Physics of the Interstellar and Intergalactic Medium

Lecture 8: Nebulae

Dr Graham M. Harper
School of Physics, TCD
How quickly does the H II region form?

- Ionization front is radius where the number of Lyman continuum photons = number of inflowing hydrogen atoms

 \[V_{IF}(t) = \frac{dR_{IF}}{dt} = \frac{1}{4\pi n_H R_{IF}^2} \left(N_{Lyc}^* - \frac{4\pi}{3} R_{IF}^3 \alpha_B n_H^2 \right) \]

- Just difference between those initially available and those already absorbed. Integrate to get radius of \(R_{IF} \)

\[
R_{IF}^3(t) = R_S^3 \left[1 - \exp \left(-t/\tau_{rec} \right) \right] \quad \tau_{rec} = 1/n\alpha_B
\]

- Where \(\tau_{rec} \) is the recombination time:
 - \(\tau_{rec} \sim 100 \) years for \(n=1000 \) cm\(^{-3}\)
 - Velocity of front for O4 star reaches \(V_{IF}=4000 \) kms\(^{-1}\)
 - Expression valid until front slows down and shock forms.
Common transitions:

- [SII] 6717/6731 Å
- [NII] 6748/6784 Å
- Hα 6563 Å
- [OI] 6300/6363 Å
- [OIII] 5007 Å
- [OII] 3729/3726 Å
Recombination lines, 2 photon-continuum
Sir William Huggins: "On the evening of the 29th of August, 1864, I directed the telescope for the first time to a planetary nebula in Draco (NGC 6543). The reader may now be able to picture to himself to some extent the feeling of excited suspense, mingled with a degree of awe, with which, after a few moments of hesitation, I put my eye to the spectroscope. Was I not about to look into a secret place of creation? I looked into the spectroscope. No spectrum such as I expected! A single bright line only!"
Nebulium identified ~ 5000 Angstroms

- Resolved into 2 separate lines
 - 5006.9 Ang.
 - 4958.9 Ang.
- Identified in 1925 as doubly ionized oxygen [O III] – 75 years to identify
- [Coronium 5303 Å Fe XIV (1930s)]
- Very strong coolant for H II regions
Temperature for pure H II region \(\Gamma = \Lambda(T_\text{e}) \)

Mean thermal energy per photoionization (lecture 4)

\[
\Delta E = \frac{4\pi \int_{\nu_0}^{\infty} h(\nu - \nu_0) \frac{\sigma_\nu J_\nu}{h \nu} d\nu}{4\pi \int_{\nu_0}^{\infty} \frac{\sigma_\nu J_\nu}{h \nu} d\nu}
\]

If we use the \(\nu^{-3} \) photoionzation \(\sigma \) then if \(T_\text{eff} < 150,000 \text{ K} \) and the spectrum can be described by a blackbody in the Lyman continuum then

\(\Delta E \approx kT_\text{eff} \)

And the heating rate:

\(\Gamma_H = x^2 n^2 \alpha_B(T_\text{e}) kT_\text{eff} \)

Mean cooling rate

\(\Lambda_{fb} = x^2 n^2 \beta_B(T_\text{e}) kT_\text{e} \)

\(+ \Lambda_{ff} = x^2 n^2 \beta_{ff} kT_\text{e}^{1/2} \)
H Lyman continuum heating

$T_{\text{star}} = 30000 \text{ K}$

J_ν

Hydrogenic approx

$\sigma \sim \left(\frac{v_0}{v}\right)^3$
A Transcendental Equation

- Equating heating to cooling can re-write simply as
 \[\Gamma_H = \Lambda_{bf} + \Lambda_{ff} \]
 \[\alpha_B k T_{eff} = \beta_{fb} k T_e + \beta_{ff} k T_e^{1/2} \]
- A transcendental equation that can be solved numerically
- Solution: \(T_e \sim 0.7-0.9 T_{eff} \) (depending on shape of ionizing rad.)
- H II regions are typically observed around B2 – O3 stars
- \(T_{eff} = 25,000-50,000 \) K
- Pure hydrogen nebulae have higher \(T_e \)'s than we observe
- But the FIRST H II regions were this hot!
- Metals make all the difference – why?

