School of Biochemistry and Immunology awards up to two internships at the end of third year. The awards will take the form of salaries for six weeks to work in one of the research laboratories in the School of Biochemistry and Immunology. Our students can also avail of internships in various laboratories in the US (e.g. University of Massachusetts, Boston) and Europe. Pharmaceutical companies have also sponsored a number of summer internships for our third-year students.
Module Structure

Molecular Medicine

<table>
<thead>
<tr>
<th>Core Modules</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIU33310: Proteins to Cells (10 credits)</td>
</tr>
<tr>
<td>BIU33330: Disease Mechanisms and Drug Discovery (10 credits)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Open Module Scenario I</th>
</tr>
</thead>
<tbody>
<tr>
<td>GEU33045 Genomics and Systems Biology (5 credits)</td>
</tr>
<tr>
<td>Trinity Elective (5 credits)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Open Module Scenario II</th>
</tr>
</thead>
<tbody>
<tr>
<td>GEU33045 Genomics and Systems Biology (5 credits)</td>
</tr>
<tr>
<td>PGU33950 Cell Physiology & Pharmacology (5 credits)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Open Module Scenario III</th>
</tr>
</thead>
<tbody>
<tr>
<td>GEU33045 Genomics and Systems Biology (5 credits)</td>
</tr>
<tr>
<td>Trinity Elective (5 credits)</td>
</tr>
</tbody>
</table>

BIU33310 Proteins to Cells (S1)
10 credits
Profs K Hun Mok, D Finlay, J Murray, A Budanov, P Voorheis, D Nolan & E Creagh.
This module covers topics that reflect the biochemistry of cells. This includes an appreciation of protein structure, enzyme regulation and activity, enzyme inhibition, the function of biological membranes and membrane trafficking, how cells maintain structure through the actin and microtubule networks and how this all relates to disease pathology. Practical’s will involve analysis of enzyme kinetics and recombinant protein expression, purification and analysis.
BIU33330 Disease Mechanisms and Drug Discovery (S1) 10 credits
Profs E Creagh, A Dunne, J Murray, K Gately, M Barr, McElligot, F Sheedy & C Cunningham.
This module covers cell signalling, oncogenic signalling, key pathways that become deregulated in human disease, the molecular basis of cancer, neurodegeneration and other ageing-related diseases. The module also covers enzyme inhibition, the programme of drug discovery and ADME/ADMET and its relationship to treatment of human disease. Practical’s include measuring ion channel function, in vitro cell culture, and second messenger analysis.

BIU33020 Research skills in Molecular Medicine (S2) 10 credits
All lecturers in the Schools of Medicine, and Biochemistry & immunology could potentially contribute.
This module provides research and transferable skills training, including developing approaches to reading and assessing the scientific literature in the form of a written minireview and presentation, data processing, quantitative analysis of data and interpretation based on real world experimental problems, combined with advanced technical and laboratory skills in a series of extended mini-project style practical’s.

BIU33010 Nucleic Acids (S2) 10 credits
Profs V Kelly, M Carty, D Zisterer, A Bowie, D Finlay & F Sheedy.
This module focuses on understanding nucleic acid biochemistry, DNA structure, gene transcription and mRNA translation, advanced molecular biology techniques including qPCR and gene editing, and DNA damage response mechanisms and their relevance to disease. The module includes appropriate laboratory sessions related to molecular biology and recombinant gene technology.

Open Modules
GEU33045 Genomics and Systems Biology (S1) 5 credits
Profs F Wellmer, K Hun Mok, A Bracken, R McLaughlin, C Kröger
This module will introduce students to core concepts of genomics and systems biology. Topics discussed will include structural genomics and genome sequencing; DNA sequencing methods and the story of the human genome project; genome annotation and gene finding; comparative genomics; functional genomics; epigenomics; transcriptomics; regulatory networks; and the cis-regulatory code. Furthermore, students will be introduced to the use of genomics techniques in medicine and will learn about methods used to analyze the proteome of an organism.
PGU33950 Cell Physiology and Pharmacology. Credit Value (S1) 5 credits
Profs T Boto & M-V Guillot Sestier
The lectures in this module focus on (i) membrane structure, proteins and properties; (ii) receptors and neurotransmitters, (iii) the principles of drug action, drug development and drug targets. The module is designed to consider the structure of the membrane, the changes that occur in the membrane under different biological circumstances using age as an example, and role of membrane proteins. Cell functions, for example, the control of intracellular calcium by cells and transmitter release will be considered in the context of the membrane proteins that impact on these functions. There is a problem-based learning element to this course that will be a team-based exercise. An overall theme will be chosen and groups of 3 or 4 students will be assigned specific aspects of the theme. The objective is to undertake research on the theme and prepare a presentation that is cohesive across the topic. Each team member will contribute to the presentation.

Introduction to Immunology and Immunometabolism (S2) 5 credits
Profs Prof A Dunne, C O’Farrelly, J Fletcher, R Porter, F Sheedy
This module introduces to the basic components and function of the immune system – the molecules, cells, tissues and organs that make up the immune system. It will illustrate the immune responses to infection. Additionally, it will introduce students to the importance of central energy and intermediary metabolic pathways before considering how they are dysregulated in diseases like cancer and to fuel immune function. The module will be assessed by in course continuous assessment and an individual end of term exam paper.

GEU33215 Medical Genetics (S2) 5 credits
Profs J Farrar, P Humphries, R McLaughlin
The module will introduce core concepts in medical genetics and will highlight the exciting advances in this field in the past few years. It will provide an overview of the history of field and insights into key developments in medical genetics up to 2020 including state-of-art powerful technologies such as genome editing. A key objective of the module is to provide an overview of the dominant technologies and methodologies currently used to elucidate the genetic pathogenesis of human disorders. The module will illuminate the enormous role that genetic information now has in disease diagnosis and prognosis, and in directing therapeutic choices for patients for many disorders. This module provides an introduction to: the genetic basis of mendelian and multifactorial diseases, the genetic methodologies and technologies used to define the causes of disease, the exploitation of genomic data in the diagnosis, prognosis and treatment of disease, the genetic basis of why different individuals can respond so differently to therapeutics and the individualization of medicine in the genomics era (pharmacogenomics).

Basics of Neurobiology (S2) 5 credits
Profs G Davey & D Loane
This module focuses on chemical transmission between neurons, how neurotransmitters are classified and identified and describes typical and atypical neurotransmitters and their functions in the brain. It considers mechanisms in which abnormal neurotransmission gives rise to common neurological & psychiatric disorders.
Module Structure

<table>
<thead>
<tr>
<th>Molecular Medicine</th>
<th>Semester 1 (S1)</th>
<th>Semester 2 (S2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Core Modules</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BIU44010 Advanced Research Skills (10 credits)</td>
<td>BIU44310 Neurobiology & Immunology (10 credits)</td>
<td></td>
</tr>
<tr>
<td>BIU44320 Microbial Diseases & Immune System Disorders (10 credits)</td>
<td>BIU44330 Cell Cycle, Cancer Biology and Therapeutics (10 credits)</td>
<td></td>
</tr>
<tr>
<td>Capstone Project</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BIU44390 Research Project in Molecular Medicine (20 credits)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

BIU44390 RESEARCH PROJECT IN Molecular Medicine (S1) 20 credits
Each project will be supervised by a member of staff in the School of Biochemistry & Immunology and School of Medicine.
The module comprises of an original research project in Molecular Medicine, a research thesis and an oral and poster presentation.

BIU44010 ADVANCED RESEARCH SKILLS (S1) 10 credits
All Teaching Staff contribute to this module.
This purpose of this module is to further develop research, critical analysis and communication skills that are essential for a graduate biochemist. Students will be trained in data handling as well as solving quantitative problems in biochemistry. In addition, this module will introduce students to a wide array of cutting-edge techniques and strategies used in biochemistry.

BIU44310 NEUROBIOLOGY & IMMUNOLOGY (S2) 10 credits
Profs G Davey, D Loane, C Cunningham, E Lavelle, M Armstrong, J Murray & F Sheedy.
This module covers the structure, function and pharmacology of neurotransmitters, neuron-glia interactions, intraneuronal signalling and the neurobiology of behaviour and neurodegenerative disorders. This module also covers the molecular basis of immune mediated responses.
BIU44320 MICROBIAL DISEASES & IMMUNE SYSTEM DISORDERS (S2) 10 credits
This module covers the pathogenesis of infectious diseases. Bacterial pathogens of medical importance will also be covered in detail. It will provide an introduction to parasitic protozoa such as trypanosomes and helminths. The biochemical and genetic mechanisms by which bacteria, viruses and parasites evade the host immune responses will be covered. This module will also cover the pathogenesis of autoimmune and inflammatory disease.

BIU44330 CELL CYCLE, CANCER BIOLOGY & THERAPEUTICS (S2) 10 credits
This module covers the cellular and regulatory mechanisms that control the cell cycle. It furthermore it covers the molecular basis of cancer, the progression of the disease and the therapeutic treatment strategies.
Learning Outcomes:

- Demonstrate in written and oral form a foundation level of knowledge and understanding of the biological, physical and quantitative sciences underpinning Molecular Medicine;
- Discuss core and specialised areas of Molecular Medicine in depth and analyse and solve biomedical problems;
- Demonstrate a comprehensive understanding of the theory behind techniques used in Molecular Medicine and show a critical awareness of how these techniques can be applied to biomedical problems;
- Design and implement a wide range of experimental procedures, critically analyse and interpret experimental data, synthesise hypotheses from a wide range of information sources, critically evaluate research literature and write a research dissertation;
- Work effectively as an individual and in a team;
- Display computer literacy and use advanced computer skills to aid in conducting scientific research;
- Communicate effectively with the scientific community and with society at large and articulate how the improved knowledge of Molecular Medicine impacts on society.
Neuroscience

Junior Sophister Course Advisor: Prof E Jimenez-Mateos jimeneze@tcd.ie

Neuroscience is a discipline that is devoted to the scientific study of the nervous system and is at the interface between biology and psychology. It includes study of the nature and functioning of the nervous system at all levels, from the molecules that make up individual nerve cells, to the complexities of how behaviour, thoughts and emotions are produced. Neuroscience is unique in that it makes use of a variety of methods and investigations from a wide range of traditional disciplines. Understanding the functioning of the nervous system requires an integrated knowledge of anatomy, physiology, biochemistry, molecular biology, pharmacology, and psychology. Consequently, although the degree is housed within the School of biochemistry and Immunology, the Neuroscience Sophister Neuroscience program is comprised of courses from all of these disciplines and is the only degree in Trinity to be taught by lecturers from all three faculties.

In the Junior Sophister year, our aim is to lay a solid foundation in the various disciplines that make up Neuroscience but will also begin to really delve into the integration of circuits in the brain and to examine how the brain generates behaviour. In addition, the Junior Sophister year will give you experience in data handling, biostatistics, experimental design, computing, written and oral communication skills, and interpretation and critical analysis of scientific research papers. We regard the ‘open modules’ in Cell Physiology and Pharmacology, in Biochemistry for Biological Sciences and in Human Neuropsychology as essential underpinning for the core Neuroscience curriculum and these 3 are strongly recommended. Thus, you will be well prepared for the Senior Sophister year. **It is also important to remember that your Junior Sophister marks contribute 30% to your final degree.** The senior sophister year will take you deeper into some of the areas you explored in the junior sophister year, but also will take on new areas like neurodegenerative diseases, neuroimmunology as well as undertaking a major capstone project in one of the many research labs that make up the neuroscience community in Trinity.

