Module Learning Aims:

The goal of this module is to introduce students to the practice of data analysis at an introductory postgraduate level. More than ever before, political science research relies upon data—information about people, firms, nations, etc. that can be standardized, compared, and analyzed en masse. Political scientists analyze data with an eye to explaining the social world. Not all political scientists perform data analysis, of course, but because data analysis provides so much of our knowledge about politics, every student of the subject must now know at least a little about how it works. Love it or hate it—and lots of people hate it—there’s no escaping data.

Module Content:

Students will learn about quantitative research methods through lectures and readings. Specifically, they gain a basic understanding of statistics and the classical model of hypothesis testing, as well as a number of key statistical tests used by social scientists. In tutorials, they will develop their knowledge of Stata, a useful statistical software package. (Students are not obliged to use this particular package for their research in the course, but it will significantly complicate their work for the class if they do not do so.) Each student will then write an original research paper that asks a social science question and uses one or more statistical tests to answer it.
Learning Outcomes:

Upon completion of this course, it is expected that students should be able:

- to develop causal models of the social world;
- to identify data useful for testing such models;
- to recognize different types of data;
- to identify populations of observations and samples selected from such populations;
- to make use of several different statistical estimators, with a basic knowledge of their respective strengths and weaknesses;
- to interpret and critique basic quantitative results found in the political science literature.

Lectures & Tutorials/Contact Hours:

There will be one lecture, one workshop, and one tutorial for the module each week. The lectures will focus upon quantitative research methods. All lectures will be pre-recorded and posted to Blackboard using Panopto. Lectures will be posted by the time indicated on the schedule.

The workshop will provide students with an opportunity to raise questions about the lectures. Students are also welcome—indeed, encouraged—to bring questions or concerns regarding their research papers for the module (see “Assessment”), their dissertations, or any other topics relating to the subject of the module. The workshop will be held on Zoom.

The tutorial—run by the module’s Teaching Assistant—will acquaint students with the use of Stata to analyze data. For the tutorial, the module will be split into three sections randomly, with each section receiving a 90-minute tutorial.

Both the instructor and the teaching assistant will hold office hours by appointment only.
Software:

I have assigned the statistical software package Stata for the module. It is relatively easy to use. We are currently working out a plan to provide remote access to Stata. A student version of the software package is available directly from Stata (http://www.stata.com/order/new/edu/gradplans/student-pricing/).

Students may use a different software package (SPSS, R, etc.) should they so choose, but it is their responsibility both to learn the package (i.e., no assistance will be guaranteed by either the instructors or the teaching assistant) and to use the package to complete the module’s assignments.

Readings:

I have assigned the following two books for the module:

Students wanting to learn more about Stata might wish to consult the following:

Baum, Christopher F. An Introduction to Modern Econometrics Using Stata. Chicago: Stata Press, 2006.

Students may also find some or all of the following readings on quantitative research methodology useful:

Good place to go if you want to understand what linear regression results mean.

An excellent source on logit and related models.

Useful reference on multivariate linear regression. Not too technical.

A classic (if dry) work on the logic of experimental research.

Just what the title says.

A standard textbook on statistical analysis, with particular emphasis on the scope and limits of multivariate regression. Much more advanced than Wonnacott and Wonnacott. An essential reference work, but not easy.

A short and entertaining book on the many ways that statistics can be misleading.

An accessible, but advanced, text.

A critique of orthodox methods of theory construction and data analysis, with a focus on King, Keohane, and Verba.

Argues for the essential unity of qualitative and quantitative research.

Argues effectively for the importance of theory in quantitative research.

Examines the nature of causal theory development, among other topics.

Excellent introduction to political science research methods.

A short article on teaching quantitative methods at an undergraduate level.

A simple introduction to polling.

Discusses how to display quantitative data effectively.

The American Statistical Association on the use and abuse of p-values in hypothesis testing.

A standard textbook that provides the mathematics behind some of the more basic statistical estimators. A good place to start if you want to go deeper than Pollock.

A critique of the classical model of hypothesis testing.

Finally, you will definitely benefit from devoting some time to improving the quality of your writing in general. The following are excellent resources:

Another useful resource is the American Political Science Association’s Style Manual for Political Science, online at https://mk0apsaconnectbyy6p6.kinstacdn.com/wp-content/uploads/sites/43/2018/11/Style-Manual-for-Political-Science-2018.pdf. While students are welcome to use any citation system they desire, so long as they use it consistently and it provides the relevant information, any student unsure of what citation system to use is encouraged to use the system in the Style Manual. I will also post some useful links to writing-related resources on the module’s Blackboard page.

Assessment:

Each student will complete eight short assignments and one research paper. Each short assignment will count for 5% of the grade, with the final paper counting for the other 60%. Four of the short assignments will test the knowledge of Stata students develop in the tutorials. The other four will assess student progress on the research paper.

In the research paper, each student will identify a research question and then answer it using quantitative analysis. Students must receive approval for their research questions; no student may pass the module unless I have approved the student’s research question in advance. The research paper should not be more than 6000 words long. The word count includes everything (notes, bibliography, etc.) except the cover page.