O4 star \(T_e = 27,000 \) K which is much higher than observed
\(T_e = 7,200 \) K with other elements present
Temperature for H II region with metals

Forbidden line cooling from metals (elements heavier than helium) is important because there are atomic energy levels accessible to thermal electrons, representative example, e.g., O$^+$ (O II) 3728 Ang.

\[\Gamma_H = \Lambda_{OII} \]

Eq 5.35 p. 76 (Dyson and Williams) numerically has the solution

\[T_e^{1/4} \exp \left(-3.89 \times 10^4 / T_e \right) = 2.5 \times 10^{-6} T_{\text{eff}} \]

<table>
<thead>
<tr>
<th>T_{eff} (K)</th>
<th>Equilibrium T_e (K)</th>
</tr>
</thead>
<tbody>
<tr>
<td>20,000</td>
<td>7450</td>
</tr>
<tr>
<td>40,000</td>
<td>8500</td>
</tr>
<tr>
<td>60,000</td>
<td>9300</td>
</tr>
</tbody>
</table>

More realistic values
Electron densities and T_e

- For n_e consider the ratio of emission fluxes from two lines with different critical densities
- $10^2 \text{ cm}^{-3} < n_{\text{crit}} < 10^6 \text{ cm}^{-3}$
- same element and ion helps reduce inherent uncertainties
- Not all ratios are useful at a given n_e
Thermal Bremsstrahlung (radio)

Bremsstrahlung radiation (free-free): acceleration from Coulomb interactions

Thermal (Planck) source function result of a Maxwellian distribution of electrons

Opacity corrected for stimulated emission (important when $h\nu \ll kT$) at radio wavelengths is

$$\tau \approx C \nu^{-2.1} T_e^{-1.35} n_e^2 L$$

Note: synchrotron radiation: acceleration is a result of a magnetic field.
Rayleigh-Jeans Approximation

- At radio wavelengths and nebula temperatures
 - Planck Function can be described by the Rayleigh-Jeans Approximation

\[S_v = B_v(T_e) = \frac{2h\nu^3}{c^2} \frac{1}{\exp(h\nu/kT) - 1} \approx \frac{2\nu^2kT}{c^2} \]

Equation of radiative transfer for slab geometry (and no background)

\[I_v = B_v(T_e)(1 - e^{-\tau_v}) = \frac{2\nu^2kT_e}{c^2}(1 - e^{-\tau_v}) \]

Also written in terms of brightness temperature, \(T_B \)

\[I_v \equiv \frac{2\nu^2kT_b}{c^2} \]

Equation of radiative transfer becomes

\[T_B = T_e(1 - e^{-\tau_v}) \]
Radio continuum spectrum

\[I_v = \frac{2v^2 k T_e}{c^2} \left(1 - e^{-\tau_v} \right) \]

- In the limits of very small and very large optical depths (high and low frequencies, respectively) we approach

\[[\tau << 1] \quad I_v \propto v^{-0.1} T_e^{-0.35} \]
\[[\tau >> 1] \quad I_v \propto v^{+2} T_e \]

- Spectral turn-over

![Graph](image-url)
Radio Recombination Lines

Large principal quantum numbers semi-classical~Bohr model

\[\nu_{n,m} = R_M \left(\frac{1}{n^2} - \frac{1}{(n + \Delta n)^2} \right) \]

\[R_M = R_\infty \left[1 + \frac{m_e}{M} \right]^{-1} \]
Observed Recombination Lines

Shows effect of reduced mass

\[\alpha \quad \Delta n = 1 \]

\[\beta \quad \Delta n = 2 \]

\[\gamma \quad \Delta n = 3 \]

\[\delta \quad \Delta n = 4 \]

\[\varepsilon \quad \Delta n = 5 \]

Pulsar dispersion measures

- EM waves propagate through free electron gas with refractive index m
 $$\frac{c}{v_{\text{phase}}} = m = \sqrt{1 - \frac{v_{\text{plasma}}^2}{v^2}}$$

- v_p is the plasma frequency ($v > v_p$)
 $$v_{\text{plasma}}(\text{Hz}) = \sqrt{\frac{n_e e^2}{\pi m_e}} = 8.97 \times 10^3 \sqrt{n_e (\text{cm}^{-3})}$$

- Signal propagates at the group velocity
 $$\frac{1}{v_{\text{group}}} = \frac{d}{dv} \left(\frac{v}{v_{\text{phase}}} \right)$$

- Some algebra …
 $$v_{\text{group}} = \frac{c^2}{v_{\text{phase}}} = c \sqrt{1 - \frac{v_{\text{plasma}}^2}{v^2}}$$
Pulsar dispersion measures

- For high frequencies expand expression for ν_{group} in terms of ν.