For all international visiting student queries please email Prof E Jimenez-Mateos at jimeneze@tcd.ie or Prof C Cunningham at colm.cunningham@tcd.ie
Module Structure

Neuroscience

<table>
<thead>
<tr>
<th>Semester 1 (S1)</th>
<th>Semester 2 (S2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Core Modules</td>
<td></td>
</tr>
<tr>
<td>BIU33455 Research Skills (5 credits)</td>
<td>ANU33001 Neuroanatomy (5 credits)</td>
</tr>
<tr>
<td>BIU33465 Integrative Neuroscience (5 credits)</td>
<td>BIU33445 Neurochemistry I (5 credits)</td>
</tr>
<tr>
<td>NSU33PH1 General Principles of Pharmacology (5 credits)</td>
<td>GEU33004 Genetic analysis of Nervous System (5 credits)</td>
</tr>
<tr>
<td>Open Modules Scenario I</td>
<td></td>
</tr>
<tr>
<td>PGU33950 Cell Physiology and Pharmacology (5 credits)</td>
<td>Human Neuropsychology (5 credits)</td>
</tr>
<tr>
<td>Biochemistry for Biological Sciences (5 credits)</td>
<td></td>
</tr>
<tr>
<td>Trinity Elective (5 credits)</td>
<td></td>
</tr>
<tr>
<td>Open Modules Scenario II</td>
<td></td>
</tr>
<tr>
<td>PGU33950 Cell Physiology and Pharmacology (5 credits)</td>
<td>Trinity Elective (5 credits)</td>
</tr>
<tr>
<td>Biochemistry for Biological Sciences (5 credits)</td>
<td></td>
</tr>
<tr>
<td>GEU33045 Genomes and Systems Biology (5 credits)</td>
<td></td>
</tr>
<tr>
<td>Open Modules Scenario III</td>
<td></td>
</tr>
<tr>
<td>PGU33950 Cell Physiology and Pharmacology (5 credits)</td>
<td>Trinity Elective (5 credits)</td>
</tr>
<tr>
<td>Biochemistry for Biological Sciences (5 credits)</td>
<td></td>
</tr>
<tr>
<td>Trinity Elective (5 credits)</td>
<td></td>
</tr>
</tbody>
</table>

BIU33455 Research Skills (S1) 5 credits

The first part of the module (data handling, statistics and experimental design (Prof Andrew McDonald)) gives an introduction to experimental design, data handling and statistical analysis of data, data interpretation and presentation. Students will use computer software (a) to perform a range of commonly used statistical tests, (b) to graphically represent data and (c) to apply what they have learnt in problem-solving exercises. The second part of the module (Journal Club (Prof E Jimenez-Mateos)) is designed to provide students with an opportunity to read individual scientific articles and to develop the necessary skills to critically evaluate them.
BIU33465 Integrative Neuroscience (S1)
Prof T Ryan

The intention of this course is firstly to provide students with a firm grounding in the sub-fields of neuroscience that are conventionally referred to as systems neuroscience, cognitive neuroscience, and behavioural neuroscience; and secondly to introduce students to integrative frameworks for synthesizing existing neuroscience literature from different fields and to help orientate students to hypothesis driven and explanatory research. Students will learn how to approach any brain function (e.g. learning and memory) from a functional and evolutionary standpoint and will apply heuristic conceptual and computational approaches for developing frameworks within which hypotheses can be developed. They will learn how such hypotheses can be tested through multi-disciplinary research projects that combine behavioural, cognitive, physiological, and molecular investigations of brain function using cutting edge experimental methods. They will learn how to assess the validity and quality of such research with the utmost scepticism. They will learn how outcomes of progressive experimental investigations can develop and refine theories that aim to explain the brain and behaviour. This Junior Sophister module is designed to be comprehensive, in order to provide all students with a firm and holistic platform that can be applied to students’ interpretation of other courses and/or of their own independent reading and research.

NSU33PH1 General Principles of Pharmacology (S1)
Prof A Harkin

Targets of drug action; receptor pharmacology and cell signalling; pharmacodynamics (drug action, agonism and antagonism; specificity and side-effects); Dose-response; basic pharmacokinetics (drug absorption, distribution, metabolism and excretion); general ANS pharmacology - sympathetic and para-sympathetic nervous transmission; cholinergic drugs, anticholinesterases; direct and indirect acting sympathomimetics; non-adrenergic and non-cholinergic transmitters; neuromuscular transmission and neuromuscular blocking agents; central neurotransmission and the biochemical basis of neuropharmacology; excitatory and inhibitory transmitters; neuromodulatory transmitters: biogenic amines and acetylcholine; application of basic principles in selected examples of drug use; overview of drug development and testing. **Practical classes include:** 1. Drug targets and receptor transduction - computer simulated programme with assignment, 2. Introduction/Dose response Guinea Pig Ileum: agonists - computer simulated experiments and data analysis, 3. Water Maze (CAL), 4. PA2 Guinea Pig Ileum: antagonists - computer simulated experiments and data analysis, 5. Basic Pharmacokinetics (CAL), 6. Drug development and testing – clinical trials; computer simulated programme with assignment.
Neurophysiology I (S2)
Prof E Jimenez-Mateos

The lectures in this module focus on how the nervous system works. Lectures will describe the structure and function of neurons, how they communicate and how they are arranged to form the nervous system. Topics include electrical properties of neurons, properties and physiological functions of ion channels, synaptic excitability, transmission and plasticity and the delivery and interpretation of sensory information into the central nervous system. Part of the course is also devoted to describing methods to record both cellular and brain activity. Practical classes focus on computer-simulated recordings of individual nerves to understand features of neuronal activity, recording brain function via electroencephalogram and sensory-evoked potentials. This module is designed to provide understanding of how the brain functions at a cellular and systems level.

ANU33001 Neuroanatomy (S2)
Prof P Tierney

On successful completion of this module the student should be able to:

- recognise and describe the major subdivisions of the central nervous system (CNS).
- describe the ventricular system and the production, circulation, absorption and function of the cerebrospinal fluid.
- name the major vessels visible and outline the blood supply of the CNS.
- identify CNS structures associated with major sensory and motor systems, their connections, and outline their pathways outside the CNS.
- locate and describe CNS regions associated with language and their connections.
- name and classify the cranial nerves and list their major connections.
- apply anatomical knowledge to explain the normal function of CNS regions in activities of daily life.
- use anatomical knowledge to explain the pathogenesis and natural history of common clinical disorders of the CNS.
- list the cortical nuclei associated with the limbic system and their function where known.

BIU33425 Nucleic Acids & Molecular Biology Techniques (S2)
Prof Daniela Zisterer

This module covers the structure and function of nucleic acids in a eukaryotic context. The basis of gene transcriptional regulation and mRNA translation are described at a mechanistic and structural level in addition to the processes involved in transcriptional regulation and DNA replication and repair. The module includes several practical, which will include the preparation and use of buffers and spectrophotometric assays. There will then be a molecular biology ‘project’ in which students will learn aseptic technique, perform antibiotic screens of E. coli cells, restriction digests on plasmid DNA and use of agarose gel electrophoresis.
BIU33445 Neurochemistry I (S2) 5 credits
Profs G Davey & D Loane (12 Lectures; 4 Practicals)
This module focuses on chemical transmission between neurons, how neurotransmitters are classified and identified and describes typical and atypical neurotransmitters and their functions in the brain. Individual lectures will discuss cell types in the brain and their functions, neurotransmitter types and the criteria they must satisfy to be regarded as neurotransmitters and the techniques used for studying neurotransmission. Specifically, acetylcholine release & exocytosis will be discussed, followed by a treatment of biogenic amines, glutamatergic and GABAergic neurotransmitter systems and atypical neurotransmitters. This will be followed by a discussion of brain lipids, gangliosides and lipid mediators, intracellular trafficking and signalling before finishing on neurodegenerative and metabolic disorders of the brain.
Practical classes will be devoted to the following topics: subcellular fractionation of brain tissue, assessment of protein expression in brain tissue, assessment of enzyme markers, measurement of neurotransmitters, analysis of brain lipids, neurotransmitter receptor binding.

GEU33004 Genetic Analysis of Nervous System (S2) 5 credits
Profs P Labrador and M Ramaswami (24 Lectures)
Experimental Genetics: manipulating genes in organisms to address problems in biology.

Experimental Genetics
1. Structure and conservation of genes, nature of mutations and their effects on protein structure and function.
2. Model organisms in genetic research
3. Experimental manipulation of animal genomes.
4. Creation and use of transgenic animals to probe gene function in vivo.

Developmental Neurogenetics
1. The purpose and design of genetic screens.
2. Genetic analysis of neurogenesis.
3. Genetic analysis of axon guidance

Behavioural Genetics:
2. Cell biology of neurons and synapses (structures, electrical properties, synaptic transmission and molecular determinants thereof).
3. Creation and use of molecular reporters of specific gene or cell activity. Methods to study nervous systems (behaviour, imaging, electrophysiology, anatomy)
4. Sensory circuits. (vision; taste and smell) Sensation; Transduction; Perception; Coding; Behaviour.
5. Behavioural Plasticity (learning and memory).
Open Modules

PGU33950 Cell Physiology and Pharmacology. Credit Value (S1) 5 credits
Profs T Boto & M-V Guillot Sestier
The lectures in this module focus on (i) membrane structure, proteins and properties; (ii) receptors and neurotransmitters, (iii) the principles of drug action, drug development and drug targets. The module is designed to consider the structure of the membrane, the changes that occur in the membrane under different biological circumstances using age as an example, and role of membrane proteins. Cell functions, for example, the control of intracellular calcium by cells and transmitter release will be considered in the context of the membrane proteins that impact on these functions. There is a problem-based learning element to this course that will be a team-based exercise. An overall theme will be chosen and groups of 3 or 4 students will be assigned specific aspects of the theme. The objective is to undertake research on the theme and prepare a presentation that is cohesive across the topic. Each team member will contribute to the presentation.

Biochemistry for Biological Sciences (S1) 5 credits
Profs A Kahn, K Mok, J Murray, M Caffery, P Voorheis, D Nolan and A Dunne.
This module follows on from the biochemistry/cell biology component of the “Molecules to Cells” BIU22201 module of year 2. The aim is to provide Junior Sophister students of other disciplines with the grounding in biochemistry necessary to (i) understand biology at a molecular level, (ii) form a mechanistic view of biological processes and (iii) appreciate the pathobiochemical basis of disease. The topics covered will include: the biochemistry of: protein structure, enzymes and their role in metabolism, membranes and transport, signalling and the cytoskeleton and related cell biology. The module will be assessed through a combination of in course assessment and an individual end of term exam.