All assignments should be submitted via Blackboard. Just go to the “Assessment” section—you should be able to see all the assignments listed there. You will need to upload your assignments as Word documents or the like. Please make certain that you understand the submission procedure; I will not be sympathetic to students who submit
papers late due to “Blackboard troubles.” Unexcused late submissions will be penalized in accordance with standard department policy.

Course Website:
The course has a page at Blackboard. Please make sure you are signed up for it.

Research Ethics:
In conducting their research, students should be aware of Trinity College’s Policy on Good Research Practice, which can be found at

They should also be aware of the Ethics Policy of Trinity’s School of Social Sciences and Philosophy, which is at

http://www.tcd.ie/ssp/research/ethics/

I shall provide additional information on research ethics as needed.

Plagiarism and Academic Standards:
Students should be familiar with what plagiarism is, and avoid it like the plague. Plagiarism—defined by the University as the act of presenting the work of others as one’s own work, without acknowledgement—is unacceptable under any circumstances. Students are referred to Part III, Section 1.32 of the College Calendar for advice on avoiding plagiarism, including through carelessness. Penalties will apply if these rules are violated.

Students should consult the University’s webpage on plagiarism, which can be found at http://tcd-ie.libguides.com/plagiarism. All students must complete the online tutorial on
avoiding plagiarism which can be found on this webpage. The tutorial will generate a coversheet, which should be attached to all written work submitted in the course.

It is essential that the source for your material is always clear to the reader. This does not apply only to direct quotes from a book or article; it applies to any point taken directly from something that you have read. Paraphrasing the work of others and presenting it without attribution as your own is unacceptable—a citation must be given. You should be sure that (i) direct quotes are always enclosed in quotation marks so that it is clear that you are not claiming to have written the phrases yourself; (ii) you always give the source of ideas and facts, including the precise page reference; and (iii) you cite your sources, not your source’s sources. In other words, if you read a book published in 2014 and it contains a quote from a book published in 1964, make it clear that you discovered the point in the 2014 book—don’t give the impression that you consulted the 1964 book and found the quote yourself.

Students must also ensure that academic work submitted for each module is “new work”, i.e., it has not been previously submitted for other modules at Trinity or elsewhere.

Students wishing to learn more about plagiarism and how to avoid it may find the following source useful:

This book is designed to be a cheap and easy introduction to the topic. It will take you less than an hour to read.
Lecture Schedule (subject to change):

Note: All short assignments are due on Friday at 11:59 PM
EPA = *Essentials of Political Analysis*; SCPA = *Stata Companion to Political Analysis*

<table>
<thead>
<tr>
<th>Week</th>
<th>Lecture Topic</th>
<th>Tutorial Topic</th>
<th>Reading</th>
<th>Assignment</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Feb.</td>
<td>Introduction to Module</td>
<td>Creating/Importing datasets</td>
<td>EPA ch. 1, 10; SCPA ch. 1, 11</td>
<td>None</td>
</tr>
<tr>
<td>8 Feb.</td>
<td>Types of Data; Descriptive Statistics</td>
<td>Viewing and Creating Variables</td>
<td>EPA ch. 2-4</td>
<td>None</td>
</tr>
<tr>
<td>22 Feb.</td>
<td>Hypothesis Testing</td>
<td>Charts, Graphs, Crosstabs</td>
<td>EPA ch. 5-6; SCPA ch. 4-5</td>
<td>SCPA ch. 2, #3; ch. 3, #2</td>
</tr>
<tr>
<td>1 Mar.</td>
<td>Chi-Squared Tests & Mean Comparison Tests</td>
<td>Chi-Squared Tests & Mean Comparison Tests</td>
<td>EPA ch. 7; SCPA ch. 6-7.</td>
<td>SCPA ch. 4, #2; ch. 5, #1</td>
</tr>
<tr>
<td>8 Mar.</td>
<td>Linear Regression</td>
<td>Linear Regression</td>
<td>EPA ch. 8; EPA ch. 8</td>
<td>Paper pt. 2</td>
</tr>
<tr>
<td>15 Mar.</td>
<td>BREAK</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22 Mar.</td>
<td>Linear Regression (continued)</td>
<td>Linear Regression (continued)</td>
<td>SCPA ch. 9</td>
<td>SCPA ch. 6, #4; ch. 7, #1</td>
</tr>
<tr>
<td>5 Apr.</td>
<td>Logit</td>
<td>Logit</td>
<td>EPA, ch. 9; SCPA ch. 10</td>
<td>SCPA ch. 8, #5; ch. 9, #2, ch. 10, #2</td>
</tr>
<tr>
<td>12 Apr.</td>
<td>Multinomial/Ordered logit</td>
<td>Troubleshooting</td>
<td></td>
<td>Paper pt. 4</td>
</tr>
<tr>
<td>19 Apr.</td>
<td>Wrap-Up</td>
<td>Troubleshooting</td>
<td></td>
<td>None</td>
</tr>
<tr>
<td>7 May</td>
<td></td>
<td></td>
<td></td>
<td>Final Paper</td>
</tr>
</tbody>
</table>