- Derive travel time of pulsar signal:

$$t = \int_0^L \frac{ds}{\nu_g} = \frac{L}{c} + \frac{e^2}{2\pi m_e c} \int_0^L n_e ds$$

Integral = Dispersion Measure

$$D = \int n_e dl$$

- Practice measure the change in delay ($\Delta t = t-L/c$) function of frequency:

$$\frac{d\Delta t}{dv} = \frac{e^2}{\pi m_e c} \frac{D}{v^3}$$
A measure of inhomogeneity

- Testing our assumptions!
- Compare emission from diagnostics that are dependent on density, e.g., line optical depths, pulsar dispersion measures.
- With diagnostics that are dependent on density², e.g., H-alpha emission, continuum (free-free) radio optical depths.
- If \(\frac{\langle n_e \rangle^2}{\langle n_e^2 \rangle} \neq 1 \) then clumped.

\[\propto \int n_e \, dl = \langle n_e \rangle L \]
\[\propto \int n_e n_e \, dl = \langle n_e^2 \rangle L \]
Uniformity of nebulae and the ISM

- Biggest limitation in simplified analysis is that plasmas are not uniform – instabilities within single component, or multiple components

- ISM observations show that 90% of ionized ISM fills only 25% of its volume

- H II Regions and nebulae are also clumped
If the gas pressure (P) can be written in terms of the density (ρ) then

$$P = K\rho^\gamma$$

- where, K constant
- γ is the ratio of specific heats c_P/c_V
- $\gamma=5/3$ - adiabatic perfect mono-atomic gas
- $\gamma=1$ - isothermal

Consider small amplitude acoustic perturbations in 1-D then the speed of sound a_s is given by

$$\frac{dP}{d\rho} = a_s^2 = \gamma K\rho^\gamma \Rightarrow a_{s0}^2 \equiv \gamma \frac{P_0}{\rho_0}$$
In absence of sinks and sources, the rate of change of mass in volume \(V \) equals the mass flux through elements of area \(ndA \) (where \(n \) is the normal)

\[
\frac{d}{dt} \int_V \rho \, dV = -\int_A \rho u \cdot \hat{n} \, dA = -\int_V \nabla \cdot (\rho u) \, dV
\]

Differentiate inside the integral on LHS and bring across

\[
\int_V \left[\frac{d\rho}{dt} + \nabla \cdot (\rho u) \right] \, dV = 0
\]

Since \(V \) is arbitrary, we require the integrand to vanish

\[
\frac{d\rho}{dt} + \nabla \cdot (\rho u)
\]
Propagation of disturbances

Assume a uniform gas of constant pressure and density at rest, then perturb

\[P = P_0 + P_1 \]
\[\rho = \rho_0 + \rho_1 \quad P_1 = \gamma K \rho_0^{\gamma - 1} \rho_1 \quad [0] \]
\[u = u_0 + u_1 \]

- Where 0 indicate rest values, and 1 perturbed values.
- Linearize the Equation of Conservation of Mass

\[\frac{\partial \rho}{\partial t} + u \frac{\partial \rho}{\partial x} + \rho \frac{\partial u}{\partial x} = 0 \]
\[\frac{\partial (\rho_0 + \rho_1)}{\partial t} + (u_0 + u_1) \frac{\partial (\rho_0 + \rho_1)}{\partial x} + (\rho_0 + \rho_1) \frac{\partial (u_0 + u_1)}{\partial x} = 0 \]
\[\frac{\partial \rho_1}{\partial t} + u_1 \frac{\partial \rho_1}{\partial x} + \rho_0 \frac{\partial u_1}{\partial x} = 0 \quad \Rightarrow \quad \frac{1}{\rho_0} \frac{\partial \rho_1}{\partial t} + \frac{\partial u_1}{\partial x} = 0 \quad [1] \]
Propagation of disturbances

- Linearize the Equation of Conservation of Momentum (Eulers Equation)

\[
\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} = - \frac{1}{\rho} \frac{\partial P}{\partial x}
\]

\[
\frac{\partial u_1}{\partial t} + u_1 \frac{\partial u_1}{\partial x} = - \frac{1}{\rho_0} \frac{\partial P_1}{\partial x}
\]

\[
\Rightarrow \frac{\partial u_1}{\partial t} = - \frac{1}{\rho_0} \frac{\partial P_1}{\partial x} \quad [2]
\]

- Differentiate [1] w.r.t Time and [2] w.r.t. Space, substitute [0] for \(P_1 \) then subtract the two

\[
\frac{\partial^2 \rho_1}{\partial t^2} - a_{s0}^2 \frac{\partial^2 \rho_1}{\partial x^2} = 0
\]

- Standard wave equation: 2 opposite waves travelling with speed \(a_{s0} \)
Conclusions

- If material is moving with uniform velocity v then by a change of reference frame there are now 2 solutions travelling with

$$u_0 + a_{s0} \quad \text{and} \quad u_0 - a_{s0}$$

- The velocity is constant because we have ASSUMED tiny perturbations in our derivation. Recall

$$a_s^2 = \gamma K \rho^{\gamma - 1} \Rightarrow a_{s0}^2 \equiv \gamma \frac{P_0}{\rho_0}$$

- So if $\gamma > 1$ then the sound speed is greater when the density is higher and this is where shocks come in...