PSU34180 Perceptual Neuroscience (S2) 5 credits
Prof F Newell (Department of Psychology)
This course aims to provide an overview of the main human sensory systems and related perceptual functions from basic physiological mechanisms to behaviour. The approach will be mainly from a neuroscience and behavioural perspective, with related cortical systems (structural and functional) discussed. Insights from latest research on the effect of multisensory integration on perceptual function and learning will be discussed with reference to computational models of perception, sensory deprivation and rehabilitation of perceptual function.
Specifically, the lectures will deal with:
Organisation of the sensory brain, neurophysiology of the occipital cortex and functional organisation of the visual brain. The somatosensory system and tactile perception. The auditory system and sound perception, sensory deprivation and cortical plasticity and perceptual disorders. The module will finish by linking phenomenology with perceptual processing in the human brain and examining plasticity, recovery and rehabilitation of perceptual processes.
Assessment: 100% written exam (end of semester 2)
This module will introduce students to core concepts of genomics and systems biology. Topics discussed will include structural genomics and genome sequencing; DNA sequencing methods and the story of the human genome project; genome annotation and gene finding; comparative genomics; functional genomics; epigenomics; transcriptomics; regulatory networks; and the *cis*-regulatory code. Furthermore, students will be introduced to the use of genomics techniques in medicine and will learn about methods used to analyse the proteome of an organism.
Module Structure

Neuroscience

<table>
<thead>
<tr>
<th>Semester 1 (S1)</th>
<th>Semester 2 (S2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Core Modules</td>
<td>Core Modules</td>
</tr>
<tr>
<td>PGU44004 Neurophysiology II (5 credits)</td>
<td>BIU44445 Neurochemistry II (5 credits)</td>
</tr>
<tr>
<td>NSU44PH2 Neuropharmacology (5 credits)</td>
<td>BIU44455 Neuroimmunology & Neurodegeneration (5 credits)</td>
</tr>
<tr>
<td>PSU34710 Case Studies in Neuropsychology* (5 Credits)</td>
<td>GEU44500 Neurogenetics (5 Credits)</td>
</tr>
<tr>
<td>BIU44415 Research Literature skills** (5 credits)</td>
<td>BIU44415 Research Literature skills** (5 credits)</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Capstone Project</td>
<td></td>
</tr>
<tr>
<td>??? Laboratory project, incorporating literature review (20 credits)</td>
<td></td>
</tr>
</tbody>
</table>

* The psychology-led module is subject to change on a yearly basis and out of our control, may be placed in the first or second semester

** The research literature skills are therefore designed to take place entirely in semester 1 or split between semester 1 and 2 to allow the flexibility for us to choose the most appropriate Neuropsychology modules.
This module is designed to explore the neurobiology of glia and assess the impact of glia on the function of the nervous system. The first half of the module is designed to provide an understanding of stem cells and their differentiation into neural subtypes including glia. The concept of adult neurogenesis and the effect of exercise will also be discussed. This half of the module proceeds to provide an understanding of astrocytes and microglia and appreciate their ability to adopt different phenotypes. The diverse roles of astrocytes and microglia will be considered. We will compile practical examples of how astrocytes and microglia help to maintain homeostasis and respond to injury. Astrocytes are the most prevalent glial cell in the brain and the module will continue by exploring the many functions of astrocytes from the very well-defined role in providing metabolic support to neurons to the finding that astrocytes, like microglia, are active players in cerebral innate immunity. The role of astrocytes in blood brain barrier function will be described and the impact of changes in its permeability will be considered in different scenarios.

The second half of the module focuses on the physiological properties of neurons, synaptic transmission and synaptic plasticity. In particular, the module builds on knowledge acquired from PG3360 and describes, in-depth, biophysical membrane properties of neurons including membrane resistance and capacitance; time and length constants; ion fluxes and permeabilities and membrane potential; Nernst equilibrium potentials and the GHK equation for determining membrane potential; electrical properties of neurons; Hodgkin-Huxley recording of the squid giant action potential and modern electrophysiological techniques; the quantal nature and probability of neurotransmitter release; molecular features of ion channels including conductance, selectivity filters and gating; integrative properties of neurons, dendrites, and dendritic conductance; spatial and temporal summation; synaptic plasticity mechanisms; neuronal and network functions, oscillatory networks, pacemakers, resonators and rebound activity. The module also describes methodology for investigating neuronal function e.g. current and voltage-clamping, patch-clamping and optogenetics.
﻿ PSU34710 Case studies in Neuropsychology (S1) 5 credits
Prof P Dockree

Case studies of patients with brain damage remain a critical part of cognitive neuropsychology’s methods for understanding the organisation of cognitive systems and devising principled approaches to rehabilitation. In this topic, there is great scope for clinicians and researchers to inform and learn from one another with respect to the manifestation of clinical disorders, their potential causes, and paths to rehabilitation. Students are aware of famous patients with brain damage (e.g. Phineas Gage and patient H.M.) but this module will address lesser-known cases, who have nevertheless provided important insights into contemporary research problems across several domains including attention, memory, dysexecutive syndrome and disorders of meta-cognition and social-cognitive processing.

The module aims to:
1. introduce the value of case studies in neuropsychology for dissociating mechanisms of human cognition and contributing to the development of theory.
2. highlight different methodological approaches that are employed to study patients with brain damage, and their advantages and limitations.
3. discuss the role of case studies in complementing other approaches in cognitive neuroscience, including imaging and electrophysiological studies.
4. explain the role of case studies in shaping novel approaches to neuropsychological rehabilitation

NSU44PH2 Neuropharmacology (S1) 5 credits
Prof A Harkin, Associate Prof (Pharmacology) School of Pharmacy and Pharmaceutical Sciences & Trinity College Institute of Neuroscience

The aim of this module is to teach the principles of neuropharmacology and drug therapies for disorders of the central nervous system and includes lectures on the following topics.

1. Depression and antidepressants
2. Mood stabilizers – Lithium
3. Anxiety disorders and anxiolytics
4. Hypnotics
5. Schizophrenia and antipsychotics
6. Drug dependence – reward circuitry and drugs of abuse
7. Anaesthetics - Local, General
8. Epilepsy and anticonvulsants
10. Narcotic analgesics and other CNS acting analgesics
11. Parkinson’s disease and anti-Parkinsonian drugs
13. Brian ischemia and neuroprotection

Students are provided with a list of additional recommended reading relating to these topics. Overall the module comprises 25 lectures, 1 tutorial with 74 guided study hours.
BIU44415 Research Literature Skills (S1 & S2)
Profs C Cunningham, T Ryan, M Cunningham, D Loane
(a) Tutorial and Journal Club presentations (semester 1)
Students will have to comprehend, present and critically analyse research articles from high impact Neuroscience Journals. Each 2.5 hr session will be composed of 5-6 student presentations. Over the duration of this module, each student will be required to present two Journal articles, one chosen by a member of the academic staff, and the second chosen by the student. The Journal articles chosen by the member of academic staff will be circulated to the class approximately 10 days in advance of the journal club. We suggest that that journal article chosen by the student could be related to the topic of their Senior Sophister research project.
(b) Tutorials and written examination (semester 2).
This course will also prepare students for an examination that is focused on the comprehension and dissection of a journal article. This 3-hour exam will take place at the end of semester 1.

BIU44445 Neurochemistry II (S2)
Profs G Davey & D Loane
This module will examine the neurochemistry of the brain in detail, with an initial focus on brain energy metabolism, including energy substrates for the brain, glucose and lactate transporters and the astrocyte-neuron lactate shuttle hypothesis. The course will examine glucose-sensing neurons and describe the determinants of blood flow in the brain before discussing the pivotal role of mitochondria in brain energy metabolism. A detailed discussion of in vivo techniques for measuring neurotransmitter release will precede detailed discussion of classical and atypical neurotransmitters from glutamate and GABA (and drugs related to these neurotransmitters) to polyamines, melatonin, aspartate and glial transmitters such as D-serine, taurine and neuropeptides. The biochemical machinery of neurotransmission will be detailed, including the experimental approaches that underpin the SNARE hypothesis and neurotoxins that interfere with these processes. This will lead on to biochemical accounts of cholinergic signalling and voltage-gated versus ligand gated ion channels (focussing on nicotinic versus muscarinic receptors). This part of the module will go on to examine excitatory (glutamatergic) versus inhibitory (GABAergic, glycinergic) neurotransmission through an examination of receptor mechanisms and pharmacology before finishing on the many drug targets of the brain (from cannabinoid signalling to neurotransmitter transporters and the neurobiology of depression and anxiety. The last part of the module will focus on degenerative processes in the brain, leading with a focus on deficits in energy metabolism and their role in neuronal demise. A central example of this is provided by stroke, but the course will go on to examine the pathogenesis of neurodegenerative diseases including Parkinson’s, Alzheimer’s and Huntington’s disease, with a focus on proteostasis, protein aggregation and reactive oxygen species and novel therapeutic approaches to combat these diseases.
GEU44500 Neurogenetics (S2)
Prof K Mitchell & P Labrador

5 credits

a) Behavioural Genetics (Dr. K. Mitchell)
This course will examine how genes influence behaviour through effects on cellular physiology and neuroanatomy. More specifically, it will look at how variation in genes can cause variation in behaviour. It will encompass the use of genetic approaches to dissect the cellular and biochemical components of complex behaviours in model organisms (worms, flies, mice) as well as the heredity of behavioural characteristics and psychiatric disorders in humans. Major topics include (examples of relevant psychiatric disorders are shown in parentheses): 1. Circadian rhythms and Sleep, 2. Addiction and appetite, energy balance, 3. Aggression, Social behaviour (Schizophrenia), 4. Sexual behaviour, 5. Anxiety (Depression), 6. Learning and Memory, 7. Language, Handedness and Cerebral Asymmetry (Autism, Dyslexia), 8. Personality and Intelligence (Lack of), cognitive Genetics, Autism.

b) Genetics of Neural Development (Dr. J.P. Labrador)
This half of the module will examine how a developmental programme encoded in the genome directs the assembly of the nervous system, creating a remarkably stereotyped but highly plastic and responsive structure. It will address how nervous tissue is set aside in the early embryo, how it becomes patterned, how individual cell types differentiate through the expression of different combinations of genes, and how these genes specify various properties that define each cell type: cell migration to the correct position, establishment of appropriate connections, electrical properties, neurotransmitter expression, etc. The course covers different aspects of nervous system development from neural induction to early steps of circuitry assembly. There is a focus on different genetic experimental methods employed to identify central mechanisms of nervous system development. We will use different models to explain processes and provide examples of networks and concepts. The emphasis will be on the conservation of signalling pathways in development of very diverse organisms. This will include Drosophila melanogaster, mouse as well as embryological studies in frogs and chick. It will also cover a number of human genetic disorders associated with defects in these processes.

The goal of this part of the module is to provide a concise and stimulating investigation of the field of Developmental Neurogenetics. Course lectures will explain different developmental processes of the nervous system, discuss the current issues and questions, and provide a framework for reading scientific literature. Each topic will be covered by one or more reviews and its study will be required for a successful completion of the course. Upon completion of this course students will not only understand the basic concepts but will understand the current challenges within each field of study. Students will gain an appreciation for the complexity of neural development at the cellular, molecular and genetic level. Upon completion, students should be able to approach any scientific literature related to this course. Different subjects covered include: Neural Induction, Neurogenesis, Neural stem cells, Temporal control of neuronal specification in Drosophila, Neuronal specification in vertebrates, Axon guidance genetics, Gradients in retinotectal mapping, Topographic mapping in the olfactory system.
BIU44455 Neuroimmunology & Neurodegeneration (S2) 5 credits
Profs C Cunningham, D Loane & J Murray (Dept. of Biochemistry & Immunology)

This course will focus on bi-directional communication between the nervous and immune systems, the role of the immune system in neurodegenerative disease states and the ways in which systemic inflammation can impact upon brain behaviour and integrity. The second part of the module will provide an in-depth discussion of neuropathological features and common mechanisms of neurodegenerative disease states and the experimental neuropathological approaches (i.e. animal models) that are used to study them.

Specifically, there will be an Introduction to the immune system & neurotransmitter and stress effects on immune system and an up to date discussion of the brain as an immune privileged organ, embracing multiple sclerosis and immune tolerance. Innate immunity and inflammation in CNS upon acute insults will be examined, with some attention to pathogen and damage associated molecular patterns and their corresponding pattern recognition receptors. In particular, microglial activation and neuroinflammation will be discussed in the context of sterile inflammation such as that caused by stroke, traumatic brain injury and spinal cord injury and the possibilities and obstacles for brain regeneration will be covered in that context. DAMP/inflammatory stimuli in the context of chronic neurodegeneration will also be examined and the additional impacts of systemic inflammatory on the normal (Sickness Behaviour) and diseased brain (delirium, psychosis) will be discussed alongside this role of inflammation in neurodegeneration.

In the second half of the module, we will examine the neuropathological features, the genetic underpinning and the animal model approaches consequently used to study diseases like Alzheimer’s, Parkinson’s, Huntington’s, Motor Neuron and prion diseases. This part of the module will try to provide unifying hypotheses of neurodegeneration by focusing on common themes in neurodegeneration: protein aggregation, ubiquitin proteasome system, dysregulated autophagy, inflammation, Tau, RNA-binding proteins, mitochondrial dysfunction, axonal transport/dysfunction.

NSU44490: Capstone Research Project (S1 & S2) 20 credits

Research Principal Investigators throughout Neuroscience Disciplines in TCD

Students will conduct a 10-week research project in one of the Neuroscience research laboratories across campus, including those contributing to the Trinity College Institute of Neuroscience. These researchers offer an enormous breadth of areas of specialisation from mitochondrial biology, to pluripotent stem cell culture, to animal models of disease right up to optogenetic dissection of memory processes and human EEG and MRI imaging studies. Among these diverse options there are many different types of ‘wet lab’ projects but also several different ‘dry’ projects that work with human subjects, with electrophysiological datasets, imaging datasets or studies in artificial intelligence/neural networks. There is simply no other moderatorship that offers this breadth of capstone projects.

The research project is a major component of the Senior Sophister year comprising 33 % of the final year mark. The project is assessed in a variety of ways: a comprehensive literature review, an oral presentation outlining the background to your project, the conduct and skill of the student during experimental work, a poster presentation outlining the major findings, and finally the written report (dissertation) of the project.
Learning Outcomes

On successful completion of this moderatorship the student should be able to:

- Describe the form and function of the central nervous system (CNS) and apply this anatomical knowledge to explain the normal function of CNS structures and regions in activities of daily life.
- Demonstrate an understanding of the basic physiology, biochemistry and molecular biology of the multiple cell types of the brain: from the fundamental molecular processes of gene transcription, protein synthesis and energy metabolism to neuronal architecture, neuronal excitability and synaptic function and plasticity.
- Describe how the genome directs a developmental programme to assemble the highly plastic and responsive nervous system and articulate how genetic variation influences behaviour through effects on cellular physiology and neuroanatomy.
- Demonstrate an understanding of the principles of neuropharmacology and how this is applied to understand and develop drug therapies for disorders of the central nervous system.
- Understand methodological approaches in modern neuroscience research and apply the data arising from these to explain the integrative functioning of the nervous system across functions including movement, perception, emotion and motivation, learning and memory, decision-making, homeostasis, circadian rhythmicity, sleep and consciousness.
- Describe the major neurodegenerative and neuropsychiatric conditions affecting the brain and articulate key cellular and molecular mechanisms thought to underpin these.
- Critically read and interpret scientific articles, assessing experimental design and evaluating data and statistical methods as well as demonstrating the ability to communicate effectively with scientific communities and with society at large to articulate the impact and importance of neuroscience.
- Demonstrate an ability to undertake original neuroscientific research, with a degree of independence, through the design and implementation of experimental laboratory or computational procedures, critical analysis and interpretation of experimental data and synthesis and interrogation of hypotheses in the completion of a research dissertation.
Physiology

Junior Sophister Course Advisor: Prof M Caldwell maeve.caldwell@tcd.ie

The Physiology Moderatorship provides students a thorough grounding in the mechanisms underlying the function of the body, from the cellular to the whole-body level. In the junior sophister year all physiological systems are studied in-depth with the focus on the physiology and pathophysiology of the human body. The lecture material is complemented with laboratory sessions so key concepts in human physiology are explored in a practical setting. These laboratory sessions introduce student-designed projects as a preparation for the Capstone project in the senior sophister year.

In the senior sophister year, students undertake advanced physiology modules and research that reflect the current research interests of the academic staff of the Department. This includes students conducting a full-time individual laboratory-based research project. Projects range from cellular and molecular physiology, neurophysiology and human clinical and exercise physiology.

Students develop a number of key transferable skills including problem solving, critical thinking, IT and numeracy skills. We place an emphasis on developing students’ communication skills, with each student giving multiple oral presentations and writing many reports throughout their two years in the Department.
Module Structure

Physiology

<table>
<thead>
<tr>
<th>Semester 1 (S1)</th>
<th>Semester 2 (S2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Core Modules – (20 credits S1 + 20 credits S2)</td>
<td>Core Modules – (20 credits S1 + 20 credits S2)</td>
</tr>
<tr>
<td>PGU33950 - Cell Physiology and Pharmacology (5 credits)</td>
<td>PGU33007 - Fluid, Heat and Metabolism (5 credits)</td>
</tr>
<tr>
<td>PGU33005 - Cell and Tissue Structure (5 credits)</td>
<td>PGU33010 - Cardiovascular System (5 credits)</td>
</tr>
<tr>
<td>PGU33006 – Nerve, Muscle and Sensation (5 credits)</td>
<td>PGU33111 - Gut, Metabolism and Hormones (5 credits)</td>
</tr>
<tr>
<td>PGU33008 - Brain, Nerve and Muscle (5 credits)</td>
<td>PGU33112 - Respiratory System (5 credits)</td>
</tr>
</tbody>
</table>

Open Modules Scenario I

<table>
<thead>
<tr>
<th>BIU33335 Molecular Basis of Disease (5 credits)</th>
<th>PGU33009 Neurophysiology (5 credits)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ZOU33050 Introduction to Developmental Biology (5 Credits)</td>
<td>Trinity Elective (5 Credits)</td>
</tr>
<tr>
<td>OR Biochemistry for Biological Sciences (5 Credits)</td>
<td></td>
</tr>
</tbody>
</table>

Open Modules Scenario II

<table>
<thead>
<tr>
<th>BIU33335 Molecular Basis of Disease (5 credits)</th>
<th>PGU33009 Neurophysiology (5 credits)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trinity Elective (5 credits)</td>
<td>Basic Neurobiology</td>
</tr>
<tr>
<td>OR GEU33215 Medical Genetics (5 credits)</td>
<td></td>
</tr>
</tbody>
</table>

Open Modules Scenario III

<table>
<thead>
<tr>
<th>BIU33335 Molecular Basis of Disease (5 credits)</th>
<th>PGU33009 Neurophysiology (5 credits)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trinity Elective (5 credits)</td>
<td>Trinity Elective (5 credits)</td>
</tr>
</tbody>
</table>
PGU33950 Cell Physiology and Pharmacology. Credit Value (S1) 5 credits
Profs T Boto and M-V Guillot Sestier
The lectures in this module focus on (i) membrane structure, proteins and properties; (ii) receptors and neurotransmitters, (iii) the principles of drug action, drug development and drug targets. The module is designed to consider the structure of the membrane, the changes that occur in the membrane under different biological circumstances using age as an example, and role of membrane proteins. Cell functions, for example, the control of intracellular calcium by cells and transmitter release will be considered in the context of the membrane proteins that impact on these functions. There is a problem-based learning element to this course that will be a team-based exercise. An overall theme will be chosen and groups of 3 or 4 students will be assigned specific aspects of the theme. The objective is to undertake research on the theme and prepare a presentation that is cohesive across the topic. Each team member will contribute to the presentation.

PGU33005 Cell and Tissue Structure (S1) 5 credits
Prof M Caldwell
This module will cover components of tissues and how they work together in organ function. It will explain pathophysiological examples from a variety of tissues and organs and interpret 2D images as 3D structures. The module will give examples of changes in tissue structure in relation to function; physiological, pathophysiological and developmental states and explain the basis of the classification of tissues according to different criteria. You will learn the value of different types of classification and show an appreciation of the historical development of the bases of classification of tissues and be able to examine, interpret and comment upon a variety of tissues using the light microscope; including preparation artefacts and staining.

PGU33006 Nerve Muscle and Sensation (S1) 5 credits
Prof A Witney
This laboratory-based module examines aspect of nerve-muscle function and sensory physiology. Tutorial sessions supplement the laboratory sessions for in depth discussion. First, basic principles of nerve conduction are examined through computer simulation of the amphibian nerve. Laboratory work then covers human nerve-muscle function, and the recording of muscle activity through electromyography (EMG). Finally, small group experiments are conducted on a sensory system (including touch, pain, audition, smell and taste).
PGU33008 Module Title: Brain, Nerve and Muscle (BNM) (S1) 5 credits
Profs A Witney, M Cunningham & T Boto.
This module is divided into three elements. **ELEMENT ONE:** The principal aims of this element are: (i) to introduce the concept of excitable cells. (ii) To understand the sequence of cellular events, which lead to contraction of skeletal muscle. (iii) To explore the structure and mechanical properties of skeletal muscle. (iv) To understand how the neuromuscular system adapts in relation to specific exercise and clinical cases. **ELEMENT TWO:** is set of introductory lectures to synaptic transmission and sensory physiology. The basic properties of sensory processing are covered and details the physiological properties of senses.

PGU33007 Fluid Heat & Metabolism (FHM) (S2) 5 credits
Prof M Egana
This course deals with the regulation of temperature, metabolism and fluids, and particularly how this occurs during thermal stress and exercise. A key focus is on learning basic aspects of regulation, and then applying this learning to interpreting human responses measured in the laboratory. This learning is fostered through short lectures, tutorials and laboratory experiments, as well as through the preparation of a visual and written presentation about a topic of interest to the student.

PGU33010 Cardiovascular System (CVS) (S2) 5 credits
Prof W Williamson.
The module will examine function and regulation of the circulatory system, using themes of adaptive responses to exercise and environmental change. Students will be assumed to be already familiar with the basic principles of cardiovascular structure and functions. Some sessions will analyse case histories illustrating typical scenarios of cardiovascular adaptation or abnormality. A short research project will involve project planning, experimental design, data collection, handling and statistical analysis; written project report and oral poster presentation. The laboratory classes will provide insights into the practicabilities of quantifying cardiovascular performance during exercise and allow students to conduct a short research project using these techniques.

PGU33111 Gut, Metabolism and Hormones (HOR) - Endocrine System (S2) 5 credits
Profs M Caldwell, E Downer & M-V Guillot Sestier
This module will cover Gut function, Metabolism, Renal function, Growth, including the hypothalamic/pituitary axis, Reproduction: regulation of gender, the ovarian cycle, pregnancy and parturition.

PGU33112 Respiratory Systems (RS) (S2) 5 credits
Prof M Egana.
The module content includes respiratory mechanics; lung compliance & airway resistance; diffusion; transport of O2 and CO2; role of respiration in blood acid/base homeostasis; control of ventilation; and respiration in altered environments. The practical classes explore spirometry & lung volumes; respiratory gas analysis & dead space; ventilation/perfusion with exercise and exercise & acid/base status.
Open Modules

BIU33335 Molecular basis of Disease (S1) 5 credits
Profs E Creagh, A Dunne, J Murray, T McElligot, K Gately, & M Barr.
This module covers cell signalling, oncogenic signalling, key pathways that become
deregulated in human disease, the molecular basis of cancer, neurodegeneration and other
ageing-related diseases. The module also covers the programme of drug discovery and

Biochemistry for Biological Sciences (S1) 5 credits
Profs A Kahn, K Mok, J Murray, M Caffery, P Voorheis, D Nolan & A Dunne.
This module follows on from the biochemistry/cell biology component of the “Molecules to
Cells” BIU22201 module of year 2. The aim is to provide Junior Sophister students of other
disciplines with the grounding in biochemistry necessary to (i) understand biology at a
molecular level, (ii) form a mechanistic view of biological processes and (iii) appreciate the
pathobiochemical basis of disease. The topics covered will include: the biochemistry of
protein structure, enzymes and their role in metabolism, membranes and transport,
signalling and the cytoskeleton and related cell biology. The module will be assessed
through a combination of in course assessment and an individual end of term exam.

ZOU33050 Introduction to Developmental Biology (S1) 5 credits
Dr R Rolfe
This module consists of a series of lectures, tutorials and laboratory sessions that deals with
a range of developmental topics emphasising a molecular approach to understanding the
principles of animal development. A number of animal model systems will be dealt with and
the contribution of each to our overall understanding of development discussed. Specific
topics will include the following: Developmental genetics: the identification of genes that
regulate development in Drosophila and vertebrates, Positional determination: how the
body plan of the embryo is laid down including the role of homeo-box genes, Induction: the
role of cell and tissue interactions and signalling cascades, Developmental neurobiology:
positional determination within the vertebrate central nervous system, neuronal diversity
and axonal guidance, neural crest cells and development of the peripheral nervous system.
Other topics include limb development, organogenesis, and evolutionary developmental
biology.

PGU33009 Neurophysiology I (S1 & S2) 5 credits
Prof E Jimenez-Mateos
The lectures in this module focus on how the nervous system works. Lectures will describe
the structure and function of neurons, how they communicate and how they are arranged
to form the nervous system. Topics include electrical properties of neurons, properties and
physiological functions of ion channels, synaptic excitability, transmission and plasticity and
the delivery and interpretation of sensory information into the central nervous system. Part
of the course is also devoted to describing methods to record both cellular and brain
activity. Practical classes focus on computer-simulated recordings of individual nerves to
understand features of neuronal activity, recording brain function via electroencephalogram
and sensory-evoked potentials. This module is designed to provide understanding of how
the brain functions at a cellular and systems level.
Basics of Neurobiology (S2) 5 credits
Profs G Davey & D Loane
This module focuses on chemical transmission between neurons, how neurotransmitters are classified and identified and describes typical and atypical neurotransmitters and their functions in the brain. It considers mechanisms in which abnormal neurotransmission gives rise to common neurological & psychiatric disorders.

GEU33215 Medical Genetics (S2) 5 credits
Profs J Farrar, P Humphries, R McLaughlin
The module will introduce core concepts in medical genetics and will highlight the exciting advances in this field in the past few years. It will provide an overview of the history of field and insights into key developments in medical genetics up to 2020 including state-of-art powerful technologies such as genome editing. A key objective of the module is to provide an overview of the dominant technologies and methodologies currently used to elucidate the genetic pathogenesis of human disorders. The module will illuminate the enormous role that genetic information now has in disease diagnosis and prognosis, and in directing therapeutic choices for patients for many disorders. This module provides an introduction to: the genetic basis of mendelian and multifactorial diseases, the genetic methodologies and technologies used to define the causes of disease, the exploitation of genomic data in the diagnosis, prognosis and treatment of disease, the genetic basis of why different individuals can respond so differently to therapeutics and the individualization of medicine in the genomics era (pharmacogenomics).
Module Structure

Physiology

<table>
<thead>
<tr>
<th>Module</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Core Modules</td>
<td></td>
</tr>
<tr>
<td>PGU44006 Biomechanics and Neural Control of Movement (5 credits)</td>
<td></td>
</tr>
<tr>
<td>PGU44001 Synaptic Properties (5 credits)</td>
<td></td>
</tr>
<tr>
<td>PGU44007 Glial Physiology (5 credits)</td>
<td></td>
</tr>
<tr>
<td>PGU44009 Techniques in Cell Physiology (5 credits)</td>
<td></td>
</tr>
<tr>
<td>PGU44002 Journal Club (5 credits)</td>
<td></td>
</tr>
<tr>
<td>PGU44802 Integrative Physiology (S1) (10 credits)</td>
<td></td>
</tr>
<tr>
<td>PGU44020 Capstone Project (S2) (20 credits)</td>
<td></td>
</tr>
</tbody>
</table>

PGU44006 Biomechanics & Neural Control of Movement (BNCM) (S1) 5 credits

Prof A Witney

The aim of this module is to understand the biomechanics and neural control of action. The complementary and overlapping roles of our multiple descending motor pathways are discussed. Postural control, locomotion and the learning of complex motor skills will be covered. Clinical case studies of movement disorders are included throughout the module.
PGU44007 - Glial Physiology (GP) (S1)
Profs M Caldwell & E Jiménez Mateos

The module is designed to explore the neurobiology of glia and assess the impact of glia on the function of the nervous system. The first part of the module is designed to provide an understanding of stem cells and their differentiation into neural subtypes including glia. The concept of adult neurogenesis and the effect of exercise will also be discussed. The second part of the module is designed to provide an understanding of astrocytes and microglia and appreciate their ability to adopt different phenotypes. The diverse roles of astrocytes and microglia will be considered. We will compile practical examples of how astrocytes and microglia help to maintain homeostasis and respond to injury.

Astrocytes are the most prevalent glial cell in the brain and the module will continue by exploring the many functions of astrocytes from the very well-defined role in providing metabolic support to neurons to the finding that astrocytes, like microglia, are active players in cerebral innate immunity. The role of astrocytes in blood brain barrier function will be described and the impact of changes in blood brain barrier permeability will be considered in different scenarios.

The third part will consider the changes that occur in disorders of the central nervous system with a focus on exploring the impact of neuroinflammation and oxidative changes in disease pathologies. The changes in glial function in a number of different conditions will be discussed.

PGU44002 Journal Club (S1)
Prof M Lynch

The most important and primary source of scientific knowledge is published work and therefore it is essential that students learn the skills required to critically assess published papers. This module is designed to provide guidelines to attain this skill, which can be improved only with increasing exposure to scientific literature. In this module, students will present, and critically discuss the findings of 10 scientific papers. The papers will be chosen to complement the lecture module in Glial physiology (PGU44007).

PGU44001 Synaptic Properties (S1)
Prof M Cunningham

This module focuses on the physiological properties of neurons, synaptic transmission and synaptic plasticity. In particular, the module builds on knowledge acquired in JS Physiology and describes, in-depth, biophysical membrane properties of neurons including membrane resistance and capacitance; time and length constants; ion fluxes and permeabilities and membrane potential, Nernst equilibrium potentials and the Goldman Hodgkin Katz (GHK) equation for determining membrane potential; electrical properties of neurons; Hodgkin-Huxley recording of the squid action potential and modern electrophysiological techniques; the quantal nature and probability of neurotransmitter release; molecular features of ion channels including conductance, selectivity filters and gating; integrative properties of neurons, dendrites, and dendritic conductance; spatial and temporal summation; synaptic plasticity mechanisms; neuronal and network functions, oscillatory networks, pacemakers, resonators and rebound activity. The module also describes methodology for investigating neuronal function e.g. current and voltage-clamping, extracellular local field potential recordings, whole-cell patch-clamp and optogenetics.
PGU44009 - Techniques in Cellular Physiology (TCP) (S1) 5 credits
Prof M-V Guillot Sestier
This module aims to provide theoretical knowledge and practical experience of modern techniques used in cell physiology research. Topics include: The preparation of solutions; benchwork and calculations, biochemical protein analysis, confocal microscopy, cell culture, gel electrophoresis with western immunoblot, and molecular biology techniques with a physiological application. A practical demonstration will accompany most of the lecture topics where students will gain some ‘hands on’ experience and write up their laboratory methods in the style of the Journal of Physiology. Lecture notes and learning supports will be available on blackboard, students are also encouraged to refer to research papers.

PGU44801 General Physiology (GP) (S2) 5 credits
Prof Á Kelly
These seminars and workshops ensure students have a solid grounding in the function of all physiological systems, from the basis of cell function at the ionic and molecular level to the integrated behaviour of the whole body and the influence of the external environment. It emphasises the integration of molecular, cellular, systems and whole-body function as the factor that distinguishes physiology from the other life sciences.

GU44802 Integrative Physiology (IP) (S1 & S2) 10 credits
Prof Á Kelly
This interactive, workshop-based module is intended to ensure students can integrate and apply their knowledge of core material covered in all Sophister modules and has a strong research focus. Students are given discussion topics that they are required to research, using material from journal articles, and present the results of their research via oral presentation. Discussion topics include case studies, recent developments in physiology and current topics in physiology relevant to society.

PGU44020 - Capstone Project: Research Skills and Project. (S1 & S2) 20 credits
Prof A Witney
The aim of this module is to develop some of the research skills necessary for successful completion of the project. It incorporates the following elements: ELEMENT ONE: This element is an extensive review of the literature relevant to the proposed final year research project. Lecture based sessions are also designed to ensure students are familiar with correct handling of data and use of appropriate statistical tests before undertaking their final year research project.
ELEMENT TWO: This component of the module represents perhaps represents the culmination of your training in scientific research in the Physiology moderatorship. You will conduct a full-time research project in one of the laboratories in the Department. Your independent research starts on the first Monday of the Hilary Term. While you are working in your host laboratory you are expected to full participate in the research environment. This includes presentations at laboratory meetings, keeping adequate laboratory records as well as working and discussing research with your laboratory colleagues. You should plan to complete laboratory work just before the St Patrick’s day holiday. You are then required to submit a written report and present your research findings in the first week of
April. You will also be assessed on your conduct in your host laboratory and your keeping of laboratory records and data storage.
Learning Outcomes

By the end of this course students will have:

- Studied all systems of the human body, including the nervous, musculoskeletal, gastrointestinal, immune, endocrine, reproductive, cardiovascular and respiratory systems, in both lecture and practical settings.
- Developed research skills including practical laboratory skills, critical analysis of published journal articles and statistical analysis of data.
- Applied their knowledge of physiology to discuss case studies and general problems in physiology in an integrated manner.
- Completed a full-time, individual original research project in an aspect of physiology, have written-up this project according to the standards of the Journal of Physiology and presented the results to their peers and academic staff in oral form.
- The core textbook for the physiology degree is: Human Physiology: From Cells to Systems. L Sherwood.
- Detailed module descriptions and additional advanced reading material is recommended for each module within Blackboard.
Zoology

Junior Sophister Course Advisor: Prof A Jackson: jacksoan@tcd.ie

Junior Sophister students in Zoology follow a training programme that consists of core theory and practical modules relating to ecology, physiology and biodiversity, as well as experimental design and analysis.

In the Senior Sophister year, in addition to coursework, students will take part in interactive tutorials and seminar presentations based on detailed literature analysis. They will also carry out and write-up an independent piece of research while working with one of the departmental research groups.

Brief descriptions of all modules available to Junior Sophister students in Zoology are given in this handbook.

Programme Structure
Zoology is the scientific study of all aspects of animal biology, from the cell to ecosystems. This encompasses a knowledge, not only of the structure and function of different species, but also of the complex relationships which govern the way in which animals relate to each other and to their surroundings. It provides an integrated view of all biological levels from the gene to the organism and higher.

Zoology provides fundamental knowledge relating to three areas of concern to society, namely the environment and its conservation, food production, and human and animal health and wellbeing. There is a growing awareness of environmental issues, including the conservation of biodiversity and the effects of climate change, to which zoologists contribute at all levels from research to policy making. Zoological research is also important in relation to food products and their pests while studies on a range of animals provide a basis for medical biology. Aspects of both environmental and medical biology feature strongly in the teaching and research programmes of the Zoology Department at TCD. With a breadth of skills, challenges and responsibilities, we are confident that every one of the Trinity Graduate Attributes are met by the zoology sophister programme:

https://www.tcd.ie/TEP/graduateattributes.php
Module Structure

Zoology

<table>
<thead>
<tr>
<th>Semester 1 (S1)</th>
<th>Semester 2 (S2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Core Modules</td>
<td></td>
</tr>
<tr>
<td>ZOU33000: Marine Biology (5 credits)</td>
<td>ZOU33005: Evolutionary Biology (5 credits)</td>
</tr>
<tr>
<td>ZOU33003: Animal Diversity 1 (5 credits)</td>
<td>ZOU33070: Experimental Design and Analysis (5 credits)</td>
</tr>
<tr>
<td>ZOU33004: Animal Diversity 2 (5 credits)</td>
<td>ZOU33085: Terrestrial Field Ecology (5 credits)</td>
</tr>
<tr>
<td>ZOU33010: Fundamentals of Ecology (5 credits)</td>
<td>ZOU33090: Desk Study: Zoology and Society (5 credits)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Open Modules Scenario I</th>
<th>Choose 2 Modules</th>
</tr>
</thead>
<tbody>
<tr>
<td>ZOU33050: Introduction to Developmental Biology (5 credits)</td>
<td>ZOU33030: Introduction to Parasitology (5 credits)</td>
</tr>
<tr>
<td>OR</td>
<td>OR</td>
</tr>
<tr>
<td>BOU33120: Environmental Dynamics (5 credits)</td>
<td>BOU33122: Entomology (5 credits)</td>
</tr>
<tr>
<td>OR</td>
<td>OR</td>
</tr>
<tr>
<td>Trinity Elective (5 credits)</td>
<td>BIU33140: Introduction to Immunology and Immunometabolism (5 credits)</td>
</tr>
<tr>
<td>OR</td>
<td>OR</td>
</tr>
<tr>
<td></td>
<td>Neurophysiology (5 credits)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Open Modules Scenario II</th>
<th>Choose 2 Modules</th>
</tr>
</thead>
<tbody>
<tr>
<td>ZOU33050: Introduction to Developmental Biology (5 credits)</td>
<td>ZOU33030: Introduction to Parasitology (5 credits)</td>
</tr>
<tr>
<td>OR</td>
<td>OR</td>
</tr>
<tr>
<td>BOU33120: Environmental Dynamics (5 credits)</td>
<td>BOU33122: Entomology (5 credits)</td>
</tr>
<tr>
<td>OR</td>
<td>OR</td>
</tr>
<tr>
<td></td>
<td>BIU33140: Introduction to Immunology and Immunometabolism (5 credits)</td>
</tr>
<tr>
<td>OR</td>
<td>OR</td>
</tr>
<tr>
<td></td>
<td>Neurophysiology (5 credits)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Open Modules Scenario III</th>
<th>Choose 2 Modules</th>
</tr>
</thead>
<tbody>
<tr>
<td>ZOU33050: Introduction to Developmental Biology (5 credits)</td>
<td>ZOU33030: Introduction to Parasitology (5 credits)</td>
</tr>
<tr>
<td>OR</td>
<td>OR</td>
</tr>
<tr>
<td>BOU33120: Environmental Dynamics (5 credits)</td>
<td>BOU33122: Entomology (5 credits)</td>
</tr>
<tr>
<td>OR</td>
<td>OR</td>
</tr>
<tr>
<td></td>
<td>BIU33140: Introduction to Immunology and Immunometabolism (5 credits)</td>
</tr>
<tr>
<td>OR</td>
<td>OR</td>
</tr>
<tr>
<td></td>
<td>Neurophysiology (5 credits)</td>
</tr>
</tbody>
</table>
Trinity Elective (5 credits) | Trinity Elective (5 credits)
--- | ---

ZOU33000 Marine Biology (S1) 5 credits
Profs N O’Connor, N Payne, J Wilson

This two-part module commences with a 5-day residential field course at Portaferry, Co. Down, followed by a series of lectures in the latter part of the semester. The field course is designed to teach students some of the key techniques and skills required for field-based environmental biology and to introduce key concepts in marine biology. This includes common species identification, benthic and pelagic sampling methods and experimental design. Students are required to keep detailed field notebooks.

This module introduces students to the oceanographic and ecological processes that underpin marine ecosystems and their associated biodiversity and functioning. Topics include characteristic features of different marine ecosystems (e.g. rocky shores, coral reefs, deep seas); application (fisheries and aquaculture) and human impacts on marine ecosystems (disturbances, pollution and climate change).

ZOU33003 Animal Diversity 1 (S1) 5 credits
Profs N Payne, N O’Connor & Dr J Kong

This module provides a detailed consideration and comparison of the structure, life cycles and general biology of animal groups from sponges through to amniotes (reptiles, dinosaurs, birds and mammals) but taking a comparative approach to functional aspects of life by drawing links across all animal groups. The module is based on lectures and practicals, with additional self-learning exercises. The practical work involves online information and demonstrations of material from the Zoological Department’s extensive collections, as well as hand-on experience with specimens. The module will take an evolutionary and comparative rather than taxonomic perspective on animal diversity with a focus on the Chordata. The module will open by charting the diversification of marine vertebrates and conclude with the conquest of land by the tetrapods. Throughout, the module will use form and function to draw comparisons across taxonomic groups, such as considering locomotion across cartilaginous fish, bony fish and amphibia.

ZOU33004 Animal Diversity 2 (S1) 5 credits
Profs A Jackson, N Payne & Dr Jacinta Kong

This module provides a detailed consideration and comparison of the structure, life cycles and general biology of animal groups focussing on the amniotes (reptiles, dinosaurs, birds and mammals) but taking a comparative approach to functional aspects of life by drawing links to anamniotes and invertebrates. The module is based on lectures and practicals, with additional self-learning exercises. The practical work involves online information, demonstrations of material from the Zoological Department’s extensive collections, as well as live specimens. The module will take an evolutionary and comparative rather than taxonomic perspective on amniote diversity. The module will open by describing how amniotes adapted to terrestrial living through the diversification of their morphological and physiological characteristics, and the escape into the air by the birds. Throughout, the module will use form and function to draw comparisons across taxonomic groups, such as considering locomotion such as flight across birds, mammals, reptiles and insects. The module will conclude by taking a macro-ecological perspective on the diversity of animal life in order to identify the main drivers of diversity at global, long term scales.
ZOU33010 Fundamental of Ecology (S1) 5 credits
Profs I Donohue & Fraser Mitchell
This module examines the factors that affect the distribution, growth and survival of plant and animal communities. It describes how organisms interact with their environment and the role that they have in ecosystem and community structure. There is an introduction to the concepts and models that help to explain and predict organism distributions and interactions. The module comprises interrelated components of lectures, practical sessions and fieldwork. It has been designed to provide a foundation to ecological theory and its application.

ZOU33005 Evolutionary Biology (S2) 5 credits
Profs P Luijckx & N Marples
“Nothing in biology makes sense except in light of evolution” – T. Dobzhansky. Evolution plays a central role in almost every biological process ranging from adaptation to rising temperatures, spread of multi drug resistant bacteria, conservation of small populations, spread of invasive species to understanding human and animal behavior. This course will provide students with an advanced understanding of current evolutionary thinking by introducing new ideas and extending concepts already encountered in the fresher years. Special attention will be given to how selection shapes adaptation.

ZOU33070 Experimental Design and Analysis (S2) 5 credits
Prof C Holland
This module will aim to put data collection and analysis in the context of research design and will be an important foundation for the Senior Sophister research project. The module consists of two parts. The emphasis will be practical with a more ‘hands on’ approach rather than the theory of statistics. Initially students will be taught about experimental design, data collection and sampling and the use of spreadsheets for data entry. This will lead on to preliminary data exploration and issues of normality. Emphasis will be placed upon the importance of visually exploring the data prior to the use of statistical tests. Summary statistics, including measures of centre and spread, skewness, kurtosis, percentiles and boxplots, will be covered. Then the module will move on to explore the concept of hypothesis testing and the need to compare two or more means. This will involve the use of t-tests and analysis of variance. Other types of data will also be introduced including the analysis of frequencies. The relationship between two variables in the context of regression analysis will also be explored. Finally, a data set will be used to bring the entire process together starting with simple data exploration through summary statistics to more complex analyses. The aim of the second part of the module is to address, in more detail, the fundamentals of experimental design and to explore how previous projects were conducted. In addition, students will learn how to write a moderatorship project proposal.
ZOU33085 Terrestrial Ecology (S2) 5 credits
Profs J Rochford, N Marples, Y Buckley, I Donohue
This two-part module begins with a series of lectures in Hilary Term, which offer an introduction to terrestrial biodiversity and wildlife biology, both globally and regionally. Topics covered will include assessment of biodiversity from individual, population, community and landscape scales and the importance of foraging ecology, habitat selection, inter- and intra-specific competition, territoriality, dispersion, population dynamics and regulation for determining diversity and distribution of animals. There will also be a particular focus on the origins, development and current status of the Irish vertebrate fauna.

The lecture series will be complemented, in week 37, by a five day residential field course in Glendalough, Co Wicklow, during which field techniques used for the study of terrestrial ecosystems will be introduced, with an emphasis on habitat and population assessment of mammals, insects and birds and their interactions with plants and the abiotic environment. Field visits will help with an understanding of contrasting habitats and approaches to conservation management. Students will carry out and present a mini project during the last two days of the course.

ZOU33090 Desk Study: Zoology and Society (S2) 5 credits
Prof P Luijckx
Student will research, in the scientific literature, synthesise and write an extended essay on a selected topic of current interest concerning Zoology and Society (sociological, ethical, medical or environmental). The finished product will conform to the general format of a scientific review article.

Open Modules
ZOU33050 Introduction to Developmental Biology (S1) 5 credits
Dr R Rolfe
This module consists of a series of lectures, tutorials and laboratory sessions that deals with a range of developmental topics emphasising a molecular approach to understanding the principles of animal development. A number of animal model systems will be dealt with and the contribution of each to our overall understanding of development discussed. Specific topics will include the following: Developmental genetics: the identification of genes that regulate development in Drosophila and vertebrates, Positional determination: how the body plan of the embryo is laid down including the role of homeo-box genes, Induction: the role of cell and tissue interactions and signalling cascades, Developmental neurobiology: positional determination within the vertebrate central nervous system, neuronal diversity and axonal guidance, neural crest cells and development of the peripheral nervous system. Other topics include limb development, organogenesis, and evolutionary developmental biology.
BOU33120: Environmental Dynamics (S1 part 1) 5 credits
Prof F Mitchell
The last 2.6 million years of Earth history have witnessed dramatic climatic and environmental changes. This module provides an overview of these major environmental changes, their causes, and their significance for human development. It contrasts ‘glacial’ and ‘interglacial’ worlds, examines the nature of the transitions between them, explores some potential causes of change, and illustrates their environmental impacts. In the process, a range of key environmental records are considered, along with the "proxies" used to develop them.

Neurophysiology I (S2) 5 credits
Prof E Jimenez-Mateos
The lectures in this module focus on how the nervous system works. Lectures will describe the structure and function of neurons, how they communicate and how they are arranged to form the nervous system. Topics include electrical properties of neurons, properties and physiological functions of ion channels, synaptic excitability, transmission and plasticity and the delivery and interpretation of sensory information into the central nervous system. Part of the course is also devoted to describing methods to record both cellular and brain activity. Practical classes focus on computer-simulated recordings of individual nerves to understand features of neuronal activity, recording brain function via electroencephalogram and sensory-evoked potentials. This module is designed to provide understanding of how the brain functions at a cellular and systems level.

ZOU33030 Introduction to Parasitology / 5 credits / Semester 2
Prof C Holland
The significance of the host-parasite relationship and the processes associated with the definition of parasitism are discussed in this module. Examples from important parasite phyla are reviewed with a focus upon life cycle strategies, ecology, pathology and control. The epidemiology of parasitic diseases including important differences between microparasites and macroparasites are defined. The significance of parasite distributions within host populations is highlighted. External and internal factors, which influence parasite populations, are outlined and particular attention is paid to host behaviour, genetics and immunity. The concept of a parasite community at the infracommunity and component community level is developed. The challenges associated with parasite control are explored. The practical work provides access to a wide range of parasitic material and gives emphasis to the diversity of parasitic lifestyles and forms. A number of the sessions are experimental in nature and explore parasitic adaptations for infection, the significance of parasite distributions in infected hosts, behavioural changes in parasitised hosts and the nature of parasite communities.
BOU33122 Entomology (S2 part 2) Prof J Stout 5 credits
There are more species of insects on Earth than any other group of organisms and they are of massive ecological and economic importance. This module will address behavioural, social, ecological and applied aspects of entomology, including their role in delivering ecosystem services (such as biocontrol and pollination), invasive species (such as fire ants and harlequin ladybirds) and conservation (both in Ireland and internationally). The practicals will provide students with the skills for sampling and identification of insects, which will be further enhanced through an individual project.

BIU33140: Introduction to Immunology and Immunometabolism (S2) 5 credits
Profs A Dunne, C O’Farrelly, J Fletcher, R Porter, F Sheedy
This module introduces to the basic components and function of the immune system – the molecules, cells, tissues and organs that make up the immune system. It will illustrate the immune responses to infection. Additionally, it will introduce students to the importance of central energy and intermediary metabolic pathways before considering how they are dysregulated in diseases like cancer and to fuel immune function. The module will be assessed by in course continuous assessment and an individual end of term exam paper.
Module Structure

<table>
<thead>
<tr>
<th>Zoolgy</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Semester 1 (S1)</td>
<td>Semester 2 (S2)</td>
</tr>
<tr>
<td>Core Modules</td>
<td>Core Modules</td>
</tr>
</tbody>
</table>
| ZOU44030: Data Handling and Statistics. (5 credits) | ZOU44060: Research Comprehension (5 credits)
ZOU44020 General Zoology (5 credits) |

<table>
<thead>
<tr>
<th>Open Modules</th>
<th>Capstone Project</th>
</tr>
</thead>
</table>
| ZOU44012: Advances in Parasitology
ZOU44013: Conservation and Wildlife Management
ZOU44019: Behavioural Ecology
BOU44111: Restoration Ecology and Re-Wilding
ZOU44017: Tropical Ecology (field course) | FBU44000: Research Project (20 credits) |

ZOU44030 Data Handling and Analysis (S1)
5 credits
Prof A Jackson & Y Buckley

Being able to form research questions and challenge our hypotheses by collecting and analysing data forms the basis of scientific inquiry. An understanding of data analysis is an essential skillset for all scientists. This module will consist of 2 tutorial sessions per week spanning all of semester 1. One of the tutorials each week will be used to develop class-directed questions relevant to current scientific thinking. As a class, we will form hypotheses, collect data and develop appropriate analytical techniques to answer our research questions. Concurrently, online material including video podcasts will be used to develop hands-on skills in the use of the very powerful and flexible statistics package R for data analysis. The module will start with basic probability theory, introduce different statistical distributions and culminate in learning how General Linear Models form a common framework for conceptualizing and analysing your data. At the end of the module you will have analysed a wide variety of data types and will have used the transferable and widely applicable statistics package R to analyse your data.

ZOU44060 Research Comprehension (S1 & S2)
5 credits
Prof P Luijckx

No matter what you do when you graduate, in most jobs you will be expected to read, understand and interpret data. Often this will be in a subject you are unfamiliar with or will use unfamiliar methods or study organisms. The aim of this module is to help you to develop the ability to understand and interpret research from a broad range of scientific areas, and then to develop opinions about this research and how it fits into the “big picture”. This module also aims to improve your ability to communicate all kinds of scientific research to a general audience, a skill that is currently in great demand.
ZOU44020 General Zoology (S2)
Profs A Jackson & all zoology staff
This module provides an opportunity for students to revise and study, in greater depth,
topics from the entire Sophister Zoology programme. Students are expected to integrate
their approach to the material with the perspectives and skills they develop during their
final year. Current affairs in zoology will be discussed in tutorials and linked to material
from both Junior and Senior Sophister modules.

FBU44000 Research Project (S2)
Prof I Donohue & all staff across Zoology, Botany & Environmental Science
The project provides an important opportunity for students to plan and carry out a detailed
and original piece of scientific research and communicate the results. It culminates in the
production of a thesis and communication of the results through a poster presentation at an
undergraduate research conference. Students will be assigned to a member of staff who will
support an appropriate topic and will supervise the work. They will submit a research
proposal before the practical work begins as part of the Junior Sophister ZOU33070
Experimental Design & Analysis module. As part of FBU44000 they will submit a thesis and
present a poster on the results. For the project, they will be expected to outline clearly a
scientific problem, review the associated literature, design and execute an appropriate
research programme, analyse and present the results and draw clear conclusions and record
progress in a notebook (physical or electronic as appropriate). Detailed guidance notes on
writing and submitting the thesis and poster may be found on the FB4000 Blackboard site.

ZOU44012 Advances in Parasitology (S1) 5 credits
Prof C Holland
This module consists of two parts. The first part (A) explores the significance and impact of
parasitism upon humans. Some of the topics discussed during the module illuminate the
practical challenges of designing and undertaking parasitological research in human
subjects. In contrast, other topics highlight the relative merits of using animal model
systems under experimental conditions as compared to field-based studies in human
subjects. The topics are as follows - the impact of parasitism upon cognitive development in
growing children; co-infection: challenges and solutions; epidemiology of helminths:
aggregation and predisposition; the ultimate challenge - parasite control.
The second part (B) focuses upon more ecological aspects of Parasitology with a emphasis
upon the impact of parasites at the level of the ecosystem and within wild animal hosts. The
topics include parasites as ecosystem engineers, parasites and introduced species and the
use of wild mammal host-parasite systems to model human parasitism.
ZOU44013 Conservation and Wildlife Management (S1) 5 credits
Prof J Rochford
This module, which consists of both lectures and tutorials, looks at some of the practical applications of wildlife biology to the conservation and management of animals, both in- and ex-situ, including the role of zoos in captive breeding programmes. Among the topics covered are planning for wildlife management, wildlife survey and census techniques, the principles of managing wildlife for sustainable harvest or control, management of scarce or endangered species, practical issues associated with the ex-situ management of species, and the design and management of conservation areas. In the second part of the module, we will concentrate on anthropogenic impacts on biodiversity conservation, including the development and implementation of biodiversity conservation strategies in the wake of the Convention on Biological Diversity, other national and international wildlife legislation, biosecurity and the role of Invasive Alien Species, Biological Data Management and the development of Species Action Plans, and the role of reintroductions in biodiversity conservation.

ZOU44019 Behavioural Ecology (S1) 5 credits
Prof N Marples
This module will expand the students’ grasp of some classic topics in the field of behavioural ecology such as the consequences of group living, tool use, optimality models and signaling. We will then explore some currently advancing themes, including multi-level societies, cooperation, and the effects of urbanization on animal behaviour. The content will be delivered in part as lectures and in part using a flipped classroom format. The continuous assessment will involve the students undertaking group research into the evidence for empathy in animals and presenting their findings to the class, and writing a blog on partner choice and the effects of captivity on breeding which will be individually assessed.

ZOU44017 Tropical (S1) 5 credits
Profs I Donohue, N Marples, J Rochford & Mr C Ennis
The module comprises a short series of lectures followed by a nine-day residential field course in East Africa that will run at the end of October (encompassing the reading week). The module will focus on the ecology and biodiversity of a range of ecosystems and habitats (including aquatic ecosystems [freshwater rivers and lakes, wetlands and saline lakes], tropical montaine forest and grasslands) and the connectivity’s among them. Issues and problems to do with human impacts and the conservation and management of these diverse habitats will also comprise an important element of the module. The module will focus particularly on the following three topics:
- Quantifying biodiversity and the factors that underpin biodiversity in the tropics
- Economics of wildlife management
- Behaviour on the savannah
- Sustainable development of tropical ecosystems
ZOU44092 Environmental Impact Assessment (S1) 5 credits
Prof J Rochford
This module involves an introduction to the principles and processes of Environmental Impact Assessment, particularly in relation to national and international requirements. All stages of the EIA process, from initial project screening to the final review, are covered, with the emphasis throughout on the role of the natural scientist. Strategic Environmental Assessment is also briefly covered. In addition to the lectures, students carry out a scoping exercise for a proposed development and conduct a quality review of an actual EIS.

BOU44107 Plant-Animal Interactions (S1) Prof J Stout 5 credits
In The Origin of Species (1859) Darwin emphasized that “plants and animals, most remote in the scale of nature, are bound together by a web of complex relations”. Plant-animal interactions have become increasingly recognized as drivers of evolutionary change and important components of ecological communities. This module will focus on pollination (the transfer of pollen between male and female reproductive structures in flowers) and herbivory (the consumption of plants by animals). The first half of the module will focus on plant-pollinator interactions, including pollinator-mediated evolution of floral traits, community level interactions, pollinator decline and conservation. The second part of the module will focus on antagonistic interactions between plants and herbivores, and explore plant and animal adaptations to herbivory, plant-herbivore dynamics and applications of interactions to ecosystem management. Practical’s will investigate floral characteristics and adaptations for pollination, pollinator networks and plant and animal adaptations to herbivory.

BOU44111 Restoration Ecology and Re-Wilding (S1) 5 credits
Dr M Collier
Restoration ecology, like conservation biology, is a ‘crisis’ discipline, having emerged as a science/practice response to the social and ecological impacts directly and indirectly driven by human activities. Restoration ecology has proven to be highly effective in some cases but has also given rise to some controversy as well as policy difficulties. Rewilding and novel ecosystems are new and controversial areas within restoration ecology making it difficult to know how and when to intervene. This module will introduce you to the challenges and opportunities, failings and fallacies of the complex world of restoration ecology, rewilding, and the work of restoration ecologists. It will look at how rewilding could be the most efficient of nature-based solutions and asks if this is feasible in the modern world. As the discipline struggles to navigate global climate issues, integrate with the social sciences, incorporate politics and economics, and derive policy actions, this module will draw on case studies of restoration globally to will challenge students to rethink ecology and ecosystems in the Anthropocene.
Learning Outcomes
On successful completion of the two-year Sophister programme in Zoology, students will be able to:

• set out the important basic concepts and current research developments in animal biology and associated disciplines
• structure the diversity and evolution of the animal kingdom
• design useful experiments
• demonstrate technical competence in the handling of research facilities and operate safely in a laboratory environment, both individually and as a team member
• design sampling programmes and carry out fieldwork using standard procedures
• communicate effectively both orally and in a variety of contemporary scientific writing styles.
• use appropriate editing, web-based, graphical and analytical software to analyse and interpret data and prepare reports and assignments.
• critically analyse experimental results (including those obtained personally) and use appropriate statistical and other quantitative procedures for data handling
• proficiently search and critically assess scientific literature and databases
• apply a scientific approach to problem solving
• articulate the contribution, including the ethical dimension, made by Zoology to society, in the realms of the environment, agriculture, natural resource management, human behaviour and health.
Graduate Attributes

The Trinity Graduate Attributes represent the qualities, skills and behaviours that you will have the opportunity to develop as a Trinity student over your entire university experience, in other words, not only in the classroom, but also through engagement in co- and extra-curricular activities (such as summer work placements, internships, or volunteering).

The four Trinity Graduate Attributes are:
• To Think Independently
• To Act Responsibly
• To Develop Continuously
• To Communicate Effectively

Why are the Graduate Attributes important?
The Trinity Graduate Attributes will enhance your personal, professional and intellectual development. They will also help to prepare you for lifelong learning and for the challenges of living and working in an increasingly complex and changing world.
The Graduate Attributes will enhance your employability. Whilst your degree remains fundamental, also being able to demonstrate these Graduate Attributes will help you to differentiate yourself as they encapsulate the kinds of transversal skills and abilities, which employers are looking for.

How will I develop these Graduate Attributes?
Many of the Graduate Attributes are ‘slow learned’, in other words, you will develop them over the four or five years of your programme of study. They are embedded in the curriculum and in assessments, for example, through undertaking independent research for your final year project, giving presentations and engaging in group work.
You will also develop them through the co-curricular and extra-curricular activities. If you help to run a club or society you will be improving your leadership skills, or if you play a sport you are building your communication and team-work skills.
Appendix 1

<table>
<thead>
<tr>
<th>Item</th>
<th>Reference/Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>General Regulations</td>
<td>Calendar, Part II, General Regulations and Information, Section II, Item 12</td>
</tr>
<tr>
<td></td>
<td>Calendar, Part III, General Regulations, Section 1.20</td>
</tr>
<tr>
<td>Student Support</td>
<td>Student Supports & Services</td>
</tr>
<tr>
<td></td>
<td>Student Services Booklet</td>
</tr>
<tr>
<td></td>
<td>Senior Tutor & Tutorial Service</td>
</tr>
<tr>
<td></td>
<td>Graduate Studies Mature Student Office</td>
</tr>
<tr>
<td>Co-curricular Activities</td>
<td>Central Societies Committee</td>
</tr>
<tr>
<td></td>
<td>DUCAC</td>
</tr>
<tr>
<td>Information on the TCDSU & GSU, including Student Representation Structures</td>
<td>TCDSU</td>
</tr>
<tr>
<td></td>
<td>TCDSU Student Representation Overview</td>
</tr>
<tr>
<td></td>
<td>TCD GSU</td>
</tr>
<tr>
<td></td>
<td>GSU - Student Representation Overview</td>
</tr>
<tr>
<td>Emergency Procedure</td>
<td>Standard Text: In the event of an emergency, dial Security Services on extension 1999</td>
</tr>
<tr>
<td></td>
<td>Security Services provide a 24-hour service to the college community, 365 days a year. They are the liaison to the Fire, Garda and Ambulance services and all staff and students are advised to always telephone extension 1999 (+353 1 896 1999) in case of an emergency.</td>
</tr>
<tr>
<td></td>
<td>Should you require any emergency or rescue services on campus, you must contact Security Services. This includes chemical spills, personal injury or first aid assistance. It is recommended that all students save at least one emergency contact in their phone under ICE (In Case of Emergency).</td>
</tr>
<tr>
<td>Data Protection</td>
<td>Data Protection for Student Data</td>
</tr>
<tr>
<td>Item</td>
<td>Reference/Source</td>
</tr>
<tr>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Research Ethics</td>
<td>Provided by School/Discipline Handbook</td>
</tr>
<tr>
<td>Key Dates</td>
<td>Provided by School/Discipline Handbook</td>
</tr>
<tr>
<td>Timetable</td>
<td>My TCD</td>
</tr>
<tr>
<td>Key Locations</td>
<td>Blackboard Academic Registry</td>
</tr>
<tr>
<td>Internships/Placements for Credit</td>
<td>Provided by School/Discipline Handbook</td>
</tr>
<tr>
<td>Health and Safety Statements</td>
<td>Provided by School/Discipline Handbook</td>
</tr>
<tr>
<td>Programme Architecture</td>
<td>Science Course Office website link and in School/Discipline Handbook</td>
</tr>
<tr>
<td>Plagiarism & Referencing Guidance</td>
<td>Calendar, Part II, General Regulations and Information, Section II, Item 82</td>
</tr>
<tr>
<td>Plagiarism Policy</td>
<td>Library Guides - Avoiding Plagiarism</td>
</tr>
<tr>
<td>Plagiarism Declaration</td>
<td>Library Guides - Avoiding Plagiarism</td>
</tr>
<tr>
<td>Explanation of ECTS Weighting</td>
<td>Description of ECTS for use in Course Handbooks</td>
</tr>
<tr>
<td>Programme Structure & Workload</td>
<td>Policy on Trinity Virtual Learning Environment</td>
</tr>
<tr>
<td>Study Abroad</td>
<td>Provided by School/Discipline Handbook</td>
</tr>
<tr>
<td>Registration (UG only)</td>
<td>Students in TR060, TR061, TR062 & TR063 will find handbooks and information on the Science Course Website link and School/Discipline Handbook.</td>
</tr>
<tr>
<td>Coursework Requirements</td>
<td>Student Learning Development</td>
</tr>
<tr>
<td>Marking Scale</td>
<td>Calendar, Part II, General Regulations & Information, Section II, Item 30</td>
</tr>
<tr>
<td>Item</td>
<td>Reference/Source</td>
</tr>
<tr>
<td>-------------------------------------</td>
<td>--</td>
</tr>
<tr>
<td>Progression Regulations</td>
<td>Calendar, Part II, General Regulations & Information</td>
</tr>
<tr>
<td></td>
<td>Calendar, Part II, Part C</td>
</tr>
<tr>
<td></td>
<td>Calendar, Part III, Section 3.8</td>
</tr>
<tr>
<td>Awards</td>
<td>National Framework for Qualifications</td>
</tr>
<tr>
<td>Professional and Statutory Body</td>
<td>Provided by School/Discipline Handbook</td>
</tr>
<tr>
<td>Accreditation</td>
<td></td>
</tr>
<tr>
<td>Careers Information & events</td>
<td>Provided by School/Discipline Handbook</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>External Examiner</td>
<td>Procedure for the transfer of students assessed work to external examiners</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Learning Outcomes</td>
<td>Provided in JF, SF & JS Handbooks on the Science Course Website</td>
</tr>
<tr>
<td></td>
<td>https://www.tcd.ie/Science/#menu. Also available in School/Discipline Handbooks.</td>
</tr>
<tr>
<td>Graduate Attributes</td>
<td>Trinity Education Project website https://www.tcd.ie/TEP/</td>
</tr>
<tr>
<td>Capstone (UG Programmes)</td>
<td>Capstone website</td>
</tr>
<tr>
<td></td>
<td>Policy on Good Research Practice</td>
</tr>
<tr>
<td>Attendance Requirements</td>
<td>Calendar, Part II, General Regulations and Information, Section II, Items 17-23</td>
</tr>
<tr>
<td></td>
<td>Calendar, Part III, General Regulations and Information, Sections 1.23; 2.11; and 3.2</td>
</tr>
<tr>
<td>Absence from Examinations</td>
<td>Calendar, Part II, General Regulations and Information, Section II, Item 35</td>
</tr>
<tr>
<td></td>
<td>Calendar, Part III, Section 3.5</td>
</tr>
<tr>
<td>Reference to Relevant University</td>
<td>Academic Policies</td>
</tr>
<tr>
<td>Regulations</td>
<td>Student Complaints Procedure</td>
</tr>
<tr>
<td></td>
<td>Dignity & Respect Policy</td>
</tr>
<tr>
<td>Item</td>
<td>Reference/Source</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Feedback and Evaluation</td>
<td>Student Evaluation and Feedback</td>
</tr>
<tr>
<td></td>
<td>Student Partnership Policy</td>
</tr>
<tr>
<td></td>
<td>Procedure for the conduct of Focus Groups</td>
</tr>
<tr>
<td>Foundation Scholarships</td>
<td>Calendar, Part II, Foundation and Non- Foundation Scholarships</td>
</tr>
<tr>
<td>Prizes, medals and other scholarships</td>
<td></td>
</tr>
</tbody>
</